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Abstract
Background: Physical activity plays a crucial role in maintaining a healthy lifestyle, and wrist-worn wearables, such as
smartwatches and smart bands, have become popular tools for measuring activity levels in daily life. However, studies on
physical activity using wearable devices have limitations; for example, these studies often rely on a single device model or use
improper clustering methods to analyze the wearable data that are extracted from wearable devices.
Objective: This study aimed to identify methods suitable for analyzing wearable data and determining daily physical activity
patterns. This study also explored the association between these physical activity patterns and health risk factors.
Methods: People aged >30 years who had metabolic syndrome risk factors and were using their own wrist-worn devices
were included in this study. We collected personal health data through a web-based survey and measured physical activity
levels using wrist-worn wearables over the course of 1 week. The Time-Series Anytime Density Peak (TADPole) clustering
method, which is a novel time-series method proposed recently, was used to identify the physical activity patterns of study
participants. Additionally, we defined physical activity pattern groups based on the similarity of physical activity patterns
between weekdays and weekends. We used the χ2 or Fisher exact test for categorical variables and the 2-tailed t test for
numerical variables to find significant differences between physical activity pattern groups. Logistic regression models were
used to analyze the relationship between activity patterns and health risk factors.
Results: A total of 47 participants were included in the analysis, generating a total of 329 person-days of data. We identified 2
different types of physical activity patterns (early bird pattern and night owl pattern) for weekdays and weekends. The physical
activity levels of early birds were less than that of night owls on both weekdays and weekends. Additionally, participants
were categorized into stable and shifting groups based on the similarity of physical activity patterns between weekdays and
weekends. The physical activity pattern groups showed significant differences depending on age (P=.004) and daily energy
expenditure (P<.001 for weekdays; P=.003 for weekends). Logistic regression analysis revealed a significant association
between older age (≥40 y) and shifting physical activity patterns (odds ratio 8.68, 95% CI 1.95-48.85; P=.007).
Conclusions: This study overcomes the limitations of previous studies by using various models of wrist-worn wearables and
a novel time-series clustering method. Our findings suggested that age significantly influenced physical activity patterns. It
also suggests a potential role of the TADPole clustering method in the analysis of large and multidimensional data, such as
wearable data.
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Introduction
Physical activity has been linked to numerous health benefits.
A cross-sectional study conducted in Japan reported that
inactive individuals with <23 metabolic equivalent (MET)
hours per week had more than double the risk of meta-
bolic syndrome compared to active individuals (≥23 MET
h/wk) [1]. Another study used X-means clustering to identify
intensity and temporal activity patterns and demonstrated
that inactive individuals had a 3-fold higher risk of car-
diovascular disease compared to active individuals [2]. A
systematic review also suggested that increased physical
activity correlates with improved health status [3]. Addition-
ally, a meta-analysis by Pearce et al [4] found that adults
who achieved the recommended physical activity level (4.4
marginal MET h/wk) had a 25% lower risk of depression
compared to inactive adults.

Wrist-worn wearables, such as smartwatches and smart
bands equipped with computers and sensors, have become
popular tools for measuring physical activity [5,6]. Most
individuals opt to wear wrist-worn wearables for several
reasons, including affordability, functionality, and stylish
design [7]. This has enabled the measurement of physical
activity in daily life rather than being limited to the labo-
ratory setting. There have also been notable improvements
in the accuracy of measurements obtained from wrist-worn
wearables [8,9]. As a result, an increasing number of studies
are focusing on measuring and analyzing physical activity
using wrist-worn devices [7].

Several studies are currently exploring different aspects
of physical activity using wrist-worn devices. These include
investigations of the accuracy of these devices [8,9], the
relationship between physical activity and personal character-
istics [2,10], the impact of interventions using wrist-worn
wearables [11,12], and behavior prediction [13-15]. Some
studies have also sought to identify physical activity patterns
using data collected from wrist-worn wearables [2,16-20].
However, it is important to note that these studies have
certain limitations.

The diversity of wearable device models poses a challenge
for observational studies using wearables within a population.
Most previous studies either provided the participants with a
specific device model or restricted participation to individ-
uals using a particular model [21-23]. However, wearable
device models are continuously evolving to cater to individ-
ual preferences. Furthermore, each model has its own app,
which extracts data in a specific format. Consequently, there
is a need for flexible methods that can effectively analyze
essential information derived from diverse forms of wearable
data.

Grouping methods, such as principal component anal-
ysis [16-18] and k-means clustering [2,19,20], have com-
monly been used to identify similarities among participants

and summarize activity patterns within groups. Time-series
analysis methods can also be used to classify daily activity
patterns. However, previous studies using popular clustering
methods have shown sensitivity to minor variations in data
formats, resulting in inconsistent outcomes.

