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Abstract

Background: Patient-generated health data are important in the management of several diseases. Although there are limitations,
information can be obtained using a wearable device and time-related information such as exercise time or sleep time can also
be obtained. Fitbits can be used to acquire sleep onset, sleep offset, total sleep time (TST), and wakefulness after sleep onset
(WASO) data, although there are limitations regarding the depth of sleep and satisfaction; therefore, the patient’s subjective
response is still important information that cannot be replaced by wearable devices.

Objective: To effectively use patient-generated health data related to time such as sleep, it is first necessary to understand the
characteristics of the time response recorded by the user. Therefore, the aim of this study was to analyze the characteristics of
individuals’ time perception in comparison with wearable data.

Methods: Sleep data were acquired for 2 weeks using a Fitbit. Participants’ sleep records were collected daily through chatbot
conversations while wearing the Fitbit, and the two sets of data were statistically compared.

Results: In total, 736 people aged 30-59 years were recruited for this study, and the sleep data of 543 people who wore a Fitbit
and responded to the chatbot for more than 7 days on the same day were analyzed. Research participants tended to respond to
sleep-related times on the hour or in 30-minute increments, and each participant responded within the range of 60-90 minutes
from the value measured by the Fitbit. On average for all participants, the chat responses and the Fitbit data were similar within
a difference of approximately 15 minutes. Regarding sleep onset, the participant response was 8 minutes and 39 seconds (SD 58
minutes) later than that of the Fitbit data, whereas with respect to sleep offset, the response was 5 minutes and 38 seconds (SD
57 minutes) earlier. The participants’ actual sleep time (AST) indicated in the chat was similar to that obtained by subtracting
the WASO from the TST measured by the Fitbit. The AST was 13 minutes and 39 seconds (SD 87 minutes) longer than the time
WASO was subtracted from the Fitbit TST. On days when the participants reported good sleep, they responded 19 (SD 90)
minutes longer on the AST than the Fitbit data. However, for each sleep event, the probability that the participant’s AST was
within ±30 and ±60 minutes of the Fitbit TST-WASO was 50.7% and 74.3%, respectively.

Conclusions: The chatbot sleep response and Fitbit measured time were similar on average and the study participants had a
slight tendency to perceive a relatively long sleep time if the quality of sleep was self-reported as good. However, on a
participant-by-participant basis, it was difficult to predict participants’ sleep duration responses with Fitbit data. Individual
variations in sleep time perception significantly affect patient responses related to sleep, revealing the limitations of objective
measures obtained through wearable devices.

(JMIR Mhealth Uhealth 2023;11:e49144) doi: 10.2196/49144
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Introduction

Patient-generated health data play an important role in the
management of many diseases. Various types of health-related
information can be obtained from patients, ranging from
subjective feelings or pain to objectively measurable steps and
sitting times. Although some information remains unobtainable
and there are various restrictions, it is possible to obtain diverse
types of information from patients using wearable devices. In
relation to sleep, time-related information such as the time an
individual falls asleep and time they wake up can be obtained,
as well as sleep quality and sleep environment information [1,2].

The current standard for clinical sleep evaluation is
polysomnography (PSG) [3,4]. However, because PSG is usually
performed in a hospital, actigraphy is used as an alternative in
outpatient environments [5-7]. Actigraphy is less accurate than
PSG, but is generally considered to be more accurate than sleep
diaries. As PSG is performed in a sleep laboratory, many studies
have used actigraphy to measure bedtime or wake-up time in
everyday life and to study sleep-related diseases [8-13].

To track the state of sleep, an app installed on a smartphone or
a sensor installed on a mattress or around it is used, although
the accuracy of such devices is lower than that of a device worn
directly [14,15]. In addition, the sleep state can be obtained
through a sleep diary or questionnaire, which is less accurate
but nevertheless useful in that the subjective sleep information
of the user can be obtained [15]. As wearables still have
limitations in assessing the depth or quality of sleep, there is a
need to utilize the user’s perceived sleep, and user feedback is
required until an objective diagnostic test technique can exclude
the user’s subjective feelings. Each of these sleep measurement
methods has advantages and disadvantages in terms of accuracy,
convenience, and cost, and information can only be obtained
through subjective methods. There is a need to use two or more
methods together to create a synergistic effect between objective
and subjective methods and to compensate for each of their
disadvantages [15].

Commercially available wearables for actigraphy include various
smart watches and fitness trackers. Although wearables are less
reliable, they provide acceptable levels of sleep monitoring and
are promising monitoring tools [16]. One representative
wearable device is the fitness tracker Fitbit [17-25]. In addition
to movement, Fitbits measure heart rate and other characteristics
to provide sleep values [26-28]. Fitbit was reported to calculates
total sleep time (TST) by 9 minutes more and sleep onset latency
(SOL) by 4 minutes less compared with PSG, and a correlation
between sleep onset, sleep offset, TST, and wakefulness after
sleep onset (WASO) compared with PSG was reported [29].
Fitbit has been shown to be accurate to some extent for
measuring sleep time, although there are limitations with sleep
depth; however, there is no device that accurately measures
sleep stages [30-34]. Therefore, a more personalized model is
required to determine sleep stages or sleep quality using
wearables [35].

