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Abstract

Background: Extreme weather, including heat and extreme rainfall, is projected to increase owing to climate change, which
can have adverse impacts on human health. In particular, rural populations in sub-Saharan Africa are at risk because of a high
burden of climate-sensitive diseases and low adaptive capacities. However, there is a lack of data on the regions that are anticipated
to be most exposed to climate change. Improved public health surveillance is essential for better decision-making and health
prioritization and to identify risk groups and suitable adaptation measures. Digital technologies such as consumer-grade wearable
devices (wearables) may generate objective measurements to guide data-driven decision-making.

Objective: The main objective of this observational study was to examine the impact of weather exposure on population health
in rural Burkina Faso using wearables. Specifically, this study aimed to assess the relationship between individual daily activity
(steps), sleep duration, and heart rate (HR), as estimated by wearables, and exposure to heat and heavy rainfall.

Methods: Overall, 143 participants from the Nouna health and demographic surveillance system in Burkina Faso wore the
Withings Pulse HR wearable 24/7 for 11 months. We collected continuous weather data using 5 weather stations throughout the
study region. The heat index and wet-bulb globe temperature (WBGT) were calculated as measures of heat. We used linear
mixed-effects models to quantify the relationship between exposure to heat and rainfall and the wearable parameters. Participants
kept activity journals and completed a questionnaire on their perception of and adaptation to heat and other weather exposure.

Results: Sleep duration decreased significantly (P<.001) with higher heat exposure, with approximately 15 minutes shorter
sleep duration during heat stress nights with a heat index value of ≥25 °C. Many participants (55/137, 40.1%) reported that heat
affected them the most at night. During the day, most participants (133/137, 97.1%) engaged in outdoor physical work such as
farming, housework, or fetching water. During the rainy season, when WBGT was highest, daily activity was highest and increased
when the daily maximum WBGT surpassed 30 °C during the rainiest month. In the hottest month, daily activity decreased per
degree increase in WBGT for values >30 °C. Nighttime HR showed no significant correlation with heat exposure. Daytime HR
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data were insufficient for analysis. We found no negative health impact associated with heavy rainfall. With increasing rainfall,
sleep duration increased, average nightly HR decreased, and activity decreased.

Conclusions: During the study period, participants were frequently exposed to heat and heavy rainfall. Heat was particularly
associated with impaired sleep and daily activity. Essential tasks such as harvesting, fetching water, and caring for livestock
expose this population to weather that likely has an adverse impact on their health. Further research is essential to guide interventions
safeguarding vulnerable communities.

(JMIR Mhealth Uhealth 2023;11:e46980) doi: 10.2196/46980
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Introduction

Climate Change Effects on Human Health
There is growing scientific evidence that environmental
conditions and extreme weather exposure associated with
climate change are having negative effects on human health
[1-3]. In particular, heat presents one of the most immediate
health threats associated with climate change [2,4]. In
combination with humidity, the health risks of heat can be
exacerbated [5]. Previous studies have found that rising
temperatures negatively affect sleep [6,7], which can cause, for
example, decreased cognitive function [8], compromised
immune function [9], and adverse cardiovascular outcomes [10].
Daily activity has also been found to be negatively affected by
heat [11,12], which can cause reduced working capacity and
productivity [13] in addition to adverse long-term effects on
morbidity and mortality [14-16]. In rural populations in
low-income countries, where people often rely on agriculture
and livestock for their livelihood, higher exposure to extreme
weather events may have adverse effects on nutrition and health.
In addition, heart rate (HR) is another health parameter affected
by heat. HR has been found to increase in hotter conditions
[17,18], and increased HR is associated with numerous effects
on the cardiovascular system [19].

Climate Change and Health in Sub-Saharan Africa
Sub-Saharan Africa, including Burkina Faso, is expected to be
severely affected by climate change [20]. The average surface
temperature across Africa is projected to increase at a higher
rate than the global average [21]. Changes in rainfall patterns
are already causing severe droughts and floods [22]. Despite
the mounting scientific evidence, population-level health effects
of climate change in Africa, especially in low-resource contexts
in the sub-Saharan region, are still poorly understood because
of a lack of objective measurements of health parameters in
response to exposure to extreme weather events [2,23]. African
populations are especially at risk because of a high burden of
climate-sensitive diseases and low adaptive capacity [22,24].

Research Infrastructures in Low- and Middle-Income
Countries
To inform public health actions and identify emerging health
concerns and increased-risk groups, public health surveillance
is crucial [25,26]. In general, there is a scarcity of continuous
and spatially distributed data available in low- and

middle-income countries, particularly in sub-Saharan Africa,
to conduct research on the effects of climate change on
population health. To that end, research infrastructures such as
health and demographic surveillance systems (HDSSs), of which
>50 have been implemented across Asia and Africa, are
important ecosystems capable of surveilling geographically
defined populations. HDSSs provide valid and reliable
population-based data on population dynamics (birth, death,
and in- and out-migration), particularly in areas with inadequate
or nonexistent vital event registration and health information
systems. The Nouna HDSS, located in northwestern Burkina
Faso, has been collecting long-term data on the health and
demographics of a population of >120,000 individuals since
1992 [27].

Previous research on climate change and health in the Nouna
HDSS has shown the relationship between climate variations
and nutritional outcomes in children aged <5 years [28] and the
impact of varying climate and weather conditions on population
mortality, with a high indication of excess burden of
noncommunicable disease and mortality [29,30]. However,
most HDSSs do not capture local-level weather parameters such
as temperature and precipitation, which are particularly key
indicators of exposure to extreme weather events [22]. They
are also unable to produce more comprehensive heat measures
such as the heat index (HI) or wet-bulb globe temperature
(WBGT), which have been found to be better indexes for heat
exposure than temperature alone [31,32]. HDSSs can also
provide continuous real-world surveillance of an individual’s
health by obtaining objective measurements and highly resolved
health data if new sensors such as consumer-grade wearable
electronic devices (hereinafter referred to as wearables) are
incorporated [33].

Consumer-Grade Wearables for Climate Change and
Health Research
Consumer-grade wearables, including the Withings Pulse HR,
were introduced for the first time in the Nouna HDSS and were
found to be a feasible and acceptable method for continuous
health surveillance of individuals, allowing for ecological
momentary assessments [34]. A number of studies have used
wearables in climate change and health research, but none have
used wearables in low-income countries to assess the health
effects of extreme weather [35]. To our knowledge, there is no
population-wide effort to systematically monitor populations
at an individual level to better quantify and characterize the
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effects of climate change on health. Data on the daily effects of
climate change on people’s lives and health are currently scarce
and are crucial to tailor interventions and adaptation measures
to vulnerable populations. Climate change adaptation is essential
to protect vulnerable groups in low-resource environments from
rising average temperatures and exposure to extreme weather.

The overarching objective of this observational study was to
examine the impact of heat and heavy rainfall on the
population’s health in rural Burkina Faso using consumer-grade
wearables. Specifically, we captured daily activity, sleep, and
HR using a wearable in a sample of the Nouna HDSS
population. Our primary objectives were to study the
relationships between (1) daily activity and heat and heavy rain,
(2) nighttime sleep duration and heat and heavy rain, and (3)
HR and heat and heavy rain.

Our secondary research question focused on the stratification
of these relationships according to month and different
demographic subgroups, specifically for sex, age group, and
BMI group.

Methods

Study Design
We conducted an observational panel study covering a
population of 143 participants in the Nouna HDSS in
northwestern Burkina Faso from August 2021 to June 2022.
During the 11 months of data collection, study participants were
equipped with wearables (Withings Pulse HR) that they wore
continuously. Weather data were collected at 5 weather stations
throughout the study area. This study is reported according to
the STROBE (Strengthening the Reporting of Observational
Studies in Epidemiology) statement: guidelines for reporting
observational studies (Multimedia Appendix 1).

Study Setting and Population
The study was conducted in the Nouna HDSS in northwestern
Burkina Faso, which is located approximately 40 km from the
Mali border and 250 km from the capital, Ouagadougou. The
region’s tropical climate is defined by one rainy season, which
typically lasts from June to September, and high temperatures
throughout the year [36].

Individuals were eligible for study participation if they (1) were
aged ≥16 years, (2) had no plans for long-term travel during the
study period, and (3) consented to study participation.

We calculated a sample size of 150 participants based on an
eligible population of 100,000 (total HDSS population aged >6
years), a confidence level of 95%, and an error margin of 8%.
To ensure that each sex was equally represented in the study
population, random sampling was stratified by sex (for details
on the sampling, see the study protocol by Barteit et al [37]).

Ethics Approval
Ethics approval was granted by the Comité d’ethique pour la
recherche en santé in Burkina Faso (approval date: March 13,
2020; 2020-3-041) and by the ethical committee of the
Heidelberg University Hospital, Germany (approval date: May
6, 2019; S-294/2019).

Study Proceedings

Weather Data
In mid-2020, a total of 5 weather stations were set up to cover
the spatial variability of different weather exposures across the
study area. The nearest weather station was assigned to each of
the 25 study villages (Figure 1). The distance was calculated as
the shortest distance between 2 points on a WGS 84 ellipsoid
using the distGeo function of the R package geosphere (version
1.5.18 [38]; R Foundation for Statistical Computing), which
accounts for the ellipsoid shape of the Earth’s surface.
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Figure 1. Spatial distribution of weather stations across the Nouna health and demographic surveillance system area (image on the left) and the study
area with the weather stations and the respective villages of participants involved in the study (image on the right). Map data: Google, Inst. Geogr.
Nacional, created with Google MyMaps 2022.

Consumer-Grade Wearables
From August 2021 to June 2022, study participants were
provided with consumer-grade wearable devices (Withings
Pulse HR; Figure 2) and instructions on how to wear them
correctly on their wrists (correct position and tightness).
Participants wore the Withings Pulse HR for the entire study
period. Considering that electricity is not available in all
households in the study area, participants received a foldable

solar panel with USB ports to charge the wearable and a
smartphone to synchronize its data (for details, see the study
protocol by Barteit et al [37]). Participants received weekly
visits from a fieldworker. At each visit, the fieldworker checked
the functionality of the wearable and smartphone, charged all
devices with a portable power bank, and synchronized the data
to the server for remote data web access. Wearables that were
damaged during the study were replaced.

Figure 2. Withings Pulse HR consumer-grade wearable that participants wore during the study.

Activity Journals and Heat Questionnaires
The 21 most prevalent local activities were listed in a structured
activity journal that study participants completed once a month
according to their activities after getting up, in the morning, at
noon, in the afternoon, in the evening, and at night (Multimedia
Appendix 2). At the end of the study period, a questionnaire
was administered evaluating the perception of heat with
multiple-choice questions regarding whether, when, and how

heat affected participants and their adaptation strategies
(Multimedia Appendix 2).

