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Abstract

Background: Contactless sleep technologies (CSTs) hold promise for longitudinal, unobtrusive sleep monitoring in the community
and at scale. They may be particularly useful in older populations wherein sleep disturbance, which may be indicative of the
deterioration of physical and mental health, is highly prevalent. However, few CSTs have been evaluated in older people.

Objective: This study evaluated the performance of 3 CSTs compared to polysomnography (PSG) and actigraphy in an older
population.

Methods: Overall, 35 older men and women (age: mean 70.8, SD 4.9 y; women: n=14, 40%), several of whom had comorbidities,
including sleep apnea, participated in the study. Sleep was recorded simultaneously using a bedside radar (Somnofy [Vital Things]:
n=17), 2 undermattress devices (Withings sleep analyzer [WSA; Withings Inc]: n=35; Emfit-QS [Emfit; Emfit Ltd]: n=17), PSG
(n=35), and actigraphy (Actiwatch Spectrum [Philips Respironics]: n=18) during the first night in a 10-hour time-in-bed protocol
conducted in a sleep laboratory. The devices were evaluated through performance metrics for summary measures and
epoch-by-epoch classification. PSG served as the gold standard.

Results: The protocol induced mild sleep disturbance with a mean sleep efficiency (SEFF) of 70.9% (SD 10.4%; range
52.27%-92.60%). All 3 CSTs overestimated the total sleep time (TST; bias: >90 min) and SEFF (bias: >13%) and underestimated
wake after sleep onset (bias: >50 min). Sleep onset latency was accurately detected by the bedside radar (bias: <6 min) but
overestimated by the undermattress devices (bias: >16 min). CSTs did not perform as well as actigraphy in estimating the all-night
sleep summary measures. In an epoch-by-epoch concordance analysis, the bedside radar performed better in discriminating sleep
versus wake (Matthew correlation coefficient [MCC]: mean 0.63, SD 0.12, 95% CI 0.57-0.69) than the undermattress devices
(MCC of WSA: mean 0.41, SD 0.15, 95% CI 0.36-0.46; MCC of Emfit: mean 0.35, SD 0.16, 95% CI 0.26-0.43). The accuracy
of identifying rapid eye movement and light sleep was poor across all CSTs, whereas deep sleep (ie, slow wave sleep) was
predicted with moderate accuracy (MCC: >0.45) by both Somnofy and WSA. The deep sleep duration estimates of Somnofy
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correlated (r2=0.60; P<.01) with electroencephalography slow wave activity (0.75-4.5 Hz) derived from PSG, whereas for the

undermattress devices, this correlation was not significant (WSA: r2=0.0096, P=.58; Emfit: r2=0.11, P=.21).

Conclusions: These CSTs overestimated the TST, and sleep stage prediction was unsatisfactory in this group of older people
in whom SEFF was relatively low. Although it was previously shown that CSTs provide useful information on bed occupancy,
which may be useful for particular use cases, the performance of these CSTs with respect to the TST and sleep stage estimation
requires improvement before they can serve as an alternative to PSG in estimating most sleep variables in older individuals.

(JMIR Mhealth Uhealth 2023;11:e46338) doi: 10.2196/46338
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Introduction

Background
Sleep is a major determinant of the quality of life, and sleep
disturbances are a risk factor for a variety of health conditions.
Longitudinal monitoring of objective sleep measures using
unobtrusive, low-cost technologies will allow data-driven
identification of clinical biomarkers and covariates of sleep and
health and facilitate better monitoring of the efficacy of sleep
interventions [1,2]. This is particularly relevant in aging, as
sleep disturbances increase with age and are a risk factor for
several health conditions prevalent in older adults, including
dementia.

Polysomnography (PSG) is considered the gold standard for
evaluating sleep, but longitudinal implementation of PSG at
scale is not feasible because of the cost and burden it imposes
on the user. Rest-activity monitoring (actigraphy) through a
wrist-worn wearable device is currently the most widely used
alternative for monitoring sleep in real-world settings. However,
actigraphy is limited to a binary classification (sleep vs wake)
and underestimates wake, especially in disrupted sleep and sleep
disorders [3]. Furthermore, similar to PSG, clinical-grade
actigraphy devices are of relatively high cost.

Consumer-grade low-cost wearable devices (wearables) are a
potential alternative to clinical-grade actigraphy devices.
However, wearables are not an ideal solution for longitudinal
monitoring because they still pose a burden to the user and rely
on portable battery technology (need to be recharged); therefore,
their acceptability, especially in older people and people living
with dementia, may be low [4-7].

Contactless Sleep Technology
Contactless sleep technologies (CSTs), also known as nearables,
are of great interest for conducting longitudinal sleep recordings
in general and in older individuals and those with mild cognitive
impairment or dementia in particular. This is because, unlike
wearables, CSTs do not have to be worn, are inconspicuous
(embedded into the living environment), do not impose any
burden on the user, and are not constrained by limited battery
life because they are wired to the mains electricity. Furthermore,
CSTs are designed within the context of digital platforms that
allow data to be collected, relayed to cloud storage facilities,
and processed to provide objective sleep and vital sign measures.
With CSTs demonstrating acceptable accuracy compared with

the existing gold standards, they could play an integral part in
creating a “bedroom of the future,” enabling long-term,
continuous, and real-time remote monitoring of sleep and
physiology at night by clinicians and health care providers.
They may also support and monitor the effectiveness of
interventions for improving sleep, which may ultimately
facilitate longer independent living for older adults [8,9].

Bedside radars and undermattress devices are the 2 most
commonly used types of CSTs. Bedside radars use radar
technology (commonly ultrawideband radio frequency), whereas
the various undermattress devices use several sensing
technologies, such as pneumatic, piezoelectric, and
electromechanical films. Although contactless devices use a
variety of sensing approaches, the main information acquired
by these devices is based on the ballistographic signal. This is
a composite signal containing a wealth of information on body
movements, breathing, and cardiac activity, which can be used
to estimate wake and sleep stages [10].

The plethora of low-cost CSTs opens up a wide range of
possibilities for longitudinal sleep monitoring at scale in home
settings. However, only a handful of these consumer-grade
devices have been evaluated against PSG or actigraphy [8,11].
Without rigorous evaluation, there are also potential risks of
the multimodal capabilities and clinical value of CSTs not being
used to their full potential and the data being misinterpreted
[12]. Several of these validation studies have important
limitations. CST sleep prediction algorithms are usually trained
on healthy participants, which limits the heterogeneity of the
training data and potentially affects real-world performance in
more heterogeneous populations. Most studies that intend to
validate these devices and their algorithms, which are preferably
referred to as evaluation studies rather than validation studies
[13], are conducted in young healthy adults without sleep
disturbances rather than in older participants with health
problems and sleep disturbance. Furthermore, most evaluation
studies do not offer interdevice comparisons, thus limiting
conclusions on the relative performance of the devices [14-17].
Another important but often overlooked issue in evaluating
CSTs is the consideration of the period over which “sleep” is
analyzed. In PSG studies conducted in sleep laboratories, the
analysis period (AP) is defined as the interval between lights
off and lights on. For actigraphy studies at home, the American
Academy of Sleep Medicine (AASM) [18] recommendation is
that the AP be derived from a sleep diary [19]. The sleep
measures are then estimated using this AP. By contrast,
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consumer sleep technologies rely on the automatic estimation
of the rest (or time-in-bed) period. In many evaluation studies,
the AP is nevertheless set to the AP according to the PSG, but
this may yield biased performance metrics that are not relevant
to the use of these devices in the real world. A final
consideration for evaluation studies is the choice of performance
measures. Traditional measures such as sensitivity and accuracy
may not be appropriate in cases in which there are imbalances
in the number of observations across classes, such as in
sleep-wake classification [20,21].