Balancing user acceptance and monitoring performance is the
biggest challenge in sleep-monitoring system research in terms
of cost and efficiency [36]. A separate process such as charging

and wearing may be required to wear a wearable device for a
long period of time [37]. Wearables have several advantages,
although they also have well-known disadvantages. There are
many difficulties such as not wearing them, not wearing them
properly, and the devices not accurately identifying the wearer.
When using various devices, there are problems related to
differences in operation methods or algorithms [38]; even when
using a single device, the measurement process or results may
change because of changes in firmware or algorithms. Therefore,
further research on standardized performance evaluation systems
for sleep-tracking technology is required [39].

In the United States, women sleep more on average than men
[40]. Women also have better objective sleep quality, sleep
duration, and sleep efficiency than men; however, they report
poor sleep [41]. One study reported that subjective sleep quality
was low in women [42]. In Australia, men stated that they think
that their quality of sleep is better than that of women [43], and
a report in China based on a Pittsburgh Sleep Quality Index
(PSQI) survey suggested that women have worse quality of
sleep than men [44]. Although many studies have addressed
gender differences in sleep, few have addressed the differences
between healthy men and women. In general, adult men and
women require approximately 7 hours of sleep [45], and many
websites do not distinguish the appropriate sleep times for adults
by age. The difference in sleep time between the ages of 30 and
50 years is not large [46]. The role of BMI can vary depending
on age, although it is considered that the higher the BMI, the
shorter the sleep time and the lower the BMI, the longer the

sleep time [45]. People with a high BMI of 30 kg/m2 have a
slightly shorter than average sleep time [47]. People with obesity
complain of insomnia or sleep disorders more often than those
without obesity, and an association between obesity and
increased daytime sleepiness or fatigue has been reported
[48,49].

The difference between the amount of sleep measured by a Fitbit
and how much sleep users feel they had is not well known. It
is also not known how sleep time differs from day to day, other
than rough information obtained through questionnaires. It is
very important to understand how the perception of average
sleep time, which reflects the quality of sleep for a certain
period, differs from the daily recorded sleep time. The user’s
recognition can be obtained through a sleep diary or survey,
which also has limitations. Conversation apps offer a potential
solution in this respect, which have been widely used recently
and can be used to obtain periodic and immediate feedback.
Therefore, it is necessary to compare the data obtained on the
same day through chatbot conversations and Fitbit data to reveal
more accurate user perception differences. However, to obtain
daily information, wearables and daily user feedback are
required, user convenience needs to be considered, and the user
response must be minimized. Accordingly, the aim of this study
was to analyze the characteristics of users’ time responses to
sleep by comparing data obtained through Fitbit and chatbot
conversations on the same day.
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Methods

Recruitment
The Korean Medicine Daejeon Citizen Cohort study is being
conducted over a 9-year period between 2017 and 2025,
including 2000 adults living in Daejeon [50]. The cohort
inclusion criteria are as follows: (1) men and women aged 30-55
years, (2) residents of Daejeon, and (3) individuals who provided
informed consent. However, individuals are excluded if they
(1) have been diagnosed with a malignant tumor or
cardiovascular disease (myocardial infarction, angina,
stroke/apoplexy); (2) are deemed to have difficulty following
study instructions, such as having difficulty completing and
understanding the questionnaire; or (3) determined by the
researcher to be inappropriate to participate in this study. This
study was conducted among the cohort participants who agreed
to wear a Fitbit. For approximately 2 years, from October 10,
2020, to November 9, 2022, participants who agreed to
participate in the PSQI survey, wear a Fitbit device, and have
chatbot conversations were recruited, and sleep information
was obtained. The participants were adults without special health
problems who were in their 30s to 50s that agreed to wear a
Fitbit and installed the Telegram-based chatbot app on their
smartphone. The PSQI survey was conducted on the day of the
hospital visit with those who wished to participate, and they
were asked to wear a Fitbit device for approximately 2 weeks
and to log a sleep diary through chatbot conversations.

Ethical Approval
This study was approved by the Institutional Review Board
(DJDSKH-17-BM-12) of Daejeon Korean Medicine Hospital
of Daejeon University and written informed consent was
obtained from all participants.

PSQI Survey
The Korean version of the PSQI was used to measure sleep
quality [51]. The PSQI consists of 18 questions divided into 7
subfactors to subjectively evaluate sleep in the past month. The
PSQI survey inquired about the time going to bed and how long

it took to fall asleep. The higher the PSQI total score, the poorer
the sleep condition (range 0 to 21 points).

Fitbit Inspire 2 Recordings
A Fitbit Inspire 2 (Fitbit Inc, San Francisco, CA, USA) was
used to obtain the sleep life log data. Participants were instructed
to wear the Fitbit Inspire 2 for 24 hours a day for 2 weeks to
measure the amount of activity and sleep efficiency during the
day; the Fitbit could be worn on either the right or left wrist
according to the participant’s preference. However, the
participants were instructed to take off the Fitbit when in the
water for a long time, such as showering and swimming. The
participants were instructed to sync their Fitbit app every
morning after waking up. The data stored on the Fitbit server
were collected using the Fitbit web application programming
interface. The sleep information provided and collected by Fitbit
included sleep variables such as the time the user fell asleep,
woke up, TST, times of waking up during sleep, and sleep stages
(wake, rapid eye movement, light, and deep). The administrator
checked the participants’ Fitbit data after 14 days, and if the
Fitbit-wearing duration was less than 10 days, they were
instructed to add 7 or 14 days.