Technical Measurement Details

Weather Stations
The weather stations were equipped with ADCON sensors and
measured several variables, including air temperature, relative
humidity, precipitation, wind speed and direction, and global
radiation, at 15-minute intervals. The data were uploaded using
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the advantage Pro software (version 6.8; ADCON telemetry,
OTT Hydromet GmbH).

Consumer-Grade Wearables
Consumer-grade wearables are waterproof and feature a 3-axis
accelerometer that continuously estimates steps (identified by
amplitude and periodic pattern) and sleep parameters (duration,
time spent awake, sleep onset and offset, and sleep depth)
through automatic data postprocessing using a manufacturer’s
algorithm. Steps have been frequently used in research to
quantify daily activity [16]. Sleep duration specifies the total
recorded time that a study participant spent asleep on a given
night. Sleep interruptions were defined as wake time after sleep
onset, whereas sleep onset was defined as the time of falling
asleep and sleep offset was defined as the time of waking up.
In addition, the device’s photoplethysmography sensor estimates
the pulse rate every 10 minutes or every 90 seconds in activity
mode. For the purpose of this study, we deemed the pulse rate
and HR to be equivalent. One charging cycle can last up to 21
days, and the internal storage can hold up to 5 days of recorded
data. The data collected from the wearables in this study were
wirelessly transmitted via Bluetooth to an app on the study
participants’ smartphone and, when an internet connection was
available, uploaded from the mobile device to the Withings
server (health mate).

Data Processing

Demographic Data
Data on weight, height, and date of birth and death were
available for each study participant. Participants were
categorized as young adults (aged <25 years), middle-aged
adults (aged ≥25 and <65 years), and older adults (aged ≥65
years) based on their age at the beginning of the study period.
BMI was calculated as weight (kg)/(height (m) × height (m)

and grouped into 3 categories: underweight (<18.5 kg/m2),

healthy weight (≥18.5 and <25 kg/m2), and overweight (≥25

kg/m2).

Weather Data
We calculated WBGT estimates according to the formula
provided by Carter et al [39] and used the heat.index function
of the R package weathermetrics (version 1.2.2 [40]) to calculate
the HI according to the US National Weather Service complex
algorithm from temperature and relative humidity [40].

Weather extreme indexes were calculated for each day of the
study period so that days with and without extreme weather
could be compared. As weather extremes are often characterized
relative to historical data (90th percentile of a 30-year reference
period) [41] and we only had approximately 2 years of weather
data from the 5 weather stations that were installed in the Nouna
HDSS in 2020, we used the following climate extreme indexes
developed by Climpact and recommended by the World
Meteorological Organization Expert Team on Sector-specific
Climate Indices: (1) number of days with heavy precipitation
(count of days in which the daily precipitation was ≥20 mm),
(2) number of tropical nights (count of nights in which the
minimum temperature was >20 °C), and (3) number of hot days

(count of days in which the daily maximum temperature was
≥35 °C).

In addition, we calculated weather extreme indexes based on
WBGT and HI (also called apparent temperature) to provide a
more accurate assessment of heat exposure [31,32]. We used
WBGT as a heat parameter during the daytime and HI during
the nighttime. The WBGT calculation includes global radiation
and wind speed, and as the data are measured using weather
stations outdoors, we found HI to be more applicable than
WBGT for the assessment of heat exposure during the night
when participants were mostly indoors. On the basis of findings
of current climate and health research using WBGT [7,42,43]
and the National Weather Service cutoffs for HI [44], we used
the following cutoffs: (1) the number of heat stress days was
defined as the count of days in which the daily maximum WBGT
was ≥30 °C, and (2) the number of heat stress nights was defined
as the count of nights in which the minimum HI was ≥25 °C.

For correlating weather data with wearable data, we divided the
weather data into daytime and nighttime data. On the basis of
median sleep onset and offset times (median sleep onset 10:09
PM; median sleep offset 5:55 AM), cutoffs for nighttime
weather were determined, resulting in measurements between
10 PM and 6 AM the following day. Daytime weather was
defined as measurements between 6 AM and 10 PM. For
comparison between seasons, weather data were also categorized
into rainy (June-September), cool dry (October-January), or hot
dry (February-May) season according to the month.

Consumer-Grade Wearables

Data Completeness

To increase the representativeness of the measurements and
address missing wearable data, we considered participants who
had data coverage of 25% of the measurement days as complete
cases, similar to the study by Minor et al [6]. Using a 50%
criterion yielded comparable results (Multimedia Appendix 3);
however, HR data had too little completeness for a higher cutoff.
We did not impute data as data imputation was found not to be
necessary for unbiased results when only the outcome variable
was affected by missing data [45]. In addition, studies have
found that multiple imputation did not increase precision when
using linear mixed models for data analysis [46]. Furthermore,
Jakobsen et al [47] did not recommend using data imputation
for a high percentage of missing data.

Daily Activity

In line with previous studies, a filter of at least 10 hours of wear
time per participant per day was used to exclude days with
insufficient wear time [12,48,49]. We defined nonwear time as
more than 1 hour between measurements. Values of 0 steps
were excluded as, according to the manufacturer, nonwear time
and a measurement of 0 steps cannot be distinguished. Duplicate
measurements were removed. We aggregated the steps into
15-minute intervals to be consistent with weather data intervals
and also as daily step counts as a measure of daily activity.

Sleep Data

We limited sleep length based on the onset and offset times to
eliminate incorrect values. Adapted from the study by Minor
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et al [6], we defined nighttime sleep with a sleep onset of ≥5
PM and a sleep offset of ≤1 PM as limits, with a 2-hour
adjustment to account for earlier bedtimes in this study
population. If a participant had multiple sleep observations in
a single night, they were summarized into one sleep observation
by adding the sleep duration values and the duration between
the first offset and second onset to wake time after sleep onset.
If multiple sleep observations overlapped for one participant,
they were excluded as error measurements. In accordance with
the manufacturer’s declaration that sleep detection
measurements with a time difference of <3 hours between sleep
onset and sleep offset are invalid measurements, we excluded
those measurements.

HR Measurement

Duplicate HR measurements were removed, and values greater
than the age-predicted maximal HR according to the equation
by Tanaka et al [50] (208 – 0.7 × age) were excluded. HR
measurements were rounded and aggregated (mean, minimum,
and maximum) into 15-minute intervals to be consistent with
weather data intervals. HR measurements were divided into
daytime and nighttime HRs using the median sleep onset and
offset as nighttime definitions (10 PM-6 AM). Measurements
for 1 day were included when at least 2 hours of measurements
were available; nighttime measurements for 1 night were
included when at least 1 hour was covered by at least one
measurement every 15 minutes. We chose the threshold of 15
minutes in accordance with previous research [34].

Statistical Analysis and Data Modeling

Descriptive Data Analysis
All data analyses were conducted using R (RStudio version
2022.07.02+576; Posit, PBC).

First, the weather and wearable data were descriptively analyzed
(covering minimum, maximum, mean, and SD values).
Activities reported in the activity diaries were thematically
summarized into 9 categories and quantified relative to the total
number of activity journal responses. Similarly, the heat
questionnaire was analyzed, and responses were summarized
based on the frequency of replies.

Mixed-Effects Models

Associations Between Weather Exposure and Daily Activity
(Steps), Sleep Duration, and Nighttime HR

We conducted a linear mixed-effects analysis of the relationship
between weather exposure and daily activity (steps), sleep
duration, and nighttime HR using the lmer function of the lme4
R package (version 1.1.34 [51]). We used the following formula:

Yi = b0 + b1Heati + b2Precipitationi + bzZi + εi(1)

In this linear mixed-effects model, i indicates each study
participant. The dependent variable Yi sequentially represents
sleep duration (in hours), daily activity (in steps), and average
nighttime HR (in beats per minute [bpm]) of individual i. The
independent variable of interest “Heat” represents the minimum
nighttime HI (HImin) for sleep and nighttime HR and maximum
daytime WBGT (WBGTmax) for daily activity (steps). The

independent variable “Precipitation” represents the total daily
rainfall. Furthermore, we controlled for month, weekend or
weekday, age group, sex, and BMI group by adding these
variables stepwise as independent variables, represented as Z.
Weekend was added as a possible confounder as we expected
the participants’ activities to vary between weekends and
weekdays, also affecting nighttime sleep. Similarly, agricultural
activity most likely varies between months. Furthermore, by
adding month as an independent variable, we indirectly also
accounted for differences in daylight hours. The demographic
confounders sex, age, and BMI group have frequently been
shown to be associated with sleep, HR, and daily activity and,
therefore, were included in our models.

By adding study participants as a random term, the linear
mixed-effects model accounted for the nonindependence of the
repeated measures. In addition, linear mixed models were chosen
as they can estimate parameters from existing data to handle
missing data and independent variables can be on a continuous
scale with differing times between measurement points. We
used maximum likelihood for the estimation of the model
parameters. In total, 3 separate models were constructed for
sleep duration, daily activity, and average nighttime HR.
Covariates were added through hierarchical model building,
with removal based on the chi-square likelihood test (lower
log-likelihood values were removed) and a significance level
of 5%. We used leave-one-subject-out (LOSO) cross-validation
to assess model performance. We compared the performance
of the resulting models on the respective validation sets using

R2 and root mean square error as well as the average values for
these 2 parameters.

If visual inspection of the residual plots revealed deviation from
linearity, we introduced a quadratic term for the predictor
variable using the following equation:

Yi = b0 + b1Heati + b2Heat2i + b3Precipitationi + bzZi + εi(2)

We created an additional model for each of the 3 wearable
parameters using temperature and daily rainfall as predictors to
account for heat metrics other than WBGT and HI. Model
selection was based on the Akaike information criterion, with
a lower value indicating an improved model fit.

Differences in Subgroup Sensitivity to Heat

We evaluated the effect of heat exposure on daily activity, sleep
duration, and nighttime HR between the different subgroups.
This way, it was possible to assess the different heat sensitivity
of each subgroup. Therefore, we included an interaction term
between continuous measures for heat and a categorical variable
X, which successively represented age group, BMI group, sex,
or month. If adding the interaction term significantly improved
the model, we ran the model for each subset separately to
compare the effects of heat exposure. We interpreted the results
for each subgroup relative to its corresponding reference
category (middle-aged adults, healthy weight participants, male
individuals, and coldest month).

Yi = b0 + b1Heati × X + b2Precipitationi + bzZi + εi(3)
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Associations Between Weather Extremes and Daily Activity,
Sleep Duration, and Nighttime HR

We built linear mixed-effects models using binary variables for
heat (heat stress day or night) and heavy rainfall as independent
variables in place of the continuous variables to evaluate the
association between weather extremes and the wearable
parameters. The model formula changed as follows:

Yi = b0 + b1Heatstressi + b2HeavyPrecipitationi + bzZi + εi(4)

Results

Participant Characteristics
We originally recruited 152 participants. During the study, of
these 152 participants, 7 (4.6%) withdrew their consent, 1 (0.7%)
died, and 1 (0.7%) migrated out of the study region. Therefore,
the results report on a total of 143 study participants.