Evaluating CSTs against gold-standard PSG and actigraphy in
older adults to understand their accuracy and reliability requires
evaluation protocols that address the above-discussed issues.
We have previously shown that CSTs provide accurate
information on “bed occupancy” in older people in a home
setting [22]. Here, the performance of 3 contactless devices,
namely a bedside radar (Somnofy [Vital Things]) and 2
undermattress devices (Withings sleep analyzer [WSA; Withings
Inc] and Emfit-QS [Emfit; Emfit Ltd]), in estimating sleep
parameters was evaluated in comparison with those of
gold-standard PSG and actigraphy (Actiwatch Spectrum [AWS;
Philips Respironics]) in a heterogeneous population of older
men and women. We made use of the “first night effect,” which
refers to the reduced quality of sleep when participants are
sleeping in a novel environment [23]. In addition, an extended
(10-hour) time-in-bed period was imposed to better mimic sleep
patterns in dementia. We addressed the pitfalls in evaluating
CSTs and quantified the agreement between these CSTs and
PSG and between these CSTs and actigraphy (AWS) using
different performance measures and AP definitions. The
usefulness of CSTs may vary across use cases. For some use
cases, a simple all-night estimate of the total sleep time (TST)
may be sufficient, whereas for other use cases, it is necessary
to estimate sleep stages and epoch-by-epoch (EBE) concordance.
The performance of these devices was, therefore, evaluated both
with respect to all-night summary measures or EBE concordance
and at various levels of characterization of the sleep-wake
phenotype, that is, from a simple 2 category classification,
namely wakefulness and sleep, to 4 category classification,
namely wake, light sleep (LS), deep sleep (DS), and rapid eye
movement (REM) sleep.

Methods

Study Population
Participants were recruited to the study via a targeted search of
the Surrey Clinical Research Facility participant database,
followed by telephone screening and self-reported assessment
of health. During an in-person screening visit, an array of
assessments and clinical procedures was performed to determine
suitability for the study. Participants were considered eligible
if they met the inclusion criteria (being aged 65 to 85 y, living
independently, being a nonsmoker, having self-declared stable
medical conditions, and consuming <28 units of alcohol per
wk). Data were collected from 2 cohorts: cohort 1 with 18
participants (January to March 2020) and cohort 2 with 17
participants (June to November 2021).

Study Protocol
Participants came to the sleep laboratory (Surrey Sleep Research
Centre, Guildford, United Kingdom) for 1 overnight sleep
recording after they had been using the devices for 8 to 14 days
at home (the analyses of the home data have been reported
elsewhere [22]). We deliberately included no adaptation night
in this protocol and used the first night effect to create conditions
of mild sleep disturbance [23]. During the overnight
in-laboratory study, participants were provided with a
time-in-bed period of 10 hours. Full PSG was recorded
according to the AASM guidelines using the SomnoHD PSG
system (SOMNOmedics GmbH). Sleep (sleep stages: wake,
REM, stage N1 of non-REM sleep [N1], stage N2 of non-REM
sleep [N2], and stage N3 of non-REM sleep [N3]) was scored
at 30-second intervals in the DOMINO software environment
(SOMNOmedics GmbH) by 2 independent scorers, and a
consensus hypnogram was generated. All recordings were
visually inspected, and artifacts were removed. We estimated
30-second epoch-wise slow wave activity (SWA) power
(0.75-4.5 Hz) from the electroencephalography (EEG)
spectrogram created by the fast Fourier transform applied to
4-second epochs after tapering with a hamming window. In
general, the left frontal referenced to right mastoid (F3-M2)
channel derivation was used for the computation of SWA unless
the quality of this channel was poor, in which case the right
frontal referenced to left mastoid (F4-M1) channel derivation
was used.

The PSG sleep summary estimates were computed for the
interval from lights off to lights on, as per the AASM guidelines.
The apnea hypopnea index (AHI) was obtained by applying
>3% oxygen desaturation or a respiratory event accompanied
by an arousal as a criterion for identifying hypopnea [18]. Other
relevant study population measures such as the Mini-Mental
State Examination, Pittsburgh Sleep Quality Index (PSQI), and
Epworth Sleepiness Scale (ESS) were collected using
questionnaires.

Contactless Sleep Trackers and Actigraphy Device
Evaluated
This study was conducted in 2 cohorts. In cohort 1 (n=18), we
evaluated the WSA and AWS. The devices evaluated in cohort
2 (n=17) were the WSA, Emfit, and Somnofy bedside radar.
The contactless device and AWS data were simultaneously
collected along with PSG. Time synchronization was assessed
and achieved across the devices (including PSG) by connecting
them to the same secure network.

The WSA is a pneumatic undermattress device, and the Emfit
is an electromechanical film undermattress device. Both devices
were placed underneath the mattress and adjacent to each other
at the thoracic level [16,24]. The bedside radar (Somnofy) device
uses low-power ultrawideband radar and was placed on a
bedside table pointing toward the participant’s thorax [15]. The
devices were set up as per the manufacturer’s guidelines. All 3
devices detect activity and physiological parameters to identify
sleep stages. The bedside radar (Somnofy) is the only device
in the study that performs active sensing using radio waves (via
the Doppler radar technique) and collects environmental
variables such as light, sound, and particulate pollution.
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AWS is a standard clinical-grade actigraphy device that has
been widely deployed for home monitoring and evaluated
against PSG in the sleep literature [25,26]. Actiware (version
6.0.7; Philips Respironics) was used to set up the device and
download and analyze the collected data. AWS was set up to
output sleep and activity labels at 60-second epoch and
synchronized to the clock time by the Actiware during
configuration. The device estimates the wearer’s activity in
terms of activity counts per epoch and assigns sleep or wake
labels using a preset threshold. The activity threshold was set
to medium threshold (epochs with an activity count over 40
were labeled by the device as wake) [22].

Collected Data
The WSA and Somnofy data were downloaded using the
application programming interface provided by the respective
manufacturer, whereas the Emfit device data were downloaded
from a simple web interface. The Emfit data consisted of “csv”
files, whereas the WSA and Somnofy data consisted of “json”
files. A further description of device deployment is provided in
Contactless Sleep Technology section and Table S1 in
Multimedia Appendix 1.

The contactless devices generated a 4-stage hypnogram with
DS (assumed to be equivalent to N3 sleep), LS (assumed to be
equivalent to N1 or N2 sleep), REM, and wake labels. The
temporal resolution of the hypnograms generated by Emfit and
Somnofy was 30 seconds, whereas for WSA and AWS, the
temporal resolution was 60 seconds. Because the analysis was
performed on clock time, we made the relevant daylight-saving
correction to the device Coordinated Universal Time series. The
Emfit and Somnofy time series were further synchronized to
PSG using the activity or movement data from the respective
devices through cross-correlation [15]. PSG was available for
all the participants, but owing to the differences in device
deployment between cohorts 1 and 2, erroneous automated
summary, and data loss, the number of nights differed between
devices. The total number of nights of data used for each device
was as follows: WSA: n=35 (34 for the automated
device-selected AP), AWS: n=18, Somnofy: n=17, and Emfit:
n=16.

All the 3 contactless devices automatically detected the
overnight in-bed periods and generated sleep-wake summary
estimates for these periods, including TST, sleep onset latency
(SOL), wake after sleep onset (WASO), sleep efficiency (SEFF),
and sleep stage (DS, LS, REM, and wake) duration estimates.
We combined the LS and DS estimates to derive the non-REM
(NREM) duration. The AWS data were downloaded, and
sleep-wake time series and sleep summary measures were
generated using the Actiware. The APs or rest intervals for sleep
summary generation can be determined automatically by the
Actiware or set manually by the user.

Performance Assessment Categories and APs
Performance analysis can be broadly separated into 2 categories:
sleep summary measures, which provide the cumulative
estimates of nocturnal sleep, and EBE concordance, resulting
in detailed information on the sleep architecture detection
accuracy of the devices under evaluation.

All the evaluated CSTs detected the overnight-in-bed periods
based on their respective proprietary algorithms and generated
sleep or wake summary measures. The sleep summary estimates
associated with this automated device-selected AP are referred
to as the “analysis period–automatic (AP-A).” Further, the sleep
summary estimates of the devices were calculated using the
sleep stage time series during the period from lights off to lights
on (referred to as “analysis period–manual [AP-M]”). AP-M
allowed us to compare the devices against PSG for the same
AP. For the sleep summary agreement evaluation, the
above-mentioned AP-A and AP-M estimates were compared
with PSG sleep summary estimates.

EBE agreement analysis was performed for the total recording
interval of PSG (from the start of PSG recording to the end of
PSG recording) and for the period from lights off to lights on
for completeness. The performance of each device was
compared with that of the gold-standard PSG for all available
nights. All the data analyses reported here were performed using
MATLAB (version 2021b; Math Works).

To determine the satisfactory level of agreement in sleep
summary estimates and EBE concordance between the device
and PSG estimates, we used the interscorer difference estimates
available in the literature. The metrics used and their agreement
thresholds are discussed in the following sections.