Chatbot Conversation Recordings
While wearing the Fitbit, the sleep diary data of the study
participants were obtained using a Telegram-based chatbot. The
participants installed Telegram, added and registered a chatbot
channel, and were requested to conduct conversations for 2
weeks. The participants received questions from the chatbot at
9 AM and logged sleep diaries by responding to these questions.
Through chatbot conversations, the participants were asked
about the time they went to bed, when they fell asleep, when
they awoke, how many times they woke up during sleep, how
long they actually slept, the quality of the sleep, whether there
was any strenuous physical activity during the day, and how
long they spent sitting. Opportunities for correction were
provided, with the function of returning to the previous step
during the answer and reviewing the content of the answer after
the end of the conversation. The chatbot was implemented using
the Python-Telegram-Bot (version 20.3) [52] (Figure 1).

Figure 1. Screenshots of the Kiom_Fitbit Telegram-based chatbot app. Question-and-answer screen about the (A) hour and (B) minute of going to bed
the night before.
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For answers related to time, hours and minutes were divided
and entered by clicking a button. In the case of hours, 24 buttons
were presented from “1:00” to “24:00,” and in the case of
minutes, 12 buttons were presented from “0 min” to “55 min.”
The participants were asked whether their quality of sleep was
“Very good,” “Quite good,” “Quite poor,” and “Very poor,”
whereas “Yes” and “No” buttons were presented for the presence
or absence of strenuous physical activity. Regarding the number
of awakenings, 26 buttons were presented ranging from “1” to
“more than 26.” When participants were asked to wear the Fitbit,
they were instructed to continue the chatbot conversations for
the same period.

Statistical Analysis
The startTime, endTime, endTime–startTime, and minutesAwake
values were used as the variables representing sleep onset, sleep
offset, TST, and WASO from the Fitbit data [53]. The time of
falling asleep, waking up, and actual sleep time (AST) in the
chatbot response were compared to the Fitbit data. The
calculated sleep time, obtained by subtracting the time of falling
asleep from the time of waking up, was used as the TST, and
the AST in the chatbot response was compared with the time
obtained by subtracting the Fitbit WASO from the Fitbit TST.

For each participant, only the sleep information on the day when
both the Fitbit data and chat responses were obtained was used
and the mean value was used for each participant. To calculate
the mean of the time values, the time information was converted
into seconds; if necessary, 24 hours was added to prevent errors
and later subtracted. The mean difference (SD) was used to
compare the Fitbit data and chatbot responses, and box plots
and Bland-Altman plots were used for visualization.

To observe the response characteristics of the participants, the
values from 0 to 59 minutes were calculated in 5-minute
increments from the response time values of the participants.
Responses to the PSQI survey and Fitbit data were collected in
close proximity in units of 5 minutes. Although the number of

sleep days obtained by each participant differed, all the
frequencies of the participants were cumulatively collected.

All statistical analyses and data processing were performed in
Python (version 3.9) [54]. The PSQI survey results and chatbot
responses were exported to Microsoft Excel files and read using
the pandas tool library (version 1.5.3). Data imported from the
Fitbit server were stored in an Oracle database, separated by a
delimiter, exported as a CSV file, and read using pandas [55].
The pandas and NumPy packages (version 1.24.1) were used
for data processing [56]. Box plots were drawn using the
matplotlib library (version 3.6.3), Bland-Altman plots were
drawn using the statsmodelsPython module (version 0.13.5),
and P values were calculated using SciPy (version 1.10.0)
[57-59].

Results

Participant Selection Conditions and Demographic
Characteristics
Participants were recruited for approximately 2 years, from
October 10, 2020, to November 9, 2022. A total of 736
participants participated in this study and agreed to wear the
Fitbit device for 2 weeks. Among them, 731 (99.3%) participants
acquired the Fitbit data and collected the main sleep data defined
by the Fitbit. During the first 14-day wearing request, 589
(80.0%) participants collected sleep data for 10 or more days.
By requesting 1 or 2 weeks of additional wear, 63 (8.6%)
participants collected sleep data for 10 or more days. As a result,
652 (88.6%) participants acquired main sleep data for 10 or
more days, while 79 (10.7%) participants obtained less than 10
days of sleep data.

Of the 652 participants, 150 provided Fitbit data for 10-14 days
and 502 provided data for 15 days or more. For participants
whose data were collected for more than 14 days, only data up
to 14 days were used for the analysis (Table 1).
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Table 1. Number of days of Fitbit sleep data provided by the study participants (N=652).

Participants, n (%)Days of sleep data

5 (0.7)0 (Fitbit not worn)

79 (10.7)Less wear than requested

27 (0.4)1-3

25 (0.4)4-6

27 (0.4)7-9

150 (20.4)Worn as requested

13 (0.2)10

13 (0.2)11

20 (0.3)12

36 (0.6)13

68 (0.7)14

502 (68.2)Worn more than requesteda

75 (11.5)15

130 (19.9)16-18

92 (14.1)19-21

205 (31.4)22

aOnly data for the first 14 days were included in the analysis.

For chatbot responses, the time to go to bed, fall asleep, and
wake up should be in the order of time; however, if the response
value broke this order, it was considered an input error and
excluded. In addition, the answerable button presented by the
chatbot was set to respond to 1 of the 24 buttons from “1:00”
to “24:00”; thus, responses that were considered to be wrong
with respect to AM and PM were also excluded as input errors
after comparison with the Fitbit data. Responses with a

difference of more than 9 hours were excluded. Participants
whose chatbot responses were collected for 7 or more days on
the day the Fitbit main sleep data were collected were set as
participants who did log chatbot responses normally. Finally,
543 (73.8%) participants’ data were analyzed, excluding 109
participants whose chatbot responses were collected over less
than 7 days (Figure 2).