Approximately half (71/143, 49.7%) of the study population
was female. The age of the study participants ranged from 16
to 79 years, with an average age of 43 (SD 13) years. Most
(128/143, 89.5%) were middle-aged (aged 25-65 years). The

average BMI of the participants was 22.3 (SD 2.7) kg/m2,

ranging from 16.6 to 32.42 kg/m2, with most (112/143, 78.3%)
falling into the healthy weight category (18.5≤BMI<25).

When looking at the distribution of self-reported activities
throughout the day (Figure 3), we observed that after waking
up and in the morning were the most active times of the day,
when participants engaged in outdoor work, housework, and
errands such as fetching water and care work. The rest of the
day was often spent resting. Male participants reported more
outdoor work, whereas female participants reported more care
work and housework, especially in the evening and at night.

Figure 3. Self-reported daily activities of study participants stratified by sex and time of day (after getting up, in the morning, at noon, in the afternoon,
in the evening, and at night).

Weather
The average distance between the villages and the closest
weather station was 7.6 km (range 0.1-19.0, SD 14.4 km). For
the entire study region (average of 4 weather stations), the
temperature range was 10.9 to 44.0 °C with a mean of 28.5 °C,
and WBGT ranged from 7.3 to 32.8 °C with a mean of 23.3 °C.
The maximum daily precipitation measured was 101.5 mm with
an average of 1.9 mm per day and an average cumulative sum
over the entire study period of 630.5 mm. During the 1-year

study period, there were, on average, 121 (range 110-131) days
classified as heat stress days with maximum WBGT values of
>30 °C and an average of 117 (range 102-135) nights classified
as heat stress nights with minimum HI values of >25 °C.
Furthermore, study participants were exposed to heavy rainfall,
with ≥20 mm on average on 8 (range 6-11) study days and single
measurements exceeding 50 mm of precipitation per day on 7
study days. Table 1 provides a detailed overview of weather
data stratified by season.
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Table 1. Weather parameters and extreme weather events for the study duration of 11 months by season (average of all 4 closest weather stations).

Hot dry season (Febru-
ary-May)

Cool dry season (Octo-
ber-January)

Rainy season (June-
September)

Weather exposure

31.1 (6.0)26.8 (6.4)27.6 (3.8)Mean air temperature (°C; SD)

23.4 (4.9)20.5 (5.6)25.9 (2.5)Mean WBGTa estimate (°C; SD)

1047324Number of days with maximum daily air temperature of ≥35 °C

423346Number of days with maximum daily WBGT estimate of ≥30 °C

108Number of days with rainfall of ≥20 mm

984891Number of nightsb with minimum air temperature of ≥20 °C

631540Number of nightsb with minimum HIc of ≥25 °C

aWBGT: wet-bulb globe temperature.
bNights were defined as 10 PM to 6 AM (median sleep onset–median sleep offset).
cHI: heat index.

Wearable Data

Data Completeness
The data completeness of wearable measurements of daily
activity, sleep, and HR is shown in Figure 4. The average data

completeness per participant was 166 (SD 66) days for daily
activity; 153 (SD 69) nights for sleep; and 58 (SD 51) nights
and 34 (SD 51) days for nighttime and daytime HR, respectively.

Figure 4. Box plot of data completeness per wearable parameter in percentage of the respective maximum number of days or nights with data for 1
participant. HR: heart rate.

Daily Activity Measurements

Overview

We had to remove 26.64% (2,438,464/9,152,256) of the data
points, with the final data set including a total of 6,713,792 step
measurements and 22,853 days from 90.9% (130/143) of the
participants. The mean daily activity (in steps) was 9602 (SD
6499; minimum: 194; maximum: 47,522). Figure 5 shows that
the average number of steps taken each day changed based on
the season. In the rainy season, the average number of steps was

11,328 (SD 8049); in the cool dry season, it was 9532 (SD
6140); and, in the hot dry season, it was 8700 (SD 5681).

The distribution of steps over the course of the day also varied
from season to season (Figure 6). There were activity peaks in
the morning and late afternoon during all seasons. In the rainy
season, the peak occurred at 11:15 AM with a mean of 310 (SD
367) steps per 15-minute interval, whereas in the hot dry season,
it occurred at 9 AM with a mean of 231 (SD 269) steps per
15-minute interval.
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Figure 5. Average daily steps (black dots) with IQR (gray area) and maximum daily wet-bulb globe temperature (WBGT; °C; orange line) for the
duration of the study. The background color indicates the 3 seasons (cool dry, hot dry, and rainy).

Figure 6. The distribution of the average number of steps per 15-minute interval (blue dots) with the IQR (gray area) over the course of a day and
wet-bulb globe temperature (WBGT; measured every 15 minutes; orange line) for the 3 seasons in Burkina Faso (cool dry, hot dry, and rainy).

Weather Exposure and Daily Activity Measurements (Steps)

We fitted a linear mixed model with participants as a random
effect. Daily steps showed significant variance in intercepts

across participants (χ2
1=9455.8; P<.001). Maximum daily

WBGT (WBGTmax) and total daily precipitation were included
as predictors. WBGTmax as a fixed effect was highly significant
(2-tailed t test, t22,849=12.73; P<.001). However, as the residual
plot of daily activity and WBGTmax showed nonlinearity, we
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added a quadratic term for WBGTmax (WBGTmax
2), which

improved the model fit. Herein, we report the combined effects

of WBGTmax and WBGTmax
2. For a WBGTmax of 20 °C, we

found an increase of 146 steps for every additional degree of
WBGT (°C), whereas for a WBGTmax of 30 °C, we observed a
decrease of 83 steps for every additional degree of WBGT (°C).
The main effect of daily precipitation was also significant
(t22,725=−6.57; P<.001), and we found that daily activity
decreased by an average of 39 steps for every 1-mm increase
in total daily rainfall (95% CI −44 to −23). The final model
included adjustments for age group, month, and weekend or
weekday. We also developed a model using the maximum daily
temperature in °C as a predictor instead of WBGTmax, which
was shown to be a less accurate model. We cross-validated the

model using the LOSO approach and calculated R2 values of
0.45 for some participants as test data, with an average of 0.12.

Different Heat Sensitivity by Age, BMI, Sex, and Month

To assess the correlation between different subgroups and the
effect of WBGTmax on daily activity, we added an interaction
term for age group, sex, or month and WBGTmax and

WBGTmax
2. If the addition of the interaction term improved the

fit of the model, we ran the model independently for each
subgroup to compare the effect of WBGTmax on daily activity.
Table 2 provides a summary of the per-degree effects of
WBGTmax on daily activity for each subgroup. For different sex
and age groups, we did not find significant differences in heat
sensitivity (P>.05). During the hottest month (April) and the
coolest month (January), the effect of increasing WBGTmax on
daily activity was not significant. During August, the rainiest
month, the effect of increasing WBGTmax on daily activity was
opposite to that during January and April, with a 5126-step
decrease per degree increase in WBGTmax at 20 °C (compared
with an increase in January and April) and an increase of 678
steps (compared with a decrease in January and April) at 30 °C.

Table 2. Combined effect of 1-degree increases in maximum wet-bulb globe temperature (WBGTmax) and squared WBGTmax (WBGTmax2) on
daily activity (in steps) for different age groups and sex and during different seasons.

P value for

WBGTmax
2

Estimate for

WBGTmax
2

P value for
WBGTmax

Estimate for
WBGTmax

Combined effect of
WBGTmax and

WBGTmax
2 at 30 °C

on steps

Combined effect of
WBGTmax and

WBGTmax
2 at 20 °C

on steps

Subgroup

.02−12.03606−83+146All participants (n=130)

.37−9.38475−60+118Older adults (aged ≥65 years; n=9)

.02−12.03638−93+151Middle-aged adults (aged 25-65 years;
n=114)

.61−11.94641−10+207Young adults (aged <25 years; n=7)

.11−11.13601−88+142Male individuals (n=65)

.13−10.14547−67+138Female individuals (n=65)

.02290.03−16,734678−5126Rainiest month (August; n=79)

.36−71.353205.14−1047.06+370.34Coolest month (January; n=122)

.45−16.43965−18+304Hottest month (April; n=99)

Weather Extremes and Daily Activity

We further assessed the differences in daily activity between
exposure to weather extremes (heat stress days and heavy
rainfall) and nonexposure. We created a linear mixed model
with the weather extreme exposure as binary fixed effects
instead of WBGTmax and total daily rainfall. The final model
was adjusted for age group, month, and weekend or weekday.
We found no statistically significant difference in daily activity
on heat stress days with WBGTmax ≥30 °C compared with days
with WBGTmax <30 °C (t22,725=−0.64; P=.52). On days with
heavy rainfall compared with days without heavy rainfall
(t22,724=−3.25; P<.001), daily activity was significantly lower,
with an estimate of −855 steps. The results for all 3 models can
be found in Multimedia Appendix 3.

Sleep Measurements

Overview

After removing 6.89% (1523/22,095) of the sleep observations
during data processing, the final data set comprised 20,572
nights covering the study duration of 334 nights from 83.2%
(119/143) of the study participants. The average sleep duration
was 6 hours, 49 minutes (SD 1 min, 48 s) per night, the time of
sleep onset was 10:23 PM (SD 1 h, 47 min), and the time of
sleep offset was 05:44 AM (SD 1 h, 28 min; Figure 7). On
average, study participants were awake for 36 (SD 30) minutes
after sleep onset. Nearly half (10,012/20,505, 48.83%) of the
participant nights showed insufficient sleep according to the
age group definitions of sufficient sleep duration by Hirshkowitz
et al [52]. This definition states that sleep duration of <8 hours
for those aged <18 years and <7 hours for those aged >18 years
is insufficient. The average sleep duration was shorter
throughout the study when the minimum nighttime HI was
higher (Figure 8).
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Figure 7. Histogram of the time that study participants fell asleep (orange colored) at night and woke up (blue colored) in the morning.

Figure 8. Average nighttime sleep duration (hours; black dots) with the IQR (gray area) and minimum heat index (°C; orange line; average of all 4
weather stations) throughout the study period. The background color indicates the 3 seasons (cool dry, hot dry, and rainy).