The number of participants for whom data were available was
not the same for all the CSTs owing to the varied deployment
in cohorts 1 and 2 and errors in data collection. For each
comparison, the maximum number of available participants was
used for performance assessment.

Sleep Summary Agreement Assessment Approach
The sleep or wake summary measures available across all
devices were TST (total time spent in sleep during the “lights
off” period as assessed by PSG), SOL (time elapsed from lights
off to the first incidence of sleep), WASO (time spent in wake
during the “lights off” period as assessed by PSG), and SEFF
(ratio of the TST to the total recording time (TRT) of PSG
expressed as percentage). Hence, these summary measures were
used for comparisons across all the devices and APs (AP-A and
AP-M). In addition, for the contactless devices, but not AWS,
sleep stage duration measures such as LS, DS, REM sleep, and
wake durations were also compared. The results of the AP-M
analysis are presented in Multimedia Appendix 1. Bland-Altman
plots were created to understand the agreement between the
device-estimated measures and the gold-standard PSG measures.
The Shapiro-Wilk test was performed to check the normality
of the differences [27-30]. We found that for most sleep
parameters, the differences passed the normality test. The
exceptions were the AP of AWS automatic analysis and
Somnofy and SOL of Somnofy. These deviations from normality
were deemed to be related to the small sample size and outliers,
and no corrections were made.

Apart from the bias, limits of agreement, and the associated
95% CIs, we estimated the minimum detectable change and
Pearson correlation (ρ) and assessed the reliability using
consistency intraclass correlation (ICC) with 2-way random
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effects, and effect size for the magnitude of differences (Cohen
d or standardized difference here) [27].

Sleep summary measures have values ranging from few minutes
to hundreds of minutes (SEFF is a percentage measure). Owing
to this difference in measurement range and units across the
different sleep summary measures, the above-mentioned
traditional metrics do not allow direct intermetric comparison
across the different devices or the ranking of device
performance. To address this problem, we used standardized
metrics such as the symmetric mean absolute percentage error
(SMAPE) [31] and standardized absolute difference (SAD) to
quantify the bias and dispersion in different sleep measures
(sleep-wake and sleep stage duration). Given that x is the
reference device estimate (PSG) and y is the test device estimate
with n simultaneous measurements, SMAPE and SAD are
defined as follows:

(1)

(2)

Here, s2 is the variance of the reference and test device
measurements. These measures are directionless and unitless
and hence allow for direct comparisons of the measurement
agreement across devices and estimates. Standardized
differences, Cohen d, and SAD were classified as follows:
0.1-<0.3=small; 0.3-<0.5=moderate; ≥0.5=large. SMAPE values
ranged from 0% to 100%.

The estimates of the average agreement (ICC) between scorers
and the average score reported by Younes et al [32] were used
to define the satisfactory agreement level for the sleep summary
measures. The ICC thresholds for the different duration
estimates were as follows: 0.84 for WASO, 0.75 for REM, 0.65
for NREM, 0.67 for LS; and 0.63 for DS.

EBE Concordance Assessment Approach
The concordance between the sleep stage hypnogram time series
automatically generated by each device and the PSG hypnogram
was estimated for the total recording interval of PSG. The
5-stage PSG hypnogram was converted into a 4-stage
hypnogram similar to the device hypnograms by combining N1
and N2 as LS (LS=N1 or N2) and assuming N3 as DS. The
concordance analysis was performed at the level of PSG
hypnogram resolution, which was in 30-second intervals. The
60-second WSA and AWS hypnograms were converted to
30-second resolution by imputing the unavailable 30-second
epoch data with the label of the next adjacent minute. Epochs
scored as artifacts in PSG and missing (WSA) and no presence
(Somnofy and Emfit) epochs in the devices were excluded from
the concordance analysis, that is, only valid or complete pairs
of hypnogram labels between PSG and the devices were used

for the analysis. Finally, to achieve an accurate EBE
concordance assessment, PSG, AWS, and CST hypnograms
were aligned via cross-correlation, and the lag within a 10-epoch
window that provided the best alignment and concordance was
used.

To investigate the changes in concordance with different sleep
staging resolutions, the analysis was performed at the following
three levels of the hypnogram: (1) two stages (sleep and wake),
(2) three stages (NREM [LS or DS], REM, and wake), and (3)
four stages (DS, LS, REM, and wake). In addition, we performed
EBE concordance analysis for the lights off period (Multimedia
Appendix 1). Sensitivity (sleep prediction accuracy) and
specificity (wake prediction accuracy) are reported for sleep or
wake EBE analysis. For the different sleep stage concordance
analysis, sensitivity, specificity, accuracy, F1-score, and
Matthew correlation coefficient (MCC, which accounts for class
imbalance and is a better alternative to the κ metric or its
variants) are reported for completeness and consistency with
the existing literature [20,21].

The estimates of the interrater reliability reported by Lee et al
[33] were used to define the satisfactory agreement level for
the EBE concordance. Because MCC and the κ metrics have
almost identical values when both metrics are in the positive
quadrant [20], we used the κ values reported by Lee et al [33]
to define the MCC threshold for satisfactory EBE concordance.
The MCC thresholds for the different sleep stages were as
follows: 0.70 for sleep or wake, 0.69 for REM, 0.48 for NREM,
0.40 for LS, and 0.57 for DS.

Ethical Considerations
The study received a favorable opinion from the University of
Surrey Ethics Committee (reference UEC 2019 065 FHMS)
and was conducted in accordance with the Declaration of
Helsinki, the Principles of Good Clinical Practice, and relevant
guidelines and regulations of the University of Surrey. Potential
participants were given detailed information about the study
protocol, and they provided written informed consent before
any study procedures were performed.

Results

Study Population Characteristics
The study involved a total of 35 participants (age: mean 70.8,
SD 4.86; range 65-83 y; women: n=14, 40%; men: n=21, 60%)
with no self-reported history of mental health or neurological
problems. Cohorts 1 and 2 were similar with respect to
demographics and PSG-assessed sleep parameters (Table 1).
Approximately 60% (20/35) of the participants had ≥1
self-reported comorbidities, including type-2 diabetes (2/35,
6%), hypertension (2/35, 6%), obesity (BMI>30; 6/35, 17%),
and arthritis (6/35, 17%). Reported comorbidities were stable
and well controlled, with no recent medication changes or
hospitalizations that interfered with the study conduct.

The values shown in Table 1 are mean, SD, and range. The
significance of the difference between cohorts 1 and 2 is given
along with the effect size (Cohen d). Significant differences
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(P<.05) are highlighted in italics. AP in PSG is the period from
the lights off to lights on (AP-M).

None of the participants were below the cutoff (23) for clinically
significant cognitive impairment as indexed by the Mini-Mental
State Examination. The PSQI scores were on average <5, with
the highest score being 10, which indicates that the majority of
the participants did not have clinically significant sleep
disturbance (PSQI>5). None of the participants experienced
excessive daytime sleepiness as indexed by the ESS (>10).
Nevertheless, the clinical PSG recording revealed that 49%
(17/35) of the participants had moderate (9/35, 26%; AHI: 15
to <30) or severe (8/35, 23%; AHI: >30) sleep apnea, whereas
46% (16/35) of the participants had mild apnea (AHI: 5 to <15).
In view of the health status of the participants, we refer to this
study population as “heterogeneous.”

The sleep opportunity period (period available for sleep,
described here as the AP), set to “lights off” period as per
AASM guidelines [18], ranged from 466 to 586 minutes. TST
ranged from 282 to 504 minutes, leading to sleep efficiencies
ranging from 52.7% to 92.6%. SOL was, on average, within a
normal range (normal reference SOL [age 65-79 y]: mean 19.5,
95% CI 15.2-23.8 min [34]), with the longest SOL being 49.5
minutes. All sleep stages were present in all participants. REM
sleep duration was relatively short, and WASO was high, with
considerable between-participant variation. The definition of
the PSG sleep summary measures and a detailed summary of
the device sleep summary characteristics of the participants can
be found in Tables S2 and S3 in Multimedia Appendix 1.
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Table 1. Study population characteristics.