Figure 2. Flow of the study participants in the final analysis.
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For the chat responses, participants responded to the sleep
question sent at 9 AM in an average of 5 hours and 11 minutes,
288 (53.0%) responded within an average of 3 hours, and 505

(93.0%) responded within an average of 15 hours; 38 (7.0%)
participants responded after an average of 15 hours (Table 2).

Table 2. Average chat response times by the study participants (N=543).

After 15 hWithin 15 hWithin 12 hWithin 9 hWithin 6 hWithin 3 hVariable

38 (7.0)11 (2.0)38 (7.0)63 (11.6)105 (19.3)288 (53.0)Number of participants (%)

543 (100.0)505 (93.0)494 (91.0)456 (84.0)393 (72.4)288 (53.0)Cumulative number of participants (%)

Based on the PSQI total score, the 543 participants were divided
into a good sleep group (5 points or less) and poor sleep group
(more than 5 points). There were 318 (58.6%) participants in
the good sleep group and 215 (39.6%) in the poor sleep group;
this classification could not be made for 10 participants or the
participants did not respond correctly to the questions. The
breakdown of participants classified in each sleep group

according to demographic characteristics is shown in Table 3.
The majority of the participants were women; in terms of age,
the greatest proportion were in their 40s, followed by 50s and
30s. According to BMI, most of the participants were in the
normal group, preobese group, or obesity class I group; the BMI
classification followed the Korean Society for the Study of
Obesity Guidelines [60].

Table 3. Demographics of the analyzed participants and distribution of the Pittsburgh Sleep Quality Index sleep groups.

Not classified, n (%)Poor sleep group, n (%)Good sleep group, n (%)Total, n (%)Characteristics

10 (1.8)215 (39.6)318 (58.6)543 (100.0)All participants

Gender

1 (0.6)53 (34.2)101 (65.2)155 (28.5)Men

9 (2.3)162 (41.8)217 (55.9)388 (71.5)Women

Age (decade)

1 (0.9)43 (37.4)71 (61.7)115 (21.2)30s

4 (1.5)97 (37.5)158 (61.0)259 (47.7)40s

5 (3.0)75 (44.4)89 (52.7)169 (31.1)50s

BMI

0 (0.0)3 (42.9)4 (57.1)7 (1.3)Underweight, <18.5

2 (1.0)84 (41.0)119 (58.0)205 (37.8)Normal, 18.5-22.9

2 (1.6)52 (40.0)75 (58.1)129 (23.8)Preobese, 23-24.9

6 (3.7)62 (38.3)94 (58.0)162 (29.8)Obesity class I, 25.0-29.9

0 (0.0)14 (35.0)26 (65.0)40 (7.4)Obesity class II, ≥30

Time Response Characteristics for the PSQI Survey
and Chatbot Responses
The frequency was calculated for the minute values of the time
data of the PSQI survey, chatbot conversations, and Fitbit data.
The time data represent the time participants went to bed, time
they fell asleep, time they woke up, and AST. However, the
time taken to fall asleep in the PSQI survey was calculated by
adding the time taken to fall asleep to the time of going to bed,
and the AST of the Fitbit was obtained by subtracting WASO
from the TST. For the PSQI responses, 533 cases were analyzed
once per participant and 6276 cases, representing all sleeps of
the 543 participants, were analyzed for chatbot responses and
Fitbit data.

The proportion of respondents answering the questions related
to sleep variables in the PSQI survey, chatbot, and recorded by

Fitbit on the hour or in 30-minute intervals are presented in
Table 4. The response distribution broken down per 5 minutes
of participant data is shown in Figure 3. In the PSQI survey,
most of the participants provided answers for the time they went
to bed, followed by the actual sleep time and time they woke
up, whereas only slightly more than one-third of participants
provided the time they fell asleep. The percentages of
participants responding to these questions in conversations with
the chatbot were all much lower than those given on the PSQI
survey, ranging from 33.2% for the time they fell asleep to
57.6% for the actual sleep time. Most respondents provided
answers in 60- or 30-minute intervals; therefore, the lower
response rate for falling asleep might be due to the fact that the
PSQI adds the time taken to fall asleep to the time participants
went to bed. The Fitbit data excluded the time when the
participants went to bed; unlike the participants’ responses,
similar levels of data were collected for each time period.
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Table 4. Sleep data in 30- and 60-minute increments for Pittsburg Sleep Quality Index (PSQI) surveys, conversations with the chatbot, and acquired
with the Fitbit.

Fitbit (N=6276), n (%)Chatbot (N=6276), n (%)aPSQI survey (N=533), n (%)Variable

N/Ab3192 (50.9)513 (95.9)Time went to bed

1045 (16.7)2078 (33.1)176 (32.9)Time fell asleep

1254 (20.0)2551 (40.6)433 (81.0)Time woke up

1022 (16.3)3616 (57.6)463 (86.6)Actual sleep time

aThese values represent the predictable aspects of chatbot design. If the sliding interface is difficult to use, the user is also likely to leave it at 0 minutes.
bN/A: not applicable.

Figure 3. Response distribution per 5 minutes of participant data in (A) the Pittsburg Sleep Quality Index (PSQI) survey, (B) conversations with the
chatbot, and (C) Fitbit data.