Weather Exposure and Sleep Measurements (Duration)

To provide a detailed analysis of the relationship between sleep
duration and nighttime heat, we fitted a linear mixed-effects
model with study participants as a random term and the
minimum nighttime HI (HImin) as a predictor of sleep duration.
Sleep duration showed significant variance in intercepts across

participants (χ2
1=3596.9; P<.001). HImin as a fixed effect was

highly significant (t20,520=−9.60; P<.001). For every 1-degree
increase in HImin, sleep duration decreased on average by 0.04
hours (2.4 minutes; 95% CI −0.074 to −0.065) in the fully
adjusted model. We also included total daily rainfall as a
predictor and found a significant (t20,457=6.27; P<.001) but small
main effect of an increase of 0.01 hours (36 seconds; 95% CI
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0.007-0.013) in sleep duration per mm increase in rainfall. The
final model included adjustments for age group, BMI group,
month, and weekend or weekday. Sex was considered as a
covariate but was removed after failing to reach statistical
significance (P<.05). We cross-validated the model using the

LOSO approach and calculated R2 values of 0.34 for some
participants as test data, with an average of 0.10. In addition,
we developed a model using the minimum nighttime temperature
in °C as a predictor of HImin instead, which we found to be less
accurate.

Different Heat Sensitivity by Age, BMI, Sex, and Month

By sequentially adding an interaction term for age group, BMI
group, sex, and month with HImin, we assessed whether these
subgroups exhibited varying levels of heat impact regarding
sleep duration. We found no statistically significant differences
between age groups, BMI groups, or sex. In the hottest month
(April), the impact of heat was lowest, with an estimate for the
effect of HImin of −0.02 (SE 0.01) on sleep duration. In the
coolest and driest month (January), the estimate for the effect
of HImin was −0.04 (SE 0.02), and in the rainiest month
(August), the impact of heat was highest, with an estimate of
−0.125 (SE 0.04).

Weather Extremes and Sleep Duration

We further assessed the difference in sleep duration between
exposure to nights with heat stress and heavy rainfall and
nonexposure. We created a linear mixed model with the binary
weather extreme factors as fixed effects. Adding heavy rainfall

as a fixed effect did not improve the model fit. The final model
was adjusted for month and weekend or weekday. We found
significantly (t20,470=−7.81; P<.001) shorter sleep duration on
heat stress nights with HImin ≥25 °C compared with nights with
HImin <25 °C by an estimated 0.24 hours (15 minutes; 95% CI
−0.31 to −0.18). The results for all 3 models of sleep duration
can be found in Multimedia Appendix 3.

HR Measurements

Overview

The data-cleaning process removed 88.55% (488,906/552,099)
of the HR measurements. We split the measurements into
daytime and nighttime HR. The final data set of daytime HR
comprised a total of 3062 fifteen-minute intervals collected
across 249 participant days from 11.9% (17/143) of the study
participants spanning 190 study days. Nighttime HR data
included 31,423 fifteen-minute intervals from 32.2% (46/143)
of the participants collected across 3025 participant days.

During the day, the average HR was 90 (SD 23) bpm; during
the night, the average HR was 69 (SD 13) bpm. We further only
considered nighttime HR as an outcome variable as daytime
measures had low data completeness for HR.

During the night, the average HR and HI decreased in parallel
until the average HR increased again between 5 AM and 6 AM
(Figure 9). This pattern was observed in all 3 seasons, although
average HR values were lower during the rainy season, whereas
HI values were similar between the hot, dry, and rainy seasons
(Figure 10).

Figure 9. Average heart rate in beats per minute (bpm; blue dots) with the IQR (gray area) per 15-minute interval and average heat index (orange line)
in °C during the night by season.
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Figure 10. Average nighttime heart rate (beats per minute [bpm]; black dots) with the IQR (gray area) and minimum heat index (°C; orange line;
average of all 4 weather stations) over the duration of the study. The background color indicates the 3 seasons (cool dry, hot dry, and rainy).

Weather Exposure and HR Measurements

Using a mixed-effects model, we explored the relationship
between minimum nighttime HI values (HImin) and average
nighttime HR. Average nighttime HR showed significant

variance in intercepts across participants (χ2
1=1030.8, P<.001).

As HImin and nighttime HR did not show a linear relationship

in the residual plots, we added a quadratic term for HImin (HImin
2)

to improve the model fit. After adding HImin, HImin
2, and total

daily precipitation as predictors, we found that neither HImin

(t2998=–0.31; P=.75) nor HImin
2 (t2998=0.46; P=.65) as fixed

effects were significant. However, the main effect of daily
precipitation was significant (t2985=–1.95; P=.009), and we
found that, for every 1-mm increase in total daily rainfall, the
average nighttime HR decreased by 0.04 bpm (95% CI −0.08
to −0.00). The final model was adjusted for sex, age group, BMI
group, and month. Weekends failed to reach statistical
significance (P<.05) as a covariate. We cross-validated the

model using the LOSO approach and calculated R2 values of
up to 0.65, with an average of 0.14. In addition, we created a
model using the minimum nighttime temperature in °C as a
predictor instead of HImin. When comparing both models, we
found no better model fit for the minimum nighttime temperature
model.

Different Heat Sensitivity by Age, BMI, Sex, and Month

We sequentially added an interaction term for age group, BMI
group, sex, or month and HImin. Interactions for sex, BMI group,
and month did not improve the model fit. HR in relation to heat
exposure did significantly differ between age groups. As there
was only HR data from one young adult (aged <25 years), we

only compared middle-aged and older adults. No significant
association between HImin and nighttime HR was found either
for middle-aged adults (t2642=–1.41; P=.16) or for older adults
(t147=−0.34; P=.73).

Weather Extremes and HR

To further compare nighttime HR between extreme and
nonextreme weather exposures, we created a linear mixed model
with the binary predicting factors heat stress night (HImin ≥25
°C) or heavy rainfall (total daily rainfall of ≥20 mm). The
models were adjusted for age group, sex, BMI group, and month.
Heat stress nights did not have a significant effect on nighttime
HR (t2993=–0.69; P=.49). On nights with heavy rainfall,
nighttime HR was estimated to be lower by 2 bpm (95% CI
−3.81 to −0.21; t2987=–2.19; P=.03) compared with nights with
precipitation of <20 mm. The full results of all 3 models can be
found in Multimedia Appendix 3.

Subjective Heat Perception and Adaptation
In response to our questionnaire (with a total response rate of
137/143, 95.8%), almost half (67/137, 48.9%) of the participants
reported that heat had an impact on their daily lives. Of the
study participants who reported an impact, most reported an
impact primarily at night (55/67, 82%), in the afternoon (33/67,
49%), at noon (18/67, 27%), and during outdoor work (15/67,
22%) in the form of poorer sleep (44/67, 66%), sweating (44/67,
66%), exhaustion (27/67, 40%), and fatigue (14/67, 21%).

Most participants (89/137, 65%) stated that they worked
outdoors, and some (44/137, 32.1%) worked both indoors and
outdoors, whereas only a few (4/137, 2.9%) worked indoors
only. When asked about their adaptative measures against heat
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when they were indoors, the participants said that they left
windows or doors open for ventilation (93/137, 67.9%), slept
in a cooler place or outdoors (42/137, 30.7%), drank more water
(35/137, 25.5%), rested (29/137, 21.2%), did the most strenuous
work during cooler times (15/137, 10.9%), or did not take any
adaptive measures (23/137, 16.8%). When outdoors, they mostly
rested in the shade (79/137, 57.7%), drank more water (77/137,
56.2%), wore loose clothing (37/137, 27%), rested (24/137,
17.5%), used a hat or sun protection (21/137, 15.3%), went
inside (19/137, 13.9%), and did the most strenuous work during
cooler times (15/137, 10.9%) to protect themselves against the
heat. When asked if they were affected by other weather
extremes, 21.9% (30/137) of the participants said yes, especially
by heavy rains causing flooding of houses, yards, and fields
(13/30, 43%); high humidity in the house (8/30, 27%); and
destruction of houses (3/30, 10%). A total of 17% (5/30) of the
participants mentioned that they were negatively affected by
cold temperatures as well.

Discussion

Summary of Findings
To investigate the impact of weather on 143 individuals in the
rural communities of the Nouna HDSS in Burkina Faso, we
used consumer-grade wearables to collect data on their daily
activity, sleep, and HR over the course of 11 months. We used
weather indexes based on rainfall, temperature, HI, and WBGT
estimates to quantify the weather extremes of heavy rainfall,
nights with heat stress, and hot days. In addition, we conducted
a questionnaire with study participants regarding their
perceptions of weather exposure, as well as an activity diary in
which study participants were asked to provide retrospective
information on their daily activities. We found that sleep
duration decreased with higher heat exposure, which
corresponds with the participants’ questionnaire responses
indicating that they were most affected by the heat at night. In
contrast, sleep duration increased with higher precipitation.
During the day, most participants (89/137, 65%) worked
outdoors doing physical labor in the form of, for example,
farming, housework, or fetching water. With increasing WBGT
values up to a threshold of approximately 30 °C, daily activity
(steps) increased. Increased WBGT above this threshold was
associated with decreased daily activity. However, this effect
varied by month, with a decrease in daily activity (steps) per
degree increase in WBGT during the rainiest month for a WBGT
of 20 °C and an increase in activity for a WBGT of ≥30 °C. In
addition, increasing precipitation was correlated with lower
daily activity (steps). As daytime HR data were limited, we
focused primarily on nighttime HR, for which we found that
increasing HI had no significant impact. There was a small but
statistically significant decrease in the average nighttime HR
as rainfall levels rose.

Daily Activity
Similar to the findings of Edwards et al [53], daily activity in
the form of steps increased with higher heat exposure up to a
certain threshold. Our study population’s threshold was at
WBGT values of 30 °C during most months, which can be
considered harmful to health in terms of heat exposure [42]. In

general, people seemed to avoid heat exposure, especially during
the hot dry season, by deferring outdoor activities until later in
the day when temperatures had cooled down and resting during
the hottest hours, as indicated by lower step counts during the
hottest hours of the day and as reported by the participants in
the self-perceived heat questionnaire. In accordance with
Al-Mohannadi et al [11], we found that heat stress had no
statistically different effects on people of different ages and sex
even though women reported less outdoor work in their activity
journals. The per-degree effect of WBGT on daily activity
(steps) varied between months, with higher absolute step counts
and an increase in daily activity observed at a 30 °C WBGTmax

in the rainiest month (August) compared with a decrease in the
coolest (January) and hottest (April) months. A reason for this
may be related to the season. Considering the agricultural
calendar for Burkina Faso [54], most activities in the heat
seemed to take place during usual times of harvest throughout
the rainy season. Given the rural Burkinabé population’s
dependence on agriculture, many of whom are subsistence
farmers who rely on harvest outcomes for their own nutrition
and primary source of income [55], it appears that they cannot
afford to suspend agricultural activities during extreme heat.
Furthermore, higher precipitation was associated with decreased
activity, which confirms previous findings [12,56-58].