Pooled (n=35), mean (SD;
range)

Effect
size

P valueCohort 2 (n=17), mean (SD;
range)

Cohort 1 (n=18), mean (SD;
range)

Characteristics

Demographics

70.8 (4.86; 65-83)−0.50.1672 (4.49; 65-83)69.67 (5.04; 65-80)Age (y)

14 (40)N/AN/Aa6 (35)8 (44)Gender (women), n (%)

26.73 (4.72; 20-39.75)0.13.7126.42 (4.71; 20-36.8)27.03 (4.84; 21.87-39.75)BMI (kg/m2)

19.95 (15.51; 1.6-66.7)0.13.7218.96 (13.62; 4.2-58.8)20.89 (17.46; 1.6-66.7)AHIb (events/h)

28.66 (1.39; 25-30)−0.32.3628.88 (1.32; 25-30)28.44 (1.46; 25-30)MMSEc

4.11 (2.08; 1-10)0.11.764 (2.35; 1-10)4.22 (1.86: 1-7)PSQId

3.6 (2.47; 0-9)0.10.773.47 (2.32; 0-8)3.72 (2.67; 1-9)ESSe

Polysomnography sleep measures

600.6 (6.93; 590.25-622.43)−0.17.62601.2 (9.95; 590.25-622.43)600.03 (1.54; 596.11-
603.35)

TRTf (min)

542.91 (36.36; 466-586)2.95.001 h512.39 (22.79; 466-539.89)571.75 (18.49; 523.78-586)APg (min)

385.97 (65.67; 282-504)2.95.001347.32 (55.46; 282-469)422.47 (53.16; 326.5-504)TSTi (min)

15.13 (12.60; 0-49.5)−0.62.0818.91 (13.71; 2-49.5)11.56 (10.62; 0-40.5)SOLj (min)

138.04 (51.89; 30.5-240)−0.31.38146.09 (56.43; 30.5-240)130.44 (47.56; 60-206.5)WASOk (min)

70.99 (10.41; 52.27-92.6)0.60.0967.92 (11.33; 52.27-92.6)73.86 (8.82; 57.28-87.56)SEFFl (%)

19.98 (7.85; 3.08-36.48)0.06.8619.74 (9.66; 3.08-34.93)20.21 (5.94; 11.58-36.48)N3m (percentage of TST)

47.49 (7.85; 33.69-61.55)0.05.8747.27 (7.83; 36.5-61.1)47.70 (8.08; 33.69-61.55)N2n (percentage of TST)

18.12 (8.04; 5.58-37.81)−4.15.00119.22 (9; 7.46-36.89)17.08 (7.12; 5.58-37.8)N1o (percentage of TST)

14.41 (5.46; 3.39-23.96)0.23.5113.77 (4.93; 3.39-19.65)15 (5.99; 5.49-23.96)REMp (percentage of TST)

85.59 (5.46; 76.04-96.6)−0.23.5286.23 (4.93; 80.35-96.6)84.99 (5.99; 76.04-94.51)NREMq (percentage of
TST)

153.17 (55.94; 37.5-257.5)−0.43.23165 (60.12; 37.5-257.5)142 (50.83; 62-243.5)Wake (min)

aN/A: not applicable.
bAHI: apnea hypopnea index.
cMMSE: Mini-Mental State Examination.
dPSQI: Pittsburgh Sleep Quality Index.
eESS: Epworth Sleepiness Scale.
fTRT: total recording time.
gAP: analysis period.
hSignificant differences (P<.05) are italicized.
iTST: total sleep time.
jSOL: sleep onset latency.
kWASO: wake after sleep onset.
lSEFF: sleep efficiency.
mN3: stage N3 of non–rapid eye movement sleep.
nN2: stage N2 of non–rapid eye movement sleep.
oN1: stage N1 of non–rapid eye movement sleep.
pREM: rapid eye movement.
qNREM: non–rapid eye movement.
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Examples of All-Night Recordings Obtained via PSG,
AWS, and CSTs
Figure 1 shows example hypnograms for 2 individuals with
concurrent PSG, AWS, and CST recordings, including their
EBE concordance with the PSG as well as all-night sleep
summary estimates (on the right). The time series of the sleep
stages is displayed for the duration of the AP as determined
automatically by the device (AP-A). The numbers on the right
side of the panel summarize the sleep stage duration. Values
within parentheses represent the AP-A (device-determined AP),
whereas the values outside parentheses are based on the AP-M
(AP set from lights off to lights on). REM epochs are depicted
by thick black lines. The mismatches or misclassifications
between PSG and the devices are depicted above the device
hypnograms for different “resolutions” (2 stages [sleep and
wake], 3 stages [NREM, REM and wake], and 4 stages [DS,
LS, REM, and wake]). The gray and red bars indicate the match
and mismatch epochs, respectively, between the devices and

PSG. All the devices have an extra label that depicts no presence
or artifacts.

In these examples, the AP determined by the device does not
match the PSG light off period, and sometimes the device (eg,
Figure 1B, WSA) identifies sleep before lights off (Figures 1A
and 1B). In these examples, the AP determined by Somnofy
was closest to the PSG AP, followed by WSA and Emfit. Figures
1A and 1B illustrate that SEFF was rather low in these
participants and that AWS and CSTs detected far fewer
awakenings than PSG.

The example EBE concordance of the device sleep prediction
compared with PSG at 3 distinct levels of sleep stage prediction
(2 classes: sleep and wake; 3 classes: NREM, REM, and wake;
and 4 classes: LS, DS, REM, and wake) is depicted above the
hypnograms in Figure 1. From this visualization, we observe
that the PSG-device EBE concordance improves with a
reduction in the number of classes considered.

Figure 1. Examples of 5-stage polysomnography (PSG) hypnograms, Actiwatch Spectrum (AWS) hypnograms, and the contactless device hypnograms.
(A) Example of cohort 1 (AWS and Withings sleep analyzer [WSA]). (B) Example of cohort 2 (WSA, Emfit-QS [Emfit], and Somnofy). Data are plotted
for the analysis period–automatic (AP-A) or analysis period–manual (AP-M), whichever is longer. The analysis periods are marked with vertical lines.
Vertical lines (red and magenta) at the beginning and end of the night indicate lights off and lights on, respectively. DS: deep sleep; LS: light sleep; N1:
stage N1 of non–rapid eye movement sleep; N2: stage N2 of non–rapid eye movement sleep; N3: stage N3 of non–rapid eye movement sleep; NREM:
non–rapid eye movement; REM: rapid eye movement; TST: total sleep time.
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AP Differences
First, we considered the period over which these devices
estimate the various sleep parameters. For the CSTs, sleep
summary agreement analysis was performed using both the AP
automatically determined by the device (AP-A) and the
summary estimate computed over the “lights off” period
(AP-M). For AWS, the following three APs were considered:
(1) the “automatic” AP (AP-A), (2) the “manual” AP based on
lights off periods as entered in the sleep diary (sleep diary “lights
off” period [AP-M1]), and (3) the “manual” AP based on the
PSG “lights off” period (AP-M2). All available data were used
for the agreement analysis, except for 1 WSA recording, for
which the device generated a summary over a period of >24
hours.

The difference in AP depicted in Table 2 and Figure S1 and
Table S4 in Multimedia Appendix 1 shows that the APs

estimated by AWS (both AP-A and AP-M1) were close to the
PSG AP, with no significant differences between AWS AP-A
and AP-M2. Among the CSTs, on average, AP-A was longer
than the lights off period by ≈70 minutes and ≈135 minutes by
WSA and Emfit, respectively, whereas Somnofy AP-A was not
significantly (P<.05) different from the lights off period (bias
≈13 min). It should be noted that because the AP-M of CSTs
were manually set to correspond to the lights off period (AP-M2
in the case of AWS), the bias was 0 for this comparison and
hence not reported (see Table S5 in Multimedia Appendix 1).

Metrics of agreement between the all-night sleep summary
device estimates based on AP-A (AP determined by the device)
and PSG estimates based on AP-M (AP set from lights off to
lights on) are listed in Table 2. The values shown are mean and
95% CI.
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Table 2. All-night sleep or wake summary measure agreement metrics.