Differences Between Chatbot Responses and Fitbit
Data
The response distribution of participants for chatbot
conversations and Fitbit data is shown in Figure 4 and Table 5.
The average time the participants fell asleep by processing the
chatbot conversation was 12:28:21 AM with an SD-1.96 of the
difference of 65 minutes. The average time they woke up was

7:22:01 AM and the SD-1.96 was 62 minutes. The average TST
calculated from the two times was 6 hours and 53 minutes (SD
49 minutes). The average time the participants fell asleep
obtained by processing the Fitbit data was 12:19:42 AM (SD
70 minutes), the average time they woke up was 7:27:40 AM
(SD 68 minutes), and the average TST calculated from the two
times was 7 hours and 8 minutes (SD 53 minutes).

Figure 4. Participants’ sleep distribution obtained by chatbot conversations and Fitbit data for (A) sleep onset, (B) sleep offset, and (C) chat AST and
Fitbit TST-WASO. AST: actual sleep time; TST-WASO: total sleep time-wakefulness after sleep onset.
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Table 5. Time (hour:minute:second) of falling asleep, waking up, and sleep time obtained from chatbot conversations compared to Fitbit data.

Difference, mean (SD 1.96)Fitbit, mean (SD)Chatbot, mean (SD)Variable

–0:08:39 (58.1)12:19:42 AM (69.7 min)12:28:21 AM (65.1 min)Sleep onset

0:05:38 (57.1)7:27:40 AM (68.4 min)7:22:01 AM (62.3 min)Sleep off

0:14:17 (78.1)7:07:58 AM (52.8 min)6:53:41 AM (48.9 min)TSTa

–0:13:39 (87.0)6:10:06 AM (45.5 min)6:23:45 (51.5 min)ASTb/TST-WASOc

aTST: total sleep time (sleep off–sleep on).
bAST: chatbot actual sleep time.
cTST-WASO: Fitbit total sleep time-wakefulness after sleep onset.

The average AST answered by participants in the chatbot
conversations was 6 hours and 24 minutes, which was 30
minutes shorter than the chat TST calculated by subtracting
sleep onset from sleep offset and 44 minutes shorter than the
Fitbit TST. Compared with the time minus WASO, the response
time was 14 minutes longer. The mean difference between
chatbot TST and AST was approximately 30 minutes and the
average Fitbit WASO was approximately 58 minutes. The mean
difference is a comparison between the Fitbit data and chat

responses. In the case of sleep onset or offset, a negative value
indicates a chatbot response in time later than the Fitbit and a
positive value indicates a chatbot response in time earlier than
the Fitbit. In the case of the chatbot TST or AST, a negative
value indicated a longer time than the Fitbit and a positive value
indicated a shorter time than the Fitbit (Table 5).

Bland-Altman statistics and plots comparing the Fitbit and
chatbot responses are shown in Table 6 and Figure 5,
respectively.

Table 6. Bland-Altman statistics for Fitbit and chatbot responses.

P valuebUpper LoALower LoAaFitbit–chatbot, meanVariable

.0449.5–66.8–8.6Sleep onset

.1662.7–51.45.6Sleep off

<.00173.3–100.6–13.6TST-WASOc (ASTd)

aLoA: limit of agreement (SD 1.96).
bP values calculated from paired t tests.
cTST-WASO: Fitbit total sleep time (sleep off–sleep onset)-wakefulness after sleep onset.
dAST: Chatbot actual sleep time.

Figure 5. Bland-Altman plots for the time of falling asleep, waking up, and actual sleep time. The x-axis displays the Fitbit variables and the y-axis
denotes the chatbot response differences based on Fitbit data. (A) Sleep onset, (B) sleep offset, and (C) chatbot AST compared to Fitbit TST-WASO.
AST: actual sleep time; TST-WASO: total sleep time-wakefulness after sleep onset.
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Difference Between Chat AST and Fitbit TST-WASO
According to the PSQI Survey and Demographic
Information
According to the results of the PSQI survey analysis and the
demographic classification, the mean values of chatbot TST
and AST of participants by group (good sleep and poor sleep)
were compared with the mean values of Fitbit TST and
TST-WASO (Table 7). The results of the PSQI survey showed
that the Fitbit measurement TST-WASO of the two groups was
similar; however, the good sleep group responded to the AST
for a relatively longer time than the poor sleep group. The AST

levels in chats were similar for men and women, although the
Fitbit TST or Fitbit TST-WASO was longer for women. By
age, the TST-WASO measured by Fitbit was similar, although
participants in their 30s and 40s indicated a longer AST than
those in their 50s. There was no significant difference according
to BMI, although the normal BMI group measured and
responded to the AST longer, whereas the obese class I group
measured and responded to the AST for relatively shorter
periods. The number of participants in the underweight and
obese class II groups was too small for comparison. The mean
Fitbit WASO was 56 to 60 minutes (SD 21-24) in all groups.

Table 7. Mean differences in sleep variables determined by the chatbot and Fitbit according to sleep groups and demographic characteristics.