Sleep
We found that sleep duration decreased with increasing heat
exposure, similar to studies conducted in other countries,
including middle-income countries with tropical climates
[6,12,56,59]. However, contrary to what has been observed in
several other studies, we did not find that overnight heat
exposure led to poorer sleep either in older participants
compared with younger participants or in female participants
compared with male participants [6,59]. The estimated effect
of nighttime heat on sleep duration was lowest during the hottest
month (April). This might be an indication of people getting
used to high air temperatures. In contrast, heat sensitivity was
highest during the rainiest and most humid month (August),
which matches the findings that humans are affected more by
heat when relative humidity is higher compared with higher air
temperature alone [5]. On half of the nights evaluated, sleep
duration was insufficient, and overall averages were up to an
hour lower than those observed in studies conducted in other
countries [60]. Our estimates of sleep duration did not provide
insights into changes in sleep physiology. However, it has been
found that rapid eye movement sleep decreases with higher
ambient temperatures in laboratory settings [61]. Moreover, the
wearables did not capture sleep for <3 hours. As such, we could
only evaluate nighttime sleep as opposed to shorter naps. As a
result, it is unclear whether individuals were able to make up
for nighttime sleep deficits by taking naps throughout the day.
Increasing precipitation was associated with increasing sleep
duration in accordance with the findings of the large-scale study
by Minor et al [6].

HR Findings
In contrast to earlier findings [62,63], average HR values were
lower in our study when individuals were exposed to increasing
heat; however, this effect was not statistically significant.
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Furthermore, it is important to consider that we looked at
average nighttime HR, which reflects resting HR, and not HR
during activities, as in other studies. It must also be noted that
our analysis was based on a very small data set owing to the
low data completeness for HR. With the large proportion of
missing data, our study results should only be considered as
hypothesis generating [47]. The lower HR values during nights
with higher HImin may indicate heat adaptation of study
participants [64]. The nighttime HR was significantly influenced
by the amount of rainfall that occurred each day. When the total
amount of rainfall was greater, as it often is during severe rains,
HR values were slightly lower. These results corroborate the
earlier observation that more frequent and heavier rainfall is
associated with longer periods of sleep, indicating better rest.
As the cardiovascular system is severely affected by
life-threatening events such as heatstrokes, it would be essential
to conduct additional research on the cardiovascular effects of
climate change and extreme weather exposure.

Weather Exposure
Although the highest temperatures often occurred during the
dry months, WBGT and HI readings peaked during the rainy
season. During our study, WBGT estimates frequently reached
values of >30 °C, which is considered critical even under
moderate activity [42]. A total of 8 days of heavy rain were
experienced by the participants throughout the rainy season.
Participants ranked heavy rainfall and flooding as the second
most impactful weather event. The number of floods has been
increasing over the past few decades in West Africa [22,65] and
is a contributing factor to food insecurity and economic loss for
subsistence farmers [28]. The rural study population in Nouna,
Burkina Faso, is highly exposed to weather extremes in the form
of heat and heavy rains, which will likely increase in the future
because of climate change [66,67].

Although WBGT was originally introduced as a measure for
heat stress for outdoor work in direct sunlight, our model
comparison showed that WBGT predicted daily activity better
than temperature alone. A reason may be that humidity, a
component of WBGT and HI, is an important indicator of a
person’s heat stress [5]. We calculated WBGT based on weather
station measurements, but it should be noted that Lemke and
Kjellstrom [68] have found no statistically significant difference
between calculated and measured WBGT values. Nevertheless,
the assessment of heat exposure using WBGT has its limitations
as it, for example, does not include adjustment for clothing [69].
Furthermore, we calculated WBGT based on the equation by
Carter et al [39], which was based on cooler climatic conditions
than those in our study setting. Therefore, WBGT values should
be considered estimates.

Self-Perceived Burden of Heat Exposure
Half (67/137, 48.9%) of the participants reported being
negatively affected by heat, and some (30/137, 21.9%) also
mentioned heavy rains and flooding as impairing factors in their
daily lives. They experienced most disturbances at night, during
the hottest times of the day, and during outdoor work. This was
also reflected in our objective measurements. The participants
already reported many adaptive measures when outdoors and
indoors that are also recommended by the World Health

Organization [70]. This included resting, seeking shade, working
during cooler times of the day, sleeping outdoors or in cooler
places, and leaving doors and windows open for ventilation.
This adaptive behavior could be seen in the results of their
activity journals as well, where they reported most of the outdoor
and strenuous work in the morning and more resting during
midday and the afternoon, when heat exposure was highest.
There is an immediate need for more adaptive and preventive
measures for this low-resource population as the future poses
even more severe climate conditions.

Limitations
One of the major limitations of our study was incomplete data.
Data completeness was low for both accelerometry (daily
activity and sleep) and photoplethysmography (HR) data. This
could be due to multiple reasons. Environmental factors had a
significant impact on reaching the study participants in their
homes and synchronizing the wearable data. During the rainy
season, for instance, certain villages were inaccessible because
of flooding, making many dirt roads impassable for
fieldworkers. In addition, the political environment in Burkina
Faso hindered the collection of data because of security concerns
in some villages (threats of terrorism) and the shutdown of
mobile internet in November 2021 and during the coup d’état
in January 2022. The limitation of internet connection in most
of the study area presented a barrier to the synchronization of
participant data at their homes. Another main limitation was
damaged wearables. Over the course of the study, >40 devices
malfunctioned, of which 20 could be replaced. The most
common causes of wearables breaking were water damage
(although the devices were waterproof) and the impact of force
(eg, during fieldwork). Second, the lack of information regarding
the validity of the Withings Pulse HR is a major limitation. The
validity of these devices has not been verified in a study setting.
Therefore, we can only consider the values as estimates. As
Withings only released the processed accelerometry data and
not the raw accelerometry data, we lacked clarity regarding the
calculations that underpinned these data points for sleep and
daily activity. Furthermore, we deemed the pulse rate measured
by the photoplethysmography sensor equivalent to HR. The
technical aspects of the wearables could have also caused low
data completeness and inaccuracy, especially for HR
measurements. In previous studies, various noise sources have
been identified that impaired the photoplethysmography signals
and caused inaccurate measurements [71]. This includes
individual, external, and physiological factors such as obesity,
skin tone, body site, and motion artifacts. Owing to its relatively
narrow photoplethysmography sensor compared with other
consumer-grade wearables, the Withings Pulse HR may not
have accurately measured participants’ HRs while they were in
motion or sweating heavily. Furthermore, it has been suggested
that melanin disrupts the functionality of photoplethysmography,
resulting in poorer performance on darker skin tones, which
could explain the low data completeness in our study population
[72,73]. To match weather and wearable data, we used weather
data from the nearest weather station to each participant’s house,
not considering when participants were not at home, which
might have caused inaccuracy. Regarding the representativeness
of our study cohort, we had one major limitation: most of our
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study population was middle-aged even though most Burkinabé
are aged <25 years [74]. It would be important to gain more
insights into the sensitivity of children and young adults to heat
and heavy rains. Finally, the linear mixed-effects models that
we used to explore the relationship between extreme weather
exposure and health parameters had some limitations. We tried
to address possible overfitting through hierarchical model
building and cross-validation. However, the models showed

quite low average R2 values when cross-validated using the
LOSO approach. We still deemed our models’ performance

sufficient for this exploratory analysis as R2 values for some
participants’ data as test data were much higher, especially for
those participants with good data completeness, which leads us
back to our first major limitation.

Conclusions
On the basis of our findings, the rural population in Burkina
Faso is exposed to many days of extreme weather in the form
of heavy rains, nights with heat stress, and hot days. Heat
especially seemed to be associated with shortened sleep duration,
which was also confirmed by the subjective perceptions of study
participants, who reported that heat had the greatest impact on
their daily lives at night. Heat-related sleep disruption is a major
issue for the general public’s health. During the hottest month
(April), daily activity (steps) decreased with increased heat
exposure at 30 °C WBGT. Total daily activity (steps) was

highest during the rainy season, typically June to September,
which had the highest number of heat stress days, and the
number of steps even increased as WBGT rose above 30 °C.
Most people in rural Burkina Faso are subsistence farmers who
depend on their harvests for food and income. This means that
most of the agricultural work, especially during the rainy season
when most crops are harvested, may coincide with the most
extreme weather exposure. Other essential activities such as
obtaining water and caring for livestock also potentially expose
Burkinabés to weather conditions that may be detrimental to
their health. Heavy rainfall was associated with a small increase
in sleep duration, slightly decreased average nighttime HR, and
decreased daily activity (steps). Participants in the study also
recognized the agricultural and economic impacts of heavy
rainfall as threats to their daily lives, which should be explored
in future research. Study participants reported adverse health
impacts of weather and adaptive measures, such as avoiding
extreme heat and delaying physical activities until cooler times.
This is the first long-term study that, to our knowledge, evaluates
the impacts of weather exposure on a rural population in Burkina
Faso using objective measures from consumer-grade wearables
to better comprehend everyday exposure. On the basis of these
findings, new adaptive measures could be implemented in rural,
low-resource communities that are highly exposed to climate
change to protect people from heat, especially during the night
and outdoor work. This could be, for example, in the form of
housing cooling methods or personal protective gear.

Acknowledgments
The authors wish to thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for supporting this work as part
of a Deutsche Forschungsgemeinschaft–funded research unit (Forschungsgruppe FOR 2936, project: 409670289). The authors
acknowledge financial support from the Else Kröner-Fresenius-Stiftung within the Heidelberg Graduate School of Global Health;
the German Research Foundation (Deutsche Forschungsgemeinschaft) within the Open Access Publishing funding program by
the Baden-Württemberg Ministry of Science, Research, and the Arts and by Ruprecht-Karls-Universität Heidelberg. The funders
did not play a role in the design, data collection and analysis, decision to publish, or writing of the manuscript.

Data Availability
The data sets generated during the study and the corresponding R scripts can be made available from the corresponding author
in an anonymized form upon individual request.