Somnofy-Ad (n=17), mean
(95% CI)

Emfit-Ac (n=16), mean
(95% CI)

WSA-Ab (n=34), mean
(95% CI)

AWS-Aa (n=18), mean
(95% CI)

Sleep measure

APe(min)

13.01 (−61.82 to 87.84)134.8 (61.02 to 208.58)69.99 (−40.21 to 180.19)−5.91 (−85.11 to 73.28)Bias (LOAf down to
LOA up)

0.68 (0.18 to 1.18)3.82 (3.31 to 4.34)1.94 (1.6 to 2.29)0.73 (0.24 to 1.21)SADg

2 (0 to 3)12 (10 to 13)7 (5 to 8)2 (0 to 4)SMAPEh

0.01 (0 to 0.64)0.64 (0 to 0.87)0.1 (0 to 0.55)0.34 (0 to 0.75)ICCi

TSTj (min)

95.74 (−32.71 to 224.18)206.22 (49.6 to 362.84)120.51 (−48.42 to 289.45)−11.72 (−193.62 to 170.2)Bias (LOA down to LOA
up)

1.85 (1.35 to 2.35)3.98 (3.46 to 4.49)2.05 (1.7 to 2.39)0.93 (0.44 to 1.41)SAD

13 (10 to 17)23 (18 to 28)15 (12 to 18)9 (5 to13)SMAPE

0.52 (0 to 0.83)—k0.21 (0 to 0.61)0.48 (0 to 0.8)ICC

SOLl (min)

−5.65 (−45.84 to 34.53)27.19 (−12.37 to 66.74)16.91 (−8.2 to 42.02)7.44 (−31.0 to 45.9)Bias (LOA down to LOA
up)

0.98 (0.48 to 1.48)1.79 (1.27 to 2.30)1.25 (0.91 to 1.59)1.18 (0.7 to 1.67)SAD

41 (27 to 55)46 (31 to 61)43 (35 to 52)59 (42 to 76)SMAPE

0.1 (0 to 0.67)0.36 (0 to 0.78)0.75 (0.49 to 0.87)—ICC

WASOm (min)

−87.95 (−205.12 to 29.22)−52.06 (−183.06 to 78.94)−72.65 (−198.4 to 53.11)−0.25 (−197.54 to 197.04)Bias (LOA down to LOA
up)

1.8 (1.3 to 2.3)1.66 (1.15 to 2.18)1.61 (1.27 to 1.96)1.07 (0.6 to 1.56)SAD

51 (37 to 65)32 (23 to 40)44 (35 to 52)34 (25 to 43)SMAPE

0.52 (0 to 0.83)—0.42 (0 to 0.71)0.37 (0 to 0.76)ICC

SEFFn (%)

16.66 (−8.61 to 41.94)20.37 (−4.52 to 45.27)12.92 (−9.96 to 35.8)−1.03 (−34.99 to 32.94)Bias (LOA down to LOA
up)

1.59 (1.09 to 2.09)2.61 (2.09 to 3.12)1.58 (1.23 to 1.92)1.07 (0.58 to 1.55)SAD

12 (8 to 16)14 (10 to 18)10 (8 to 12)10 (7 to 14)SMAPE

0.57 (0 to 0.84)—0.45 (0 to 0.73)0.34 (0 to 0.75)ICC

aAWS-A: Actiwatch Spectrum automatic analysis estimates.
bWSA-A: Withings sleep analyzer automatic analysis estimates.
cEmfit-A: Emfit-QS automatic analysis estimates.
dSomnofy-A: Somnofy automatic analysis estimates.
eAP: analysis period.
fLOA: limit of agreement.
gSAD: standardized absolute difference.
hSMAPE: symmetric mean absolute percentage error.
iICC: intraclass correlation.
jTST: total sleep time
kNot available.
lSOL: sleep onset latency.
mWASO: wake after sleep onset.

JMIR Mhealth Uhealth 2023 | vol. 11 | e46338 | p. 10https://mhealth.jmir.org/2023/1/e46338
(page number not for citation purposes)

G Ravindran et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


nSEFF: sleep efficiency.

All-Night Sleep Summary Measures: TST, SOL,
WASO, and SEFF
All-night sleep summary measures, namely TST, SOL, WASO
and SEFF, computed for the automatically determined AP are
presented in Table 2 and Figure S1 and Table S2 in Multimedia
Appendix 1, whereas the estimates based on AP-M are presented
in Table S5 in Multimedia Appendix 1. The all-night sleep
summary estimates derived from AWS were, on average, very
close to the PSG estimates, and the bias was not markedly
different from 0 for TST, SOL, WASO, and SEFF. By contrast,
most of the all-night sleep summary measures derived from the
3 CSTs deviated considerably from the PSG estimates for both
AP-A and AP-M. All CSTs consistently overestimated TST
(bias>90 min) and SEFF (bias>13%) and underestimated WASO
(bias>50 min). WSA and Emfit overestimated SOL (bias>16
min), whereas the bias for SOL, as determined by Somnofy,
was small.

The magnitude of dispersion of the difference (SAD) for AWS
sleep summary estimates was considerable but was smaller than

those for the CST sleep summary estimates. SAD values of the
CSTs were large (>1.0) for AP and all sleep summary
estimations (TST, SOL, WASO, and SEFF) apart from the
Somnofy AP and SOL estimate. For all the devices, the absolute
bias in the difference between the device and PSG estimates,
quantified using SMAPE, was lowest for TST and SEFF
(<25%).

The scatter plots in Figure 2A and Figure S2A in Multimedia
Appendix 1 depict the overestimation, dispersion, and poor
agreement of the CST TST estimates for AP-A and AP-M,
respectively. They also show the considerable dispersion in
AWS estimates.

For WASO and SOL, the bias was >30% for all CSTs. The
results obtained from other measures of agreement such as
Pearson correlation (ρ) and consistency ICC followed the
Bland-Altman metrics such as bias, minimum detectable change,
and dispersion measures (Tables S4 and S5 in Multimedia
Appendix 1). The results of the AP-M estimates followed AP-A,
except for SOL, which could be attributed to the AP that was
set to the PSG lights off period.

Figure 2. Scatter plots of all-night sleep summary measures automatically generated by the devices versus manually scored polysomnography (PSG).
(A) Total sleep time (TST). (B) Rapid eye movement (REM) sleep duration. (C) Deep sleep (DS) duration. The number of participants contributing to
the data of each device is as follows: 18 for Actiwatch Spectrum (AWS); 34 for Withings sleep analyzer (WSA); 16 for Emfit-QS (Emfit); and 17 for
Somnofy.
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Sleep Stage Summary: LS, DS, REM, and NREM
The CSTs also provide a classification of sleep epochs as REM,
LS, and DS. LS and DS can be combined to provide an estimate
of NREM sleep. The differences in the sleep stage duration
measures compared with PSG are depicted in Table 3 and Figure
S1 and Tables S6 and S7 in Multimedia Appendix 1.

Metrics that depict the agreement between the sleep stage
duration device estimates based on the AP-A (AP determined
by the device) and PSG estimates based on AP-M (AP set from
lights off to lights on) are shown in Table 3. The values shown
are mean, and 95% CI.

All 3 CSTs overestimated both REM and NREM. WSA had
the lowest bias (<11 min) for LS and did not show any consistent
overestimation or underestimation. Somnofy (≈40 min) and
Emfit (>90 min) overestimated LS, with the former having a
lower bias than the latter. All CSTs had large dispersions
(SAD>1.4) for REM, NREM, and LS. For DS, Somnofy had
the lowest bias (<7 min) and dispersion (SAD<1) compared
with the undermattress devices (bias>30 min and SAD>1.4).
Among the undermattress devices, Emfit had a lower bias and
dispersion.

The differences in the sleep stage duration measures were
markedly, except for the LS estimates of WSA and DS estimates
of Somnofy. The SMAPE was >30% for REM sleep duration
across all the CSTs, and for NREM, LS, and DS, Somnofy had
a lower SMAPE than the undermattress devices. The results
obtained in the AP-M analysis (Table S8 in Multimedia
Appendix 1) were similar to the AP-A results. Among the CSTs,
only the DS duration estimates of Somnofy (both AP-A and
AP-M) had satisfactory agreement (ICC>0.63).

The scatter plots in Figures 2B and 2C and Figures S2B and
S2C in Multimedia Appendix 1 depict the discrepancy in the
REM and DS duration estimates of the CSTs. The REM
durations show overestimations and a large dispersion in the
estimates across devices. For the DS duration estimate, a high
level of agreement was observed for Somnofy, whereas the
undermattress devices overestimated and showed large
dispersion.

When the analysis was repeated for the sleep stages expressed
as a percentage of TST (see Table S7 in Multimedia Appendix
1), the results were mixed. We found that WSA had the lowest
percentage of bias (≈5%) and SAD for REM, followed by
Somnofy and Emfit. For LS, Somnofy had the lowest bias
(≈−5%) and SAD, followed by Emfit and WSA. For DS, Emfit

had the lowest bias (≈−2 min), followed by Somnofy and WSA.
The results were similar for the AP-M analysis (Table S9 in
Multimedia Appendix 1).