DifferenceFitbitChatbotVariables

TST-WA-
SO–AST (min),
mean (SD)

Fitbit–chatbot
TST (min),
mean (SD)

TST-WASOc

(h:min), mean
(1.96 SD)

TST (h:min),
mean (1.96 SD)

Difference
(min), mean
(SD)

ASTb (h:min),
mean (SD 1.96)

TSTa (h:min),
mean (SD 1.96)

PSQId

–21 (66)11 (68)6:12 (43)7:10 (51)–25 (61)6:34 (45)6:59 (47)Good sleep
(n=318)

–2 (108)18 (91)6:0 (49)7:04 (56)–37 (77)6:09 (58)6:46 (52)Poor sleep (n=215)

Gender

–26 (68)3 (70)5:58 (42)6:56 (49)–30 (51)6:23 (45)6:53 (44)Men (n=155)

–9 (92)19 (79)6:1 (46)7:13 (54)–30 (75)6:24 (54)6:54 (51)Women (n=388)

Age (decade)

–16 (71)4 (73)6:11 (50)7:07 (57)–35 (54)6:27 (49)7:03 (49)30s (n=115)

–15 (84)16 (73)6:10 (45)7:08 (52)–26 (71)6:26 (48)6:52 (48)40s (n=259)

–9 (100)19 (86)6:09 (43)7:09 (51)–32 (73)6:18 (58)6:50 (50)50s (n=169)

BMI (kg/m2)

16 (124)45 (159)6:55 (62)7:59 (77)–35 (41)6:39 (31)7:14 (37)Underweight,
<18.5 (n=7)

–10 (90)20 (76)6:22 (44)7:21 (51)–29 (66)6:32 (53)7:01 (49)Normal, 18.5-22.9
(n=205)

–16 (74)13 (64)6:06 (42)7:03 (50)–28 (80)6:22 (48)6:50 (51)Preobese, 23-24.9
(n=129)

–16 (93)9 (82)6:00 (45)6:58 (52)–33 (66)6:16 (54)6:49 (47)Obesity class I,
25.0-29.9 (n=162)

–22 (65)6 (81)5:54 (42)6:51 (48)–30 (55)6:15 (43)6:45 (46)Obesity class II,
≥30 (n=40)

aTST: total sleep time.
bAST: chatbot actual sleep time.
cTST-WASO: total sleep time-wakefulness after sleep onset.
dPSQI: Pittsburgh Sleep Quality Index.

The Bland-Altman statistics and plots for these comparisons
are presented in Table 8 and Figure 6, respectively. The poor
sleep group responded with chatbot responses that statistically

matched Fitbit data, while the good sleep group reported
sleeping longer than the Fitbit data.
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Table 8. Bland-Altman statistics in sleep variables determined by the chatbot and Fitbit according to sleep groups and demographic characteristics.

P valuedUpper LoA (minutes)Lower LoAc (minutes)TST-WASOa–ASTb (min-
utes), mean difference

Variables

PSQIe

<.00144.7–87.2–21.4Good sleep (n=318)

.66105.9–110.5–2.3Poor sleep (n=215)

Gender

<.00142.3–93.9–25.8Men (n=155)

.0283.0–100.6–8.8Women (n=388)

Age (decade)

.0154.8–87.0–16.130s (n=115)

<.00168.8–99.7–15.540s (n=259)

.1090.3–108.7–9.250s (n=169)

BMI (kg/m2)

.59139.4–107.815.8Underweight, <18.5 (n=7)

.0479.7–100.0–10.2Normal, 18.5-22.9 (n=205)

.00558.6–90.3–15.9Preobese, 23-24.9 (n=129)

.00577.8–109.0–15.6Obesity class I, 25.0-29.9 (n=162)

.0343.8–86.8–21.5Obesity class II, ≥30 (n=40)

aTST-WASO: Fitbit total sleep time-wakefulness after sleep onset.
bAST: chatbot actual sleep time.
cLoA: limit of agreement; 1.96 times the SD around the bias.
dP values calculated by paired t tests.
ePSQI: Pittsburgh Sleep Quality Index.
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Figure 6. Bland-Altman plots for the Fitbit TST-WASO and the chatbot AST. The x-axis displays the Fitbit TST-WASO and the y-axis denotes the
chatbot response differences based on Fitbit data. (A) Good sleep group, (B) poor sleep group; (C) men, (D) women; (E) 30s age group, (F) 40s age
group, (G) 50s age group; (H) normal BMI, (I) preobese, (J) obesity class I. TST-WASO: Fitbit total sleep time-wakefulness after sleep onset; AST:
chatbot actual sleep time.

Differences According to Chatbot Responses for Sleep
Quality
For the chatbot responses, the days on which the participants
responded “Very good” or “Quite good” for the quality of sleep
the previous night were considered good sleep and the days on
which they responded “Very poor” or “Quite poor” were
considered poor sleep. The mean AST for good sleep responses

was longer than that of the Fitbit data, and both the AST
response and TST-WASO measured by the Fitbit were longer
than those of the chatbot. Both the mean value of AST chatbot
responses and Fitbit-measured TST-WASO of the poor sleep
group were relatively short. The Fitbit WASO was 58 (SD 24)
minutes for the good sleep group and was 57 (SD 35) minutes
for the poor sleep group (Table 9).
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Table 9. Mean differences between chatbot and Fitbit sleep data according to chatbot sleep quality responses.

DifferenceFitbitChatbotSleep quality

TST-WASO–AST,
mean (SD 1.96)

Fitbit TST–chatbot
TST, mean (SD
1.96)

TST-WA-

SOc (h:min),
mean (SD)

TST (h:min),
mean (SD)

Difference,
mean (SD
1.96)

ASTb

(h:min),
mean (SD)

TSTa

(h:min),
mean (SD)

–19 (90)13 (84)6:24 (50)7:22 (58)–26 (88)6:43 (55)7:09 (52)Good sleeps (n=524, 4380
nights)

3 (151)17 (152)5:42 (75)6:39 (88)–43 (121)5:40 (76)6:23 (78)Poor sleeps (n=432, 1896
nights)

aTST: total sleep time.
bAST: chatbot actual sleep time.
cTST-WASO: total sleep time-wakefulness after sleep onset.