The k-means clustering method is a kind of partitional
clustering method [24]. This clustering method is easy to
implement and successfully distinguishes clusters using data
from all participants, with low computational cost [20,24].
Therefore, it can be applied to large and multidimensional
data. However, the number of clusters (parameter k) had to be
predefined, because the parameter k is not commonly known;
therefore, iterative analysis is required to get the optimal
number of clusters. The X-means clustering mentioned above
is also a type of k-means clustering and is a clustering method
that automatically finds the number of clusters by taking the
disadvantage of k-means into consideration [2]. In addition,
the k-means clustering method provides unstable results due
to its random selection of the initial centroid [24].

The hierarchical clustering method and Density-Based
Spatial Clustering of Applications With Noise (DBSCAN)
are also popular time-series clustering methods [19,20]. The
hierarchical clustering method is a method of classifying
clusters based on the hierarchical structure of data and
basically considers 1 time series as 1 cluster [20,24]. The
hierarchical clustering method has the advantage of visualiz-
ing the hierarchical structure of data, because it shows the
hierarchical structure as a tree (ie, a dendrogram). However,
its computational cost is high, and a significant number of
data points must be excluded from the analysis to obtain
the desired number of clusters, raising uncertainties about
the accuracy of the resulting clusters [24]. DBSCAN is a
density-based clustering method that calculates the density
of data based on the Euclidean distance calculation method
and excludes data considered as noise from clustering.
However, as shown in a study by Dobbins and Rawassiza-
deh [20], DBSCAN has the highest computational cost, and
the Euclidean method applied to DBSCAN is not suitable
for multidimensional data. Thus, the hierarchical clustering
method and DBSCAN are not feasible for large or multidi-
mensional data.

A more flexible time-series clustering method called
Time-Series Anytime Density Peak (TADPole) clustering has
recently been proposed [24,25]. This is an algorithm that
can perform fast clustering by reducing the distance calcu-
lation process in the Density Peak clustering method. This
method uses dynamic time warping to calculate distances
between series. Unlike the Euclidean method, which matches
data at the same points across a series, this method identi-
fies optimal warping paths between series to identify better
point-to-point matches except for the first and last points. The
prototype for TADPole clustering is partition around medoid
clustering, which creates clusters by minimizing the sum of
distances calculated based on an arbitrary series (ie, medoid)
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[24]. TADPole clustering classifies series as neighbors if the
distance between them is below a certain cutoff value [24,25].
Theoretical and technical details are readily accessible in the
previous literature [24,25] and thus are not repeated here.

The TADPole clustering algorithm can cluster multidimen-
sional data measured by wearable devices as well as large
data [25]. In this study, we chose the TADPole clustering
method to test whether it can be effectively applied to
wearable data, which was not addressed in its published
paper [25]. To the best of our knowledge, this novel
approach has not yet been applied to the study of health
indicators measured using wearable devices. Therefore, this
study assessed the feasibility of using a time-series clustering
method to analyze wearable data for daily physical activity
patterns and explored the association between these patterns
and health risk factors.

Methods
Study Participants
This study examined physical activity patterns among
at-risk individuals using wrist-worn wearables. Step counts,
distances, and energy expenditure (EE) were measured over
1 week in a real-life setting between November 22, 2021,
and December 2, 2021. Participants aged >30 years who
had risk factors based on metabolic syndrome diagnostic
criteria and were currently using wrist-worn devices (eg,
smartwatches and smart bands) were included. The risk
factors included blood pressure ≥130/85 mm Hg, fasting
blood sugar ≥100 mg/dL, triglyceride levels ≥150 mg/dL,
high-density lipoprotein level <40 or <50 mg/dL (for male
and female individuals, respectively), and waist circumfer-
ence ≥90 or ≥85 cm (for male and female individuals,
respectively). The number of study participants was selected
based on the analysis results using G*Power (Heinrich Heine
Universität Düsseldorf) and previous similar research cases.
First, we used G*Power to perform an ANOVA because the
data of the study participants would be measured repeatedly.
The effect size (Cohen f) was set to be 0.25, and the signifi-
cance level (α) and power (1 – β) were assumed to be 5%
and 95%, respectively. As a result, a total sample size of
36 was calculated. Next, we considered the previous work
by Huh et al [26], which applied wearable technology to
patients with metabolic syndrome and recruited a total of
53 people. However, 33 patients dropped out during the
12-week study period due to the withdrawal of consent,
device malfunction, and the loss of follow-up. We finally
decided to recruit 60 study participants to achieve a suffi-
cient effect. We used the Seoul National University mailing
system to recruit research participants. Starting on November
3, 2021, we sent 2 emails to all members of the university;
this lasted until November 19, 2021, when the recruitment
was completed. The purpose of the study, eligibility criteria
for study participants, and research procedures were provided
via email. A detailed explanation of the study was provided
in a web-based meeting after all written informed consent
was obtained. Before physical activity measurements, all
participants completed a web-based questionnaire through

Google Forms, which collected personal health data and
details about their physical activity (including type, intensity,
and duration). The participants wore their own wrist-worn
wearables for ≥10 hours per day with the physical activity
measurement function activated for 1 week.