Metrics that depict the agreement between the sleep stage
duration device estimates based on the AP-A (AP determined
by the device) and PSG estimates based on AP-M (AP set from
lights off to lights on) are shown in Table 3. The values shown
are mean, and 95% CI.

All 3 CSTs overestimated both REM and NREM. WSA had
the lowest bias (<11 min) for LS and did not show any consistent
overestimation or underestimation. Somnofy (≈40 min) and
Emfit (>90 min) overestimated LS, with the former having a
lower bias than the latter. All CSTs had large dispersions
(SAD>1.4) for REM, NREM, and LS. For DS, Somnofy had
the lowest bias (<7 min) and dispersion (SAD<1) compared
with the undermattress devices (bias>30 min and SAD>1.4).
Among the undermattress devices, Emfit had a lower bias and
dispersion.

The differences in the sleep stage duration measures were
markedly, except for the LS estimates of WSA and DS estimates
of Somnofy. The SMAPE was >30% for REM sleep duration
across all the CSTs, and for NREM, LS, and DS, Somnofy had
a lower SMAPE than the undermattress devices. The results
obtained in the AP-M analysis (Table S8 in Multimedia
Appendix 1) were similar to the AP-A results. Among the CSTs,
only the DS duration estimates of Somnofy (both AP-A and
AP-M) had satisfactory agreement (ICC>0.63).

The scatter plots in Figures 2B and 2C and Figures S2B and
S2C in Multimedia Appendix 1 depict the discrepancy in the
REM and DS duration estimates of the CSTs. The REM
durations show overestimations and a large dispersion in the
estimates across devices. For the DS duration estimate, a high
level of agreement was observed for Somnofy, whereas the
undermattress devices overestimated and showed large
dispersion.

When the analysis was repeated for the sleep stages expressed
as a percentage of TST (see Table S7 in Multimedia Appendix
1), the results were mixed. We found that WSA had the lowest
percentage of bias (≈5%) and SAD for REM, followed by
Somnofy and Emfit. For LS, Somnofy had the lowest bias
(≈−5%) and SAD, followed by Emfit and WSA. For DS, Emfit
had the lowest bias (≈−2 min), followed by Somnofy and WSA.
The results were similar for the AP-M analysis (Table S9 in
Multimedia Appendix 1).
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Table 3. Agreement metrics for sleep stage duration measures.

Somnofy-Ac (n=17), mean (95% CI)Emfit-Ab (n=16), mean (95% CI)WSA-Aa (n=34), mean (95% CI)Sleep measure

REMd (min)

48.14 (−32.2 to 128.48)84.12 (−2.01 to 170.26)44.57 (−78.07 to 167.22)Bias (LOAe down to LOA
up)

1.59 (1.09 to 2.09)2.93 (2.41 to 3.44)1.27 (0.93 to 1.62)SADf

34 (23 to 45)46 (35 to 58)33 (25 to 41)SMAPEg

0.40 (0 to 0.78)—i0.07 (−0.86 to 0.54)ICCh

NREMj (min)

47.59 (−68.28 to 163.45)122.09 (−0.74 to 244.94)75.94 (−119.47 to 271.35)Bias (LOA down to LOA
up)

1.39 (0.89 to 1.89)2.85 (2.33 to 3.36)1.82 (1.48 to 2.17)SAD

10 (7 to 13)17 (12 to 22)14 (11 to 17)SMAPE

0.33 (0 to 0.76)——ICC

Light sleep (min)

40.85 (−76.59 to 158.29)91.78 (−22.06 to 205.63)10.54 (−200.13 to 221.22)Bias (LOA down to LOA
up)

1.4 (0.90 to 1.9)2.3 (1.8 to 2.82)1.43 (1.08 to 1.77)SAD

12 (8 to 17)18 (13 to 23)17 (12 to 21)SMAPE

0.12 (0 to 0.68)0.18 (0 to 0.71)—ICC

Deep sleep (min)

6.73 (−51.02 to 64.49)30.31 (−33.52 to 94.15)65.4 (−60.25 to 191.04)Bias (LOA down to LOA
up)

0.78 (0.29 to 1.28)1.45 (0.93 to 1.96)1.66 (1.31 to 2)SAD

20 (11 to 30)25 (14 to 36)37 (30 to 44)SMAPE

0.74 (0.3 to 0.91)0.43 (0 to 0.8)0.24 (0 to 0.62)ICC

aWSA-A: Withings sleep analyzer automatic analysis estimates.
bEmfit-A: Emfit-QS automatic analysis estimates.
cSomnofy-A: Somnofy automatic analysis estimates.
dREM: rapid eye movement.
eSAD: standardized absolute difference.
fLOA: limit of agreement.
gSMAPE: symmetric mean absolute percentage error.
hICC: intraclass correlation.
iNot available.
jNREM: non–rapid eye movement.

DS and EEG SWA in NREM Sleep
Visual scoring of DS is based on an amplitude and incidence
criterion for slow waves such that a 30-second epoch is scored
as N3 when ≥6 seconds of this epoch consists of slow waves
with an amplitude equal to or greater than 75 µV [18]. Slow
waves also occur in N2, and the amplitude of the slow waves
declines with aging [35]. It has been repeatedly argued that DS
should be quantified in a less arbitrary manner [36]. The most

commonly used measure is SWA, defined as EEG power density
in the range of 0.75 to 4.5 Hz, in NREM sleep. Therefore, we
investigated whether DS as detected by the CSTs was associated
with SWA. Somnofy DS duration was significantly correlated

(r2=0.6; P<.01) with the average SWA detected via PSG,
whereas for the undermattress devices, this correlation was not

significant (WSA: r2=0.0096, P=.58; Emfit: r2=0.11, P=.21;
Figure 3).
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Figure 3. Correlation between device estimates deep sleep (DS) duration and average slow wave activity (SWA; polysomnography [PSG]) in non–rapid
eye movement [NREM]. The DS duration estimates are over the analysis period–automatic of the devices. The average SWA represents the average
power in the 0.75-to-4.5-Hz band in NREM epochs. r2 is the coefficient of determination of the linear model, and P is the significance level. Emfit:
Emfit-QS; WSA: Withings sleep analyzer.

EBE Concordance
The CSTs generate a 4-stage sleep time series with REM, LS,
DS, and wake, whereas AWS generates a 2-stage sleep-wake
time series. The pooled confusion matrices for each device are
shown in Figure 4. The EBE concordance between PSG and
the compared devices at 3 distinct levels of sleep stage
prediction resolution computed over the TRT of PSG is depicted
in Table 4 and Figure S3 in Multimedia Appendix 1. The
sensitivity (sleep detection accuracy) of the undermattress
devices was high (>0.9), with specificity similar to (WSA) or
lower (Emfit) than that of AWS. The MCC, which, unlike
accuracy and specificity, is robust against class imbalance, of
AWS was comparable to those of WSA and Emfit. Somnofy
outperformed the undermattress devices and AWS with a
moderate MCC value (0.63, 0.57-0.69). With respect to
individual sleep stage prediction concordance, Somnofy showed
moderate performance across all sleep stages, whereas WSA
had moderate concordance for wake and DS. Emfit had poor
concordance for all sleep stages. In DS estimation, WSA (MCC:
0.47, 0.42-0.52) was marginally better than Somnofy (MCC:
0.46, 0.35-0.57). The EBE concordance analysis performed
over the lights off period of PSG revealed similar results to
those of the TRT analysis (see Table S8 and Figure S4 in

Multimedia Appendix 1). The violin plots in Figures S3 and S4
in Multimedia Appendix 1 are used to show the distribution
over the participants, and each dot within the violin corresponds
to the performance measure for a single participant. Among the
CSTs, only the NREM EBE concordance of Somnofy for TRT
had satisfactory agreement (MCC: >0.48).

The values shown in Table 4 are mean, SD, and 95% CI. Here,
NREM sleep denotes epochs with either DS or LS, and sleep
or wake denotes the binary sleep stage prediction performance.
The metrics were computed for the TRT (from the start to the
end of PSG recording) of PSG. The number of participants
contributing to each device was as follows: 18 for AWS; 35 for
WSA; 16 for Emfit; and 17 for Somnofy.