Table 10 and Figure 7 show the Bland-Altman statistics and
plots, respectively. Participants who responded with poor sleeps
received chatbot responses that matched the Fitbit data, whereas

those who responded with good sleeps reported sleeping longer
than recorded in the Fitbit data.

Table 10. Bland-Altman statistics comparing sleep time according to sleep quality responses in the chatbot.

P valuedUpper LoA (min-
utes)

Lower LoAc (minutes)Fitbit TST-WASOa–chatbot ASTb

(minutes)

Sleep quality

<.00170.5–108.9–19.2Good sleeps (n=524, 4380 nights)

.63153.9–148.82.5Poor sleeps (n=432, 1896 nights)

aTST-WASO: Fitbit total sleep time-wakefulness after sleep onset.
bAST: chatbot actual sleep time.
cLoA: limit of agreement; 1.96 SD around the bias.
dP values are based on paired t tests.

Figure 7. Bland-Altman plots for the Fitbit TST-WASO and the chatbot AST. The x-axis displays the Fitbit TST-WASO and the y-axis denotes the
chatbot response differences based on Fitbit data. (A) good sleeps, (B) poor sleeps. AST: chatbot actual sleep time; TST-WASO: Fitbit total sleep
time-wakefulness after sleep onset.

Comparison of Fitbit TST and TST-WASO to the
Participants’ Responses
To determine the probability of representing user responses
using Fitbit data, we counted the number of sleeps in which the
difference between the chatbot and Fitbit TST values was less
than 30 minutes. In only 3483 (55.5%) of 6276 sleeps, the

participants’chat and Fitbit TST values were within 30 minutes,
and only 59.0% was covered even when modified with the mean
difference and quality of sleep information revealed in the
previous statistics. For chat AST and Fitbit TST-WASO, less
sleep was within 30 min. Even if we expanded the period to
less than 60 minutes, only approximately 74% of sleeps were
applicable (Table 11).
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Table 11. Comparison of Fitbit and chatbot sleep times.

Chat ASTb and Fitbit TST-WASOcChat TSTa and Fitbit TSTVariable

Mean difference
by QoS

Mean differ-
ence

NoneMean difference

by QoSd
Mean differ-
ence

NoneUsed variables

3180 (50.7)3174 (50.6)2960 (47.2)3681 (58.7)3,701 (59.0)3483 (55.5)Number of sleeps within ±30 min (%)

4661 (74.3)4658 (74.2)4514 (71.9)4808 (76.6)4816 (76.7)4711 (75.1)Number of sleeps within ±60 min (%)

aTST: total sleep time.
bAST: chatbot actual sleep time.
cWASO: wakefulness after sleep onset.
dQoS: quality of sleep.

Discussion

Principal Results
Whether the Fitbit was worn well for the requested 14 days was
based on whether sleep data were collected for more than 10
days. Of the 736 participants who wished to participate in the
study, 589 (80.0%) provided their data when first requested and
63 (8.6%) provided their data in response to the second request.
The data of 543 (73.8%) participants were analyzed by limiting
the number of participants who responded to chats and wore
the Fitbit together for more than 7 days. In the case of chatbot
responses, on average, participants responded within 5 hours
and 11 minutes after the chat was delivered, with 53.0% of the
543 participants responding within 3 hours and a cumulative
91.0% responding within 12 hours.

In the Fitbit data, the distribution of data in 5-minute increments
was uniform, but in the case of responses to the PSQI survey
or chatbot conversations, participants had a high tendency to
respond on the hour and in 30-minute increments.

The mean difference between the participants’ responses on
sleep onset and sleep offset and their Fitbit data was within 10
minutes, indicating that each participant responded earlier or
later within the range of up to 60 minutes compared to the Fitbit
data. The mean difference in the TST was approximately 14
minutes longer for the Fitbit data. Considering that Fitbit
calculates the TST by 9 minutes more and SOL by 4 minutes
more, the TST of the participants, Fitbit data, and sleep diary
collected through chatbot conversations were found to be quite
consistent on average. However, there was a deviation of up to
80 minutes depending on the participant because of the tendency
to respond in units of 30 minutes, perception of time according
to the participant, and accuracy of the response accordingly.

The AST of the participants’ responses was similar to the time
obtained by subtracting WASO from the TST of the Fitbit data.
On average, the AST was answered 14 minutes longer than the
TST-WASO of the Fitbit data and each participant showed a
maximum deviation of approximately 90 minutes.

In the PSQI survey, participants were asked to describe their
sleep status the month before the chatbot conversation started.
When participants were divided into the good and poor sleep
groups, the sleep time measured by the Fitbit was similar,
although the AST of the good sleep group was longer than that
of the poor sleep group. By gender, men and women responded

similarly to the AST in chatbot responses, although the sleep
time measured by the Fitbit was longer in women. In addition,
the TST-WASO measured by Fitbit was similar according to
age group; however, the ASTs for participants in their 30s and
40s were longer than those of participants in their 50s. There
was no significant difference according to BMI, although the
chat AST and the Fitbit TST-WASO of the normal BMI group
were longer than those of the obesity class I group.

For the chatbot responses, when we compared the sleep data
answered as good sleep to those answered as poor sleep, both
the AST and the TST-WASO values for the good sleep group
were longer than those for the poor sleep group. The AST for
responses corresponding to poor sleep was almost the same as
the TST-WASO.