Authors' Contributions
SB, TB, and AS conceived and designed the study. AS, VB, and GC managed the study in Burkina Faso with the remote guidance
of SB, MK, AB, and MAM. MK monitored the data during the study, analyzed the data, and drafted the manuscript in close
collaboration with SB. All authors contributed to the critical revision of the draft and approved the final version of the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement: guidelines for reporting observational
studies.
[PDF File (Adobe PDF File), 127 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Activity journal and heat questionnaire.
[PDF File (Adobe PDF File), 284 KB-Multimedia Appendix 2]

JMIR Mhealth Uhealth 2023 | vol. 11 | e46980 | p. 16https://mhealth.jmir.org/2023/1/e46980
(page number not for citation purposes)

Koch et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=mhealth_v11i1e46980_app1.pdf&filename=27f909938bdb41ce3b264f5df8ec67c2.pdf
https://jmir.org/api/download?alt_name=mhealth_v11i1e46980_app1.pdf&filename=27f909938bdb41ce3b264f5df8ec67c2.pdf
https://jmir.org/api/download?alt_name=mhealth_v11i1e46980_app2.pdf&filename=333a12c27cc0b503a259075a548ccf27.pdf
https://jmir.org/api/download?alt_name=mhealth_v11i1e46980_app2.pdf&filename=333a12c27cc0b503a259075a548ccf27.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 3
Full results of the linear mixed-effects models.
[PDF File (Adobe PDF File), 511 KB-Multimedia Appendix 3]

References

1. Intergovernmental Panel on Climate Change (IPCC). Human health: impacts, adaptation, and co-benefits. In: Climate
Change 2014 – Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution
to the IPCC Fifth Assessment Report. Cambridge, UK: Cambridge University Press; 2014:709-754

2. Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Beagley J, Belesova K, et al. The 2020 report of The Lancet Countdown
on health and climate change: responding to converging crises. Lancet 2021 Jan 09;397(10269):129-170 [doi:
10.1016/S0140-6736(20)32290-X] [Medline: 33278353]

3. Rocque RJ, Beaudoin C, Ndjaboue R, Cameron L, Poirier-Bergeron L, Poulin-Rheault RA, et al. Health effects of climate
change: an overview of systematic reviews. BMJ Open 2021 Jun 09;11(6):e046333 [FREE Full text] [doi:
10.1136/bmjopen-2020-046333] [Medline: 34108165]

4. Kenny GP, Notley SR, Flouris AD, Grundstein A. Climate change and heat exposure: impact on health in occupational and
general populations. In: Adams W, Jardine J, editors. Exertional Heat Illness. Cham, Switzerland: Springer; 2020. [doi:
10.1007/978-3-030-27805-2_12]

5. Sobolewski A, Młynarczyk M, Konarska M, Bugajska J. The influence of air humidity on human heat stress in a hot
environment. Int J Occup Saf Ergon 2021 Mar 25;27(1):226-236 [doi: 10.1080/10803548.2019.1699728] [Medline:
31779525]

6. Minor K, Bjerre-Nielsen A, Jonasdottir SS, Lehmann S, Obradovich N. Rising temperatures erode human sleep globally.
One Earth 2022 May;5(5):534-549 [doi: 10.1016/j.oneear.2022.04.008]

7. Rifkin DI, Long MW, Perry MJ. Climate change and sleep: a systematic review of the literature and conceptual framework.
Sleep Med Rev 2018 Dec;42:3-9 [FREE Full text] [doi: 10.1016/j.smrv.2018.07.007] [Medline: 30177247]

8. Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN, et al. The sleep-deprived human brain.
Nat Rev Neurosci 2017 Jul 18;18(7):404-418 [FREE Full text] [doi: 10.1038/nrn.2017.55] [Medline: 28515433]

9. Irwin MR. Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol 2015 Jan
03;66(1):143-172 [FREE Full text] [doi: 10.1146/annurev-psych-010213-115205] [Medline: 25061767]

10. Cappuccio FP, Cooper D, D'Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic
review and meta-analysis of prospective studies. Eur Heart J 2011 Jun;32(12):1484-1492 [doi: 10.1093/eurheartj/ehr007]
[Medline: 21300732]

11. Al-Mohannadi AS, Farooq A, Burnett A, Van Der Walt M, Al-Kuwari MG. Impact of climatic conditions on physical
activity: a 2-year cohort study in the Arabian Gulf region. J Phys Act Health 2016 Sep;13(9):929-937 [doi:
10.1123/jpah.2015-0593] [Medline: 27631650]

12. Quante M, Wang R, Weng J, Kaplan ER, Rueschman M, Taveras EM, et al. Seasonal and weather variation of sleep and
physical activity in 12-14-year-old children. Behav Sleep Med 2019 Oct 09;17(4):398-410 [FREE Full text] [doi:
10.1080/15402002.2017.1376206] [Medline: 28922020]

13. Flouris AD, Dinas PC, Ioannou LG, Nybo L, Havenith G, Kenny GP, et al. Workers' health and productivity under
occupational heat strain: a systematic review and meta-analysis. Lancet Planetary Health 2018 Dec;2(12):e521-e531 [doi:
10.1016/s2542-5196(18)30237-7]

14. Lee I, Shiroma EJ, Kamada M, Bassett DR, Matthews CE, Buring JE. Association of step volume and intensity with all-cause
mortality in older women. JAMA Intern Med 2019 Aug 01;179(8):1105-1112 [FREE Full text] [doi:
10.1001/jamainternmed.2019.0899] [Medline: 31141585]

15. Bellettiere J, LaMonte MJ, Evenson KR, Rillamas-Sun E, Kerr J, Lee I, et al. Sedentary behavior and cardiovascular disease
in older women: the Objective Physical Activity and Cardiovascular Health (OPACH) study. Circulation 2019 Feb
19;139(8):1036-1046 [FREE Full text] [doi: 10.1161/CIRCULATIONAHA.118.035312] [Medline: 31031411]

16. Kraus WE, Janz KF, Powell KE, Campbell WW, Jakicic JM, Troiano RP, et al. 2018 Physical Activity Guidelines Advisory
Committee*. Daily step counts for measuring physical activity exposure and its relation to health. Med Sci Sports Exerc
2019 Jun;51(6):1206-1212 [FREE Full text] [doi: 10.1249/MSS.0000000000001932] [Medline: 31095077]

17. Madaniyazi L, Zhou Y, Li S, Williams G, Jaakkola JJ, Liang X, et al. Outdoor temperature, heart rate and blood pressure
in Chinese adults: effect modification by individual characteristics. Sci Rep 2016 Feb 15;6(1):21003 [FREE Full text] [doi:
10.1038/srep21003] [Medline: 26876040]

18. De Barros JA, Macartney MJ, Peoples GE, Notley SR, Herry CL, Kenny GP. Effects of sex and wet-bulb globe temperature
on heart rate variability during prolonged moderate-intensity exercise: a secondary analysis. Appl Physiol Nutr Metab 2022
Jul 01;47(7):725-736 [doi: 10.1139/apnm-2022-0004] [Medline: 35290752]

19. Boudoulas KD, Borer JS, Boudoulas H. Heart rate, life expectancy and the cardiovascular system: therapeutic considerations.
Cardiology 2015 Aug 15;132(4):199-212 [FREE Full text] [doi: 10.1159/000435947] [Medline: 26305771]

JMIR Mhealth Uhealth 2023 | vol. 11 | e46980 | p. 17https://mhealth.jmir.org/2023/1/e46980
(page number not for citation purposes)

Koch et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=mhealth_v11i1e46980_app3.pdf&filename=e1ff0a890138c89ed225c57e3b4458c5.pdf
https://jmir.org/api/download?alt_name=mhealth_v11i1e46980_app3.pdf&filename=e1ff0a890138c89ed225c57e3b4458c5.pdf
http://dx.doi.org/10.1016/S0140-6736(20)32290-X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33278353&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=34108165
http://dx.doi.org/10.1136/bmjopen-2020-046333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34108165&dopt=Abstract
http://dx.doi.org/10.1007/978-3-030-27805-2_12
http://dx.doi.org/10.1080/10803548.2019.1699728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31779525&dopt=Abstract
http://dx.doi.org/10.1016/j.oneear.2022.04.008
https://linkinghub.elsevier.com/retrieve/pii/S1087-0792(18)30076-5
http://dx.doi.org/10.1016/j.smrv.2018.07.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30177247&dopt=Abstract
https://europepmc.org/abstract/MED/28515433
http://dx.doi.org/10.1038/nrn.2017.55
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28515433&dopt=Abstract
https://europepmc.org/abstract/MED/25061767
http://dx.doi.org/10.1146/annurev-psych-010213-115205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25061767&dopt=Abstract
http://dx.doi.org/10.1093/eurheartj/ehr007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21300732&dopt=Abstract
http://dx.doi.org/10.1123/jpah.2015-0593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27631650&dopt=Abstract
https://europepmc.org/abstract/MED/28922020
http://dx.doi.org/10.1080/15402002.2017.1376206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28922020&dopt=Abstract
http://dx.doi.org/10.1016/s2542-5196(18)30237-7
https://europepmc.org/abstract/MED/31141585
http://dx.doi.org/10.1001/jamainternmed.2019.0899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31141585&dopt=Abstract
https://europepmc.org/abstract/MED/31031411
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31031411&dopt=Abstract
https://europepmc.org/abstract/MED/31095077
http://dx.doi.org/10.1249/MSS.0000000000001932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31095077&dopt=Abstract
https://doi.org/10.1038/srep21003
http://dx.doi.org/10.1038/srep21003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26876040&dopt=Abstract
http://dx.doi.org/10.1139/apnm-2022-0004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35290752&dopt=Abstract
https://doi.org/10.1159/000435947
http://dx.doi.org/10.1159/000435947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26305771&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


20. De Longueville F, Hountondji Y, Kindo I, Gemenne F, Ozer P. Long-term analysis of rainfall and temperature data in
Burkina Faso (1950-2013). Int J Climatol 2016 Feb 03;36(13):4393-4405 [doi: 10.1002/joc.4640]

21. Intergovernmental Panel on Climate Change (IPCC). Africa. Climate Change 2014 – Impacts, Adaptation and Vulnerability:
Part B: Regional Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report. Cambridge, UK: Cambridge
University Press; 2014:1199-1265

22. Kappelle M. State of the climate in Africa 2019. World Meteorological Organization. 2020 Oct. URL: https://www.research
gate.net/publication/344898712_State_of_the_Climate_in_Africa_2019 [accessed 2022-02-02]

23. Green H, Bailey J, Schwarz L, Vanos J, Ebi K, Benmarhnia T. Impact of heat on mortality and morbidity in low and middle
income countries: a review of the epidemiological evidence and considerations for future research. Environ Res 2019
Apr;171:80-91 [doi: 10.1016/j.envres.2019.01.010] [Medline: 30660921]

24. Pasquini L, van Aardenne L, Godsmark CN, Lee J, Jack C. Emerging climate change-related public health challenges in
Africa: a case study of the heat-health vulnerability of informal settlement residents in Dar es Salaam, Tanzania. Sci Total
Environ 2020 Dec 10;747:141355 [doi: 10.1016/j.scitotenv.2020.141355] [Medline: 32777515]

25. Gilbert R, Cliffe SJ. Public health surveillance. In: Regmi K, Gee I, editors. Public Health Intelligence. Cham, Switzerland:
Springer; 2016. [doi: 10.1007/978-3-319-28326-5_5]

26. Nsubuga P, White ME, Thacker SB, Anderson MA, Blount SB, Broome CV, et al. Public health surveillance: a tool for
targeting and monitoring interventions. In: Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, et
al, editors. Disease Control Priorities in Developing Countries. 2nd edition. New York, NY: World Bank Publications;
2006.