We further explored the EBE concordance between the CSTs
and PSG using an alternate assumption of LS being equivalent
to N1 and DS being equivalent to both N2 and N3, and the
results are provided in Figure S5 and Table S11 in Multimedia
Appendix 1. We found that the accuracy (measured through
MCC) of LS detection was significantly reduced across the 3
devices compared with the original ground-truth label (LS=N1
or N2 and DS=N3), disproving the alternate assumption. This
also reaffirms the ground truth that LS predicted by the CSTs
is equivalent to both N1 and N2, and DS is equivalent to N3.
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Figure 4. Pooled confusion matrices. The pooled confusion matrices are derived by summing participant-wise epoch-by-epoch concordance confusion
matrices. The panels on the left indicate the matrices computed over the total recording time, and the panels on the right indicate the lights off period.
Total number of epochs for each device for the total recording time is as follows: 21,323 for Actiwatch Spectrum (AWS); 40,923 for Withings sleep
analyzer (WSA); 18,809 for Emfit-QS (Emfit); and 20,278 for Somnofy. Total number of epochs for each device for the lights off period is as follows:
20,319 for AWS; 37,502 for WSA; 16,322 for Emfit; and 17,322 for Somnofy. The number of participants contributing to the data of each device is as
follows: 18 for AWS; 35 for WSA; 16 for Emfit; and 17 for Somnofy.
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Table 4. Epoch-by-epoch agreement.

F1-score, mean (SD; 95%
CI)

MCCa, mean (SD;
95% CI)

Accuracy, mean (SD;
95% CI)

Specificity, mean (SD;
95% CI)

Sensitivity, mean (SD;
95% CI)

Sleep stage

Sleep or wake

0.85 (0.05; 0.83-0.88)0.37 (0.11; 0.32-
0.43)

0.78 (0.06; 0.74-0.81)0.34 (0.12; 0.28-0.4)0.95 (0.02; 0.94-0.96)AWSb

0.83 (0.07; 0.8-0.85)0.41 (0.15; 0.36-
0.46)

0.75 (0.09; 0.71-0.78)0.37 (0.16; 0.31-0.42)0.95 (0.09; 0.92-0.98)WSAc

0.78 (0.08; 0.73-0.82)0.35 (0.16; 0.26-
0.43)

0.67 (0.11; 0.61-0.73)0.22 (0.14; 0.15-0.3)0.99 (0.03; 0.97-1)Emfitd

0.85 (0.07; 0.82-0.88)0.63 (0.12; 0.57-
0.69)

0.81 (0.08; 0.76-0.85)0.58 (0.17; 0.5-0.67)0.97 (0.06; 0.94-1)Somnofy

REMe

0.32 (0.16; 0.27-0.38)0.24 (0.16; 0.18-0.3)0.82 (0.09; 0.79-0.85)0.86 (0.1; 0.83-0.89)0.4 (0.22; 0.32-0.48)WSA

0.18 (0.11; 0.13-0.24)0.12 (0.08; 0.07-
0.16)

0.76 (0.06; 0.73-0.79)0.8 (0.06; 0.77-0.83)0.25 (0.19; 0.15-0.35)Emfit

0.42 (0.18; 0.32-0.51)0.39 (0.18; 0.3-0.49)0.86 (0.08; 0.82-0.9)0.88 (0.08; 0.84-0.92)0.62 (0.25; 0.49-0.74)Somnofy

NREMf

0.74 (0.06; 0.72-0.76)0.38 (0.13; 0.33-
0.42)

0.68 (0.07; 0.66-0.71)0.52 (0.13; 0.47-0.56)0.83 (0.12; 0.79-0.87)WSA

0.7 (0.1; 0.65-0.76)0.35 (0.14; 0.27-
0.42)

0.64 (0.11; 0.58-0.7)0.44 (0.13; 0.37-0.51)0.83 (0.11; 0.78-0.89)Emfit

0.77 (0.08; 0.73-0.81)0.53 (0.13; 0.47-0.6)0.76 (0.07; 0.72-0.8)0.69 (0.12; 0.63-0.75)0.84 (0.07; 0.81-0.88)Somnofy

Light sleep

0.52 (0.08; 0.49-0.55)0.2 (0.11; 0.16-0.24)0.59 (0.06; 0.57-0.61)0.65 (0.13; 0.61-0.7)0.54 (0.13; 0.49-0.58)WSA

0.53 (0.1; 0.47-0.58)0.17 (0.14; 0.1-0.24)0.57 (0.08; 0.53-0.61)0.54 (0.1; 0.48-0.59)0.63 (0.09; 0.58-0.67)Emfit

0.61 (0.11; 0.55-0.66)0.35 (0.14; 0.28-
0.42)

0.68 (0.06; 0.65-0.71)0.69 (0.09; 0.64-0.73)0.67 (0.1; 0.62-0.72)Somnofy

Deep sleep

0.51 (0.16; 0.45-0.56)0.47 (0.15; 0.42-
0.52)

0.82 (0.06; 0.8-0.84)0.83 (0.09; 0.8-0.86)0.79 (0.23; 0.71-0.87)WSA

0.28 (0.17; 0.19-0.37)0.21 (0.16; 0.13-
0.29)

0.79 (0.05; 0.77-0.82)0.85 (0.03; 0.84-0.87)0.39 (0.24; 0.26-0.52)Emfit

0.51 (0.21; 0.4-0.62)0.46 (0.21; 0.35-
0.57)

0.89 (0.04; 0.87-0.91)0.93 (0.04; 0.91-0.95)0.54 (0.21; 0.43-0.65)Somnofy

aMCC: Matthew correlation coefficient.
bAWS: Actiwatch Spectrum.
cWSA: Withings sleep analyzer.
dEmfit: Emfit-QS.
eREM: rapid eye movement.
fNREM: non–rapid eye movement.

Summarizing the Sleep Summary Measures and EBE
Agreement
To provide an effective way to visualize the differences between
the evaluated devices, we created heatmaps of SMAPE, SAD,
and MCC (Figure 5 and Figure S6 in Multimedia Appendix 1).
From these heatmaps, it appears that Somnofy is the

best-performing CST, and Emfit is the worst-performing CST.
We also noticed that AWS consistently outperformed the CSTs
in the all-night sleep summary measure estimation, except for
SOL, which was best estimated by Somnofy. We also ranked
the devices using SMAPE and SAD for the all-night sleep
measures and sleep stage duration estimates and MCC for EBE
concordance (Tables S12 and S13 in Multimedia Appendix 1).
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Figure 5. Agreement matrices depicting the sleep summary and epoch-by-epoch concordance. (A) Symmetric mean absolute percentage error (SMAPE).
(B) Standardized absolute difference (SAD). The sleep summary measures are computed over the analysis period (AP)-automatic. (C) Matthew correlation
coefficient (MCC, computed over the total recording time of polysomnography). The number of participants contributing to the data of each device is
as follows: 18 for Actiwatch Spectrum (AWS); 34 for Withings sleep analyzer (WSA; 35 for MCC); 16 for Emfit-QS (Emfit); and 17 for Somnofy.
The color code of all the agreement matrices is scaled across each row. AWS-A: Actiwatch Spectrum automatic analysis estimates; DS: deep sleep;
LS: light sleep; NREM: non–rapid eye movement; REM: rapid eye movement; SEFF: sleep efficiency; SOL: sleep onset latency; SW: slow wave; TST:
total sleep time; WASO: wake after sleep onset.

Discussion

Principal Findings

Overview
A comparison of 3 consumer CSTs against PSG and actigraphy
in older people revealed that for all-night sleep summary
measures of binary classification (sleep vs wake), CSTs did not
perform as well as actigraphy. This is in line with our evaluation
of CSTs against sleep diary–assisted actigraphy in an at-home
setting [22]. In sleep stage classification (DS, LS, and REM),
the bedside radar (Somnofy) outperformed the undermattress
devices (WSA and Emfit) and had satisfactory agreement with
PSG for DS duration estimate. For LS and REM estimates, the
agreement was unsatisfactory for all the devices. The data were
acquired from older adults with a variety of health conditions,
including sleep apnea, during their first night in a sleep
laboratory, and the average SEFF was only 71%. The protocol
also resulted in a large interindividual variation in
polysomnographic sleep-wake parameters, which contributes
to the relevance of this evaluation for the intended real-world
implementation of these “digital health” devices. The data imply
that these contactless sleep-tracking devices provide some useful
information on sleep in older people. Indeed, we have previously
evaluated the CSTs against sleep diary–assisted actigraphy and
have shown that the CSTs provide reliable estimates of bed
occupancy in older people living at home [22]. Given their

multimodal capabilities, improvements to their sleep detection
algorithms to generalize results across populations could
potentially lead to reliable sleep measures on par with PSG in
the near future [8,37].