Following the 1-week period of physical activity meas-
urements, the participants were asked to complete another
web-based questionnaire to assess user experience, including
cognition, context, applicability, and behavioral changes. Of
the 60 participants initially included in the study, 13 were
excluded due to missing or limited baseline data (n=3) or
the unavailability of physical activity data from the database
(n=10). Consequently, the analysis involved 47 participants
who met the inclusion criteria and had data available for
analysis.
Data Collection
During the 7-day measurement period, the participants
activated the measurement function on their wrist-worn
wearables, generating a total of 329 person-days of data.
The study included wrist-worn wearables from the Apple
Watch, Samsung Galaxy Watch, and Xiaomi Mi Band series
(Multimedia Appendix 1). Data were collected continu-
ously throughout the measurement period, with each device
automatically storing individual data and synchronizing it
with the participants’ cell phones.

Upon the completion of the measurement period, each
participant exported their individual data through the official
data export system and submitted the data via email. We
provided the participants with detailed instructions specific
to the manufacturer, version, and brand of their wrist-
worn wearables. We then decompressed the data files and
preprocessed the data to extract the selected variables,
including step count, distance, EE, and duration with the start
and end points. These variables were then merged into a
unified data format for analysis.
Time-Series Clustering
The time-series clustering method was applied in 3 steps to
identify clusters representing the physical activity patterns
of the study participants. First, due to variations in data
recording formats among the different wrist-worn device
brands, the data were edited to ensure consistency. Data
from different brands were standardized into the same format.
For instance, the Samsung Galaxy Watch series record EE
as “kcal per minute” during wearing, whereas the Apple
Watch and Xiaomi Mi Band series record EE as “cal” and
“kcal,” respectively, for each distinct activity. We converted
these data into 10-minute “kcal” EE values. For activities
performed for >10 minutes while wearing the Apple Watch
or Xiaomi Mi Band series, the activity duration was divided
into 10-minute intervals, assuming that a consistent amount of
energy was expended during each interval.

Second, the data were divided into weekdays (Monday
to Friday; 235 person-days) and weekends (Saturday and
Sunday; 94 person-days), with the clustering method applied
separately to each group. We calculated the average EE for
weekdays and weekends based on the daily 10-minute EE
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values. It was assumed that the EE was 0 when the participant
was not wearing the device. Figure 1 illustrates an example of
physical activity measurements for 7 person-days, with each

data point representing the EE in kcal per 10 minutes over the
course of 1 week.

Figure 1. Physical activity measurement for 1 of the participants (7 person-days).

Third, time-series clustering was conducted through TADPole
clustering, a recently developed technique that allows faster
clustering by implementing a cutoff value to determine
clusters [24,25]. To determine the optimal clustering model,
we analyzed the expected number of clusters (parameter
k) and the cutoff value. For the third step, we used the
dtwclust package in RStudio [27]. This package offers a range
of functions for conducting time-series clustering, including
the TADPole clustering method. We had to specify certain
parameters, including the cluster type, the number of clusters,
the cutoff value, and the window size. Since we chose
TADPole as the cluster type, we did not need to specify the
distance parameter. As for the cutoff value and window size,
we adjusted them based on the volume of data. Given that our
study used 144 data points, we selected values that fell below
this threshold. As the optimal number of clusters and cutoff
values were unknown, cluster evaluation was performed using
the silhouette index, which is a popular cluster validity index.
Based on the cluster evaluation, the model with the highest
silhouette index was selected as the optimal clustering model.
Statistical Analysis
The demographic characteristics of the participants, includ-
ing sex, age, work type (sitting, standing, etc), daily EE
(weekdays and weekends), physical activity changes after
using wrist-worn wearables, weekly physical activity patterns,
and number of risk factors (1 or >1), were recorded. For
categorical variables, the number and proportion for each
category were presented, along with the P value calculated
using the χ2 or Fisher exact test for variables with counts <5.
For numerical variables, mean and SD with P values were
calculated using the 2-tailed t test.

The association between weekly