27. Sié A, Louis VR, Gbangou A, Müller O, Niamba L, Stieglbauer G, et al. The Health and Demographic Surveillance System
(HDSS) in Nouna, Burkina Faso, 1993-2007. Glob Health Action 2010 Sep 14;3(1):5284 [FREE Full text] [doi:
10.3402/gha.v3i0.5284] [Medline: 20847837]

28. Mank I, Belesova K, Bliefernicht J, Traoré I, Wilkinson P, Danquah I, et al. The impact of rainfall variability on diets and
undernutrition of young children in rural Burkina Faso. Front Public Health 2021 Sep 20;9:693281 [FREE Full text] [doi:
10.3389/fpubh.2021.693281] [Medline: 34616704]

29. Diboulo E, Sié A, Rocklöv J, Niamba L, Yé M, Bagagnan C, et al. Weather and mortality: a 10 year retrospective analysis
of the Nouna Health and Demographic Surveillance System, Burkina Faso. Glob Health Action 2012 Nov 23;5(1):6-13
[FREE Full text] [doi: 10.3402/gha.v5i0.19078] [Medline: 23195510]

30. Bunker A, Sewe MO, Sié A, Rocklöv J, Sauerborn R. Excess burden of non-communicable disease years of life lost from
heat in rural Burkina Faso: a time series analysis of the years 2000-2010. BMJ Open 2017 Nov 04;7(11):e018068 [FREE
Full text] [doi: 10.1136/bmjopen-2017-018068] [Medline: 29102994]

31. Heo S, Bell ML, Lee JT. Comparison of health risks by heat wave definition: applicability of wet-bulb globe temperature
for heat wave criteria. Environ Res 2019 Jan;168:158-170 [doi: 10.1016/j.envres.2018.09.032] [Medline: 30316101]

32. Parsons K. Heat stress standard ISO 7243 and its global application. Ind Health 2006 Jul;44(3):368-379 [FREE Full text]
[doi: 10.2486/indhealth.44.368] [Medline: 16922180]

33. Sahu KS, Majowicz SE, Dubin JA, Morita PP. NextGen public health surveillance and the Internet of Things (IoT). Front
Public Health 2021 Dec 3;9:756675 [FREE Full text] [doi: 10.3389/fpubh.2021.756675] [Medline: 34926381]

34. Huhn S, Matzke I, Koch M, Gunga HC, Maggioni MA, Sié A, et al. Using wearable devices to generate real-world,
individual-level data in rural, low-resource contexts in Burkina Faso, Africa: a case study. Front Public Health 2022 Sep
30;10:972177 [FREE Full text] [doi: 10.3389/fpubh.2022.972177] [Medline: 36249225]

35. Koch M, Matzke I, Huhn S, Gunga HC, Maggioni MA, Munga S, et al. Wearables for measuring health effects of climate
change-induced weather extremes: scoping review. JMIR Mhealth Uhealth 2022 Sep 09;10(9):e39532 [FREE Full text]
[doi: 10.2196/39532] [Medline: 36083624]

36. Tomalka J, Lange S, Röhrig F, Gornott C. Climate risk profile: Burkina Faso*. Federal Ministry for Economic Cooperation
and Development. URL: https://tinyurl.com/35af49fn [accessed 2023-01-04]

37. Barteit S, Boudo V, Ouedraogo A, Zabré P, Ouremi L, Sié A, et al. Feasibility, acceptability and validation of wearable
devices for climate change and health research in the low-resource contexts of Burkina Faso and Kenya: study protocol.
PLoS One 2021 Sep 30;16(9):e0257170 [FREE Full text] [doi: 10.1371/journal.pone.0257170] [Medline: 34591893]

38. Hijmans RJ, Karney C, Williams E, Vennes C. geosphere: spherical trigonometry, R package version 1.5-18. CRAN
R-Project. URL: https://cran.r-project.org/web/packages/geosphere/index.html [accessed 2023-10-23]

39. Carter AW, Zaitchik BF, Gohlke JM, Wang S, Richardson MB. Methods for estimating wet bulb globe temperature from
remote and low‐cost data: a comparative study in Central Alabama. GeoHealth 2020 May 21;4(5):e2019GH000231 [doi:
10.1029/2019gh000231]

40. Anderson GB, Bell ML, Peng RD. Methods to calculate the heat index as an exposure metric in environmental health
research. Environ Health Perspect 2013 Oct;121(10):1111-1119 [FREE Full text] [doi: 10.1289/ehp.1206273] [Medline:
23934704]

41. Perkins SE, Alexander LV. On the measurement of heat waves. J Clim 2013;26(13):4500-4517 [doi:
10.1175/JCLI-D-12-00383.1]

JMIR Mhealth Uhealth 2023 | vol. 11 | e46980 | p. 18https://mhealth.jmir.org/2023/1/e46980
(page number not for citation purposes)

Koch et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1002/joc.4640
https://www.researchgate.net/publication/344898712_State_of_the_Climate_in_Africa_2019
https://www.researchgate.net/publication/344898712_State_of_the_Climate_in_Africa_2019
http://dx.doi.org/10.1016/j.envres.2019.01.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30660921&dopt=Abstract
http://dx.doi.org/10.1016/j.scitotenv.2020.141355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32777515&dopt=Abstract
http://dx.doi.org/10.1007/978-3-319-28326-5_5
https://europepmc.org/abstract/MED/20847837
http://dx.doi.org/10.3402/gha.v3i0.5284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20847837&dopt=Abstract
https://europepmc.org/abstract/MED/34616704
http://dx.doi.org/10.3389/fpubh.2021.693281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34616704&dopt=Abstract
https://europepmc.org/abstract/MED/23195510
http://dx.doi.org/10.3402/gha.v5i0.19078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23195510&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=29102994
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=29102994
http://dx.doi.org/10.1136/bmjopen-2017-018068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29102994&dopt=Abstract
http://dx.doi.org/10.1016/j.envres.2018.09.032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30316101&dopt=Abstract
https://joi.jlc.jst.go.jp/JST.JSTAGE/indhealth/44.368?from=PubMed
http://dx.doi.org/10.2486/indhealth.44.368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16922180&dopt=Abstract
https://europepmc.org/abstract/MED/34926381
http://dx.doi.org/10.3389/fpubh.2021.756675
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34926381&dopt=Abstract
https://air.unimi.it/handle/2434/941740
http://dx.doi.org/10.3389/fpubh.2022.972177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36249225&dopt=Abstract
https://air.unimi.it/handle/2434/937507
http://dx.doi.org/10.2196/39532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36083624&dopt=Abstract
https://tinyurl.com/35af49fn
https://air.unimi.it/handle/2434/871676
http://dx.doi.org/10.1371/journal.pone.0257170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34591893&dopt=Abstract
https://cran.r-project.org/web/packages/geosphere/index.html
http://dx.doi.org/10.1029/2019gh000231
https://ehp.niehs.nih.gov/doi/10.1289/ehp.1206273?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1289/ehp.1206273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23934704&dopt=Abstract
http://dx.doi.org/10.1175/JCLI-D-12-00383.1
http://www.w3.org/Style/XSL
http://www.renderx.com/


42. Vecellio DJ, Wolf ST, Cottle RM, Kenney WL. Evaluating the 35°C wet-bulb temperature adaptability threshold for young,
healthy subjects (PSU HEAT Project). J Appl Physiol (1985) 2022 Feb 01;132(2):340-345 [FREE Full text] [doi:
10.1152/japplphysiol.00738.2021] [Medline: 34913738]

43. Wolf ST, Folkerts MA, Cottle RM, Daanen HA, Kenney WL. Metabolism- and sex-dependent critical WBGT limits at rest
and during exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2021 Sep 01;321(3):R295-R302 [FREE Full text]
[doi: 10.1152/ajpregu.00101.2021] [Medline: 34259026]

44. What is the heat index? National Weather Service. URL: https://www.weather.gov/ama/heatindex [accessed 2021-12-22]
45. Tan FE, Jolani S, Verbeek H. Guidelines for multiple imputations in repeated measurements with time-dependent covariates:

a case study. J Clin Epidemiol 2018 Oct;102:107-114 [doi: 10.1016/j.jclinepi.2018.06.006] [Medline: 29964148]
46. Peters SA, Bots ML, den Ruijter HM, Palmer MK, Grobbee DE, Crouse JR, et al. METEOR study group. Multiple imputation

of missing repeated outcome measurements did not add to linear mixed-effects models. J Clin Epidemiol 2012
Jun;65(6):686-695 [doi: 10.1016/j.jclinepi.2011.11.012] [Medline: 22459429]

47. Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing
data in randomised clinical trials - a practical guide with flowcharts. BMC Med Res Methodol 2017 Dec 06;17(1):162
[FREE Full text] [doi: 10.1186/s12874-017-0442-1] [Medline: 29207961]

48. Lewis LK, Maher C, Belanger K, Tremblay M, Chaput JP, Olds T. At the mercy of the gods: associations between weather,
physical activity, and sedentary time in children. Pediatr Exerc Sci 2016 Feb;28(1):152-163 [doi: 10.1123/pes.2015-0076]
[Medline: 26098393]

49. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by
accelerometer. Med Sci Sports Exerc 2008 Jan;40(1):181-188 [doi: 10.1249/mss.0b013e31815a51b3] [Medline: 18091006]

50. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol 2001 Jan;37(1):153-156
[FREE Full text] [doi: 10.1016/s0735-1097(00)01054-8] [Medline: 11153730]

51. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw 2015;67(1):1-48
[FREE Full text] [doi: 10.18637/jss.v067.i01]

52. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation's sleep time
duration recommendations: methodology and results summary. Sleep Health 2015 Mar;1(1):40-43 [doi:
10.1016/j.sleh.2014.12.010] [Medline: 29073412]

53. Edwards NM, Myer GD, Kalkwarf HJ, Woo JG, Khoury PR, Hewett TE, et al. Outdoor temperature, precipitation, and
wind speed affect physical activity levels in children: a longitudinal cohort study. J Phys Act Health 2015
Aug;12(8):1074-1081 [FREE Full text] [doi: 10.1123/jpah.2014-0125] [Medline: 25423667]

54. Burkina Faso acute food insecurity. Burkina Faso | Famine Early Warning Systems Network. URL: https://fews.net/
west-africa/burkina-faso [accessed 2022-12-12]

55. Belesova K, Gasparrini A, Sié A, Sauerborn R, Wilkinson P. Household cereal crop harvest and children's nutritional status
in rural Burkina Faso. Environ Health 2017 Jun 20;16(1):65 [FREE Full text] [doi: 10.1186/s12940-017-0258-9] [Medline:
28633653]