On average for all participants, the chat response and the Fitbit
data seemed to match; however, the Fitbit data could not
represent the participants’ responses due to the individual
differences of the participants. When tested within 30 minutes
and within 60 minutes, the probability that the participant’s
response was close to the Fitbit recorded data was in the 50%
and 70% range, respectively.

Limitations
Changes in Fitbit’s algorithm were not considered in this study.
A Fitbit product of the same name was used; however, possible
changes to the hardware or software were not considered. In
addition, we cannot guarantee that the study participants wore
their Fitbits and responded to the chatbot themselves, and a
confirmation process for this was not included in the analysis.
Sleep determined by the Fitbit was targeted as the main sleep
source, and differences in sleep due to naps or occupational
characteristics were not considered. We also did not take into
account whether the Fitbit was worn on the participant’s
dominant wrist, which could affect accuracy.

As a result of obtaining the mean difference between the Fitbit
data and chatbot responses by sequentially increasing the
number of days from the 1st to the 14th, the change in the mean
difference according to the period was sufficiently small after
approximately 7 days. Using data from at least 7 days was
considered appropriate for analysis of the mean difference and
SD. Considering the fatigue from continuous Fitbit wear and
repeated chatting, only data from up to 14 days were used in
this analysis.
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In the chatbot response, if the participants fell asleep earlier
than the time they went to bed or the time they woke up was
earlier than the time they went to bed or fell asleep, it was
regarded as an input error and was excluded. The difference
between the Fitbit-measured time and reply time was very large,
at approximately 12 hours, and data that could be seen as AM
and PM input errors were also excluded as errors. Therefore, it
is necessary to supplement the user interface to prevent user
input errors. Since we did not implement a slider-like interface
that allows minute input with a single touch, we did not receive
every minute input. Depending on the chatbot interface, the
results may vary to some extent.

The PSQI survey was conducted on sleep status during the
month before the Fitbit and chatbot conversations. Under the
premise that the sleep information obtained through the PSQI
survey did not change rapidly, it was expected that the sleep
state, based on analysis of the PSQI survey, would be applied
for the next month; thus, sleep states that could not be reflected
based on this assumption were not considered.

However, previous studies have shown high test-retest reliability
of the PSQI. One study found that within-class correlations
ranged from 0.709 to 0.813 in a retest with 30 health care
workers after 2 weeks, when reliability was considered
acceptable if within-class correlations were greater than 0.70
[61]. Various studies have also demonstrated high test-retest
reliability of the PSQI score after 2 days or 2 to 4 weeks [62-66].

Conclusions
There was a greater tendency to respond in 30-minute
increments in the PSQI survey asking about the status of the
past month than in the chatbot conversation asking about daily
status. This tendency can be large when asking about the average
value of past periods, which are difficult to specify, and small
when asking about daily values. In addition, because this
tendency is relatively small at the time of falling asleep or
waking up, it can be expected to be smaller when asking about
the easy-to-remember value for each day. This tendency may
be greater in questions about situations that are difficult to
remember or specify, such as when you went to bed and for
how long you were actually asleep.

The results did not change when only the sleep data for which
the chat response time was answered within 6 and 12 hours
were used to determine whether the time taken to respond to
the chatbot was related to the correct answer. There was no

significant difference between the previous day’s sleep
information answered in the morning after waking up and sleep
information answered in the afternoon or evening. To reduce
the causes of large interindividual variation, it is necessary to
include methods that can help the process by requiring clearer
queries and more accurate answers.

When the chatbot responses were compared with the
sleep-related times obtained from the study participants’ Fitbit
data, the mean difference for all participants was approximately
10 minutes. Considering the response rate at 30-minute intervals
in chatbot responses, it can be considered that participants’
responses, on average, represented sleep time information
similar to that recorded by Fitbit. Considering the distribution
of PSQI sleep quality and the demographic characteristics of
the study participants, the AST subjectively assessed by the
participants was relatively longer than the Fitbit TST-WASO
in the group with good sleep quality than in the group with poor
sleep quality.

Depending on the participant, there was a deviation of up to
60-90 minutes, and it was difficult to predict whether the
individual response time was earlier or later than the Fitbit data
or whether the response time was short or long. This deviation
may occur because each user’s sleep characteristics and response
tendencies in chatbot conversations are different. It was also
difficult to predict whether these differences were related to the
perception of waking time during sleep, depth of sleep, or
quality of sleep. It may be meaningful to provide this
information or to clarify the difference between people who
sleep for short periods but feel that they had good-quality sleep
and people who sleep for long periods but feel that they had
poor-quality sleep. It would be essential to analyze whether
individuals with deep sleep patterns tend to report shorter sleep
durations and whether those with shallow sleep patterns tend
to report longer sleep durations to achieve similar levels of
satisfaction.

If an individual’s perceived sleep time is important, their report
will still be meaningful, and if their cooperation is possible,
daily diary reporting will be effective. In addition, it is expected
that conversations through chatbots will be able to obtain this
information efficiently. To provide a clearer conclusion on the
difference in user perception, it is necessary to improve the
quality of sleep or depth recognition performance of wearables
and to establish appropriate methods to reduce the deviation in
user responses.
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Abbreviations
AST: actual sleep time
PSG: polysomnography
PSQI: Pittsburgh Sleep Quality Index
SOL: sleep onset latency
TST: total sleep time
WASO: wakefulness after sleep onset
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