AP Differences
One of the characteristics of the quantification of sleep by
contactless devices in real-world implementation is that the
period over which the analysis is performed is automatically
determined by the device. This contrasts with the standard
polysomnographic assessments in the sleep laboratory, in which
the AP is manually determined and usually set to the period
from lights off to lights on. The automatically determined APs
(AP-A) of AWS and Somnofy were close to the PSG lights off
period (AP-M), whereas for the other devices, the AP was often
very different from the PSG-based AP. These differences in
performance may be related to whether the devices measure
ambient light. Whereas the Somnofy bedside radar uses both
changes in ambient light and bed presence information to
determine the AP, the undermattress devices (WSA and Emfit)
use only bed occupancy information.

Inaccurate estimation of the AP is a contributor to the relatively
poor performance of WSA and Emfit with respect to the
estimation of the latency to sleep onset, as these estimates
improved significantly when the AP was set to the light off
period. Other sleep parameters are less affected by the AP.
Nevertheless, our analyses suggest that ambient light
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information may be useful in improving SOL estimations in
CSTs and emphasize that the first target for performance
improvement of these technologies is the AP.

Sleep Summary
The CSTs overestimate TST and SEFF and hence underestimate
WASO for all AP settings. Compared with PSG, the
performance of the CSTs in estimating sleep stage duration was
poor, with SMAPE ranging from 10% to 46% across all devices
and sleep stages. The CSTs performed less well than the
wearable actigraphy device (AWS) even when the AWS AP
was automatically determined. The estimation of REM sleep
was particularly poor across all the devices. The DS duration
estimates of Somnofy were closer to the PSG estimates, whereas
the undermattress devices (WSA and Emfit) performed poorly.

DS and EEG SWA in NREM Sleep
The observation that the undermattress devices’ estimates of
DS duration did not correlate with SWA but DS duration as
detected by the Somnofy bedside radar did correlate with SWA
is somewhat puzzling because all the devices use contactless
ballistographic signals. Nevertheless, the superior performance
of Somnofy in assessing this neurophysiological characteristic
of sleep is of interest because SWA has often been proclaimed
to be of particular importance for the recovery value of sleep
[35].

EBE Concordance
The CSTs offered EBE sleep stage predictions compared with
the simple sleep-wake prediction time series available in AWS.
The EBE concordance of the CSTs with PSG varied across
sleep stages. Overall, Somnofy had the best performance across
all sleep stage predictions and satisfactory EBE concordance
for NREM compared with PSG. Among the undermattress
devices, WSA had a better performance than Emfit, which
performed worse than AWS, even in sleep or wake
discrimination [38].

Prior Works
Overall, the all-night sleep summary and REM sleep stage
duration estimation results of the CSTs in our study were in line
with the observations reported by others [16,38-41]. The similar
EBE sleep or wake concordance of the undermattress devices
with AWS is in line with the results reported by Chinoy et al
[38] for contactless devices.

WSA
To the best of our knowledge, there are no performance
evaluation studies comparing WSA with PSG for objective
sleep estimation in older adults. In a recent evaluation study by
Edouard et al [24] (n=118; age: mean 49.3, SD 12.1 y), WSA
overestimated TST and underestimated WASO compared with
PSG, which is in line with the results obtained in our study. A
notable difference is that the evaluation conducted by Edouard
et al [24] was limited to TST, SEFF, and WASO estimates of
WSA.

Somnofy
The performance of Somnofy in the estimation of TST, SEFF,
and WASO in our cohorts of older people is poorer than that in

a study of 71 nights by Toften et al [15] in participants without
sleep disorders, whereas the DS duration estimate is similar
between the 2 studies. The EBE concordance of Somnofy agrees
with the overall sensitivity (0.97) estimate reported by Toften
et al [15], whereas the specificity is lower in our cohort
(specificity in Toften et al [15]: 0.72; specificity in our study:
0.34).

Emfit
The results of the Emfit evaluation in our study were congruent
with those in a study by Kholghi et al [16], in which the TST
was overestimated, WASO underestimated, and all sleep stage
duration estimates were poor. A notable difference is that
although the EBE sleep or wake discrimination sensitivity is
similar (0.99), the specificity of Emfit in our study is low (0.22)
but higher than that reported by Kholghi et al [16] (0.10).

It should be noted that Toften et al [15] and Kholghi et al [16]
evaluated the respective devices in younger (age: mean 28.9,
SD 9.7 y) and middle-aged (age: mean 53.7, SD 16.5 y)
populations, respectively.

Limitations
The primary limitations of this study are the small sample size
(<20 for AWS and Emfit) and the fact that not all devices were
concurrently implemented in all participants. Given the variety
of confounding factors in our cohort, including age,
comorbidities, and sleep disorders, the small sample size reduced
the statistical power of the performance measures used, with
larger error margins in the estimates and increased sensitivity
to outliers. Another limitation of the study is that, owing to the
proprietary nature of the devices, the data synchronization
process was based on clock times and the best alignment of the
device and PSG activity or movement data (for Somnofy and
Emfit) and hypnograms, which is not an ideal approach.
However, because all the devices were synchronized to a
common network and epochs were of 30-second and 1-minute
intervals, we did not find any significant synchronization issues
in the study data. The final limitation of this study is the lack
of transparency in the algorithms used by the different CSTs
for sleep prediction and summary generation. The limited
information available on the data processing pipelines involved
and training set used hinders the interpretability of the evaluation
results.

Conclusions
Our inclusion or exclusion criteria were chosen such that even
though the participants were in a stable health condition, several
of them had comorbidities that are common in older adults
[42,43]. This, together with the first night effect, resulted in
mildly disturbed sleep. Our chosen population and extended
period in bed contribute to the relevance of this evaluation study
for assessing sleep in the real world and target populations such
as people living with dementia [42]. Some of the accidental
medical findings in this study, such as a case of arrhythmia
(Figure S7 in Multimedia Appendix 1), provided further insights
into the performance of these devices. Because the algorithms
used by the CSTs for sleep staging rely on the contactless
ballistographic signal, which is primarily composed of activity,
breathing, and heart rate, any condition that affects
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cardiopulmonary function can potentially affect the performance
of the algorithms. These findings point to some of the limitations
of the CSTs for real-world deployment.

The study revealed that the standard actigraphy device (AWS)
provides fairly accurate estimates of all-night sleep summary
measures compared with PSG, but the interparticipant
measurement errors were still large. From the ranking created
using the various performance measures, among the CSTs, it
may be concluded that overall, Somnofy outperforms the
undermattress sensors. However, how useful a device depends
not only on its performance but also on the use case, costs,
scalability, acceptability, etc. For example, for some use cases,

an estimate of the approximate TST may be sufficient, whereas
for other use cases, a good EBE concordance may be important.

Overall, it can be concluded that contactless sleep-tracking
devices provide some useful information on sleep behavior, but
their estimates of sleep stages are not very accurate. Owing to
their unintrusive nature and higher user acceptability, CSTs
may offer the opportunity for clinical digital phenotyping of
sleep, behavior, and health in older adults at scale in their own
homes. However, our assessment underscores the clear need
for improvement in the performance of CSTs across all sleep
estimation domains (summary and EBE sleep) and relevant
populations before they can be effectively deployed in the real
world.
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ESS: Epworth Sleepiness Scale
F3-M2: left frontal referenced to right mastoid
F4-M1: right frontal referenced to left mastoid
ICC: intraclass correlation
LS: light sleep
MCC: Matthew correlation coefficient
N1: stage N1 of non–rapid eye movement sleep
N2: stage N2 of non–rapid eye movement sleep
N3: stage N3 of non–rapid eye movement sleep
NREM: non–rapid eye movement
PSG: polysomnography
PSQI: Pittsburgh Sleep Quality Index
REM: rapid eye movement
SAD: standardized absolute difference
SEFF: sleep efficiency
SMAPE: symmetric mean absolute percentage error
SOL: sleep onset latency
SWA: slow wave activity
TRT: total recording time
TST: total sleep time
WASO: wake after sleep onset
WSA: Withings sleep analyzer
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