56. Zheng C, Huang WY, Wong SH. Associations of weather conditions with adolescents' daily physical activity, sedentary
time, and sleep duration. Appl Physiol Nutr Metab 2019 Dec;44(12):1339-1344 [doi: 10.1139/apnm-2019-0309] [Medline:
31063697]

57. Klenk J, Büchele G, Rapp K, Franke S, Peter R, ActiFE Study Group. Walking on sunshine: effect of weather conditions
on physical activity in older people. J Epidemiol Community Health 2012 May 15;66(5):474-476 [doi:
10.1136/jech.2010.128090] [Medline: 21325149]

58. Bélanger M, Gray-Donald K, O'Loughlin J, Paradis G, Hanley J. Influence of weather conditions and season on physical
activity in adolescents. Ann Epidemiol 2009 Mar;19(3):180-186 [doi: 10.1016/j.annepidem.2008.12.008] [Medline:
19217000]

59. Obradovich N, Migliorini R, Mednick SC, Fowler JH. Nighttime temperature and human sleep loss in a changing climate.
Sci Adv 2017 May;3(5):e1601555 [FREE Full text] [doi: 10.1126/sciadv.1601555] [Medline: 28560320]

60. Jonasdottir SS, Minor K, Lehmann S. Gender differences in nighttime sleep patterns and variability across the adult lifespan:
a global-scale wearables study. Sleep 2021 Feb 12;44(2):zsaa169 [doi: 10.1093/sleep/zsaa169] [Medline: 32886772]

61. Buguet A. Sleep under extreme environments: effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity
in space. J Neurol Sci 2007 Nov 15;262(1-2):145-152 [doi: 10.1016/j.jns.2007.06.040] [Medline: 17706676]

62. Hargett T. The effect of heat exposure on heart rate and VO2 during time to exhaustion exercise. 2019 Presented at: Kent
State University Undergraduate Symposium on Research, Scholarship and Creative Activity; April 17, 2023; Kent, OH
URL: https://oaks.kent.edu/ugresearch/2019/effect-heat-exposure-heart-rate-and-vo2-during-time-exhaustion-exercise

63. Ravanelli NM, Hodder SG, Havenith G, Jay O. Heart rate and body temperature responses to extreme heat and humidity
with and without electric fans. JAMA 2015 Feb 17;313(7):724-725 [FREE Full text] [doi: 10.1001/jama.2015.153] [Medline:
25688786]

64. Rahimi GR, Albanaqi AL, Van der Touw T, Smart NA. Physiological responses to heat acclimation: a systematic review
and meta-analysis of randomized controlled trials. J Sports Sci Med 2019 Jun;18(2):316-326 [FREE Full text] [Medline:
31191102]

JMIR Mhealth Uhealth 2023 | vol. 11 | e46980 | p. 19https://mhealth.jmir.org/2023/1/e46980
(page number not for citation purposes)

Koch et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

https://journals.physiology.org/doi/10.1152/japplphysiol.00738.2021?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1152/japplphysiol.00738.2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34913738&dopt=Abstract
https://journals.physiology.org/doi/10.1152/ajpregu.00101.2021?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1152/ajpregu.00101.2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34259026&dopt=Abstract
https://www.weather.gov/ama/heatindex
http://dx.doi.org/10.1016/j.jclinepi.2018.06.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29964148&dopt=Abstract
http://dx.doi.org/10.1016/j.jclinepi.2011.11.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22459429&dopt=Abstract
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-017-0442-1
http://dx.doi.org/10.1186/s12874-017-0442-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29207961&dopt=Abstract
http://dx.doi.org/10.1123/pes.2015-0076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26098393&dopt=Abstract
http://dx.doi.org/10.1249/mss.0b013e31815a51b3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18091006&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0735-1097(00)01054-8
http://dx.doi.org/10.1016/s0735-1097(00)01054-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11153730&dopt=Abstract
https://www.jstatsoft.org/article/view/v067i01
http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.1016/j.sleh.2014.12.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29073412&dopt=Abstract
https://europepmc.org/abstract/MED/25423667
http://dx.doi.org/10.1123/jpah.2014-0125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25423667&dopt=Abstract
https://fews.net/west-africa/burkina-faso
https://fews.net/west-africa/burkina-faso
https://ehjournal.biomedcentral.com/articles/10.1186/s12940-017-0258-9
http://dx.doi.org/10.1186/s12940-017-0258-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28633653&dopt=Abstract
http://dx.doi.org/10.1139/apnm-2019-0309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31063697&dopt=Abstract
http://dx.doi.org/10.1136/jech.2010.128090
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21325149&dopt=Abstract
http://dx.doi.org/10.1016/j.annepidem.2008.12.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19217000&dopt=Abstract
https://www.science.org/doi/abs/10.1126/sciadv.1601555?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1126/sciadv.1601555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28560320&dopt=Abstract
http://dx.doi.org/10.1093/sleep/zsaa169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32886772&dopt=Abstract
http://dx.doi.org/10.1016/j.jns.2007.06.040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17706676&dopt=Abstract
https://oaks.kent.edu/ugresearch/2019/effect-heat-exposure-heart-rate-and-vo2-during-time-exhaustion-exercise
https://core.ac.uk/reader/42481222?utm_source=linkout
http://dx.doi.org/10.1001/jama.2015.153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25688786&dopt=Abstract
https://europepmc.org/abstract/MED/31191102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31191102&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


65. Kogan F, Guo W, Yang W. Drought and food security prediction from NOAA new generation of operational satellites.
Geomat Nat Hazards Risk 2019 Jan 29;10(1):651-666 [doi: 10.1080/19475705.2018.1541257]

66. Hondula DM, Rocklöv J, Sankoh OA. Past, present, and future climate at select INDEPTH member Health and Demographic
Surveillance Systems in Africa and Asia. Glob Health Action 2012 Nov 23;5(1):74-86 [FREE Full text] [doi:
10.3402/gha.v5i0.19083] [Medline: 23195511]

67. Schewe J, Levermann A. Sahel rainfall projections constrained by past sensitivity to global warming. Geophysical Research
Letters 2022 Sep 20;49(18):8286 [doi: 10.1029/2022GL098286]

68. Lemke B, Kjellstrom T. Calculating workplace WBGT from meteorological data: a tool for climate change assessment.
Ind Health 2012;50(4):267-278 [FREE Full text] [doi: 10.2486/indhealth.ms1352] [Medline: 22673363]

69. d'Ambrosio Alfano FR, Malchaire J, Palella BI, Riccio G. WBGT index revisited after 60 years of use. Ann Occup Hyg
2014 Oct;58(8):955-970 [doi: 10.1093/annhyg/meu050] [Medline: 25062982]

70. Heat and health. World Health Organization. 2018 Jun 1. URL: https://www.who.int/news-room/fact-sheets/detail/climate
-change-heat-and-health [accessed 2023-02-06]

71. Fine J, Branan KL, Rodriguez AJ, Boonya-Ananta T, Ajmal; Ramella-Roman JC, et al. Sources of inaccuracy in
photoplethysmography for continuous cardiovascular monitoring. Biosensors (Basel) 2021 Apr 16;11(4):126 [FREE Full
text] [doi: 10.3390/bios11040126] [Medline: 33923469]

72. Piazena H, Meffert H, Uebelhack R. Spectral remittance and transmittance of visible and infrared-A radiation in human
skin-comparison between in vivo measurements and model calculations. Photochem Photobiol 2017 Nov 27;93(6):1449-1461
[doi: 10.1111/php.12785] [Medline: 28471473]

73. Preejith SP, Alex A, Joseph J, Sivaprakasam M. Design, development and clinical validation of a wrist-based optical heart
rate monitor. In: Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA).
2016 Presented at: MeMeA; May 15-18, 2016; Benevento, Italy [doi: 10.1109/memea.2016.7533786]

74. Burkina Faso - The World Factbook. Central Intelligence Agency. URL: https://www.cia.gov/the-world-factbook/countries/
burkina-faso/ [accessed 2023-01-04]

Abbreviations
bpm: beats per minute
HDSS: health and demographic surveillance system
HI: heat index
HR: heart rate
LOSO: leave-one-subject-out
STROBE: Strengthening the Reporting of Observational Studies in Epidemiology
WBGT: wet-bulb globe temperature

Edited by L Buis; submitted 04.03.23; peer-reviewed by A Gorny, M Khairulbahri; comments to author 03.07.23; revised version
received 25.08.23; accepted 15.09.23; published 08.11.23

Please cite as:
Koch M, Matzke I, Huhn S, Sié A, Boudo V, Compaoré G, Maggioni MA, Bunker A, Bärnighausen T, Dambach P, Barteit S
Assessing the Effect of Extreme Weather on Population Health Using Consumer-Grade Wearables in Rural Burkina Faso: Observational
Panel Study
JMIR Mhealth Uhealth 2023;11:e46980
URL: https://mhealth.jmir.org/2023/1/e46980
doi: 10.2196/46980
PMID:

©Mara Koch, Ina Matzke, Sophie Huhn, Ali Sié, Valentin Boudo, Guillaume Compaoré, Martina Anna Maggioni, Aditi Bunker,
Till Bärnighausen, Peter Dambach, Sandra Barteit. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org),
08.11.2023. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR mHealth and uHealth, is properly cited. The complete bibliographic information,
a link to the original publication on https://mhealth.jmir.org/, as well as this copyright and license information must be included.

JMIR Mhealth Uhealth 2023 | vol. 11 | e46980 | p. 20https://mhealth.jmir.org/2023/1/e46980
(page number not for citation purposes)

Koch et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://dx.doi.org/10.1080/19475705.2018.1541257
https://europepmc.org/abstract/MED/23195511
http://dx.doi.org/10.3402/gha.v5i0.19083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23195511&dopt=Abstract
http://dx.doi.org/10.1029/2022GL098286
https://joi.jlc.jst.go.jp/DN/JST.JSTAGE/indhealth/MS1352?from=PubMed
http://dx.doi.org/10.2486/indhealth.ms1352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22673363&dopt=Abstract
http://dx.doi.org/10.1093/annhyg/meu050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25062982&dopt=Abstract
https://www.who.int/news-room/fact-sheets/detail/climate-change-heat-and-health
https://www.who.int/news-room/fact-sheets/detail/climate-change-heat-and-health
https://www.mdpi.com/resolver?pii=bios11040126
https://www.mdpi.com/resolver?pii=bios11040126
http://dx.doi.org/10.3390/bios11040126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33923469&dopt=Abstract
http://dx.doi.org/10.1111/php.12785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28471473&dopt=Abstract
http://dx.doi.org/10.1109/memea.2016.7533786
https://www.cia.gov/the-world-factbook/countries/burkina-faso/
https://www.cia.gov/the-world-factbook/countries/burkina-faso/
https://mhealth.jmir.org/2023/1/e46980
http://dx.doi.org/10.2196/46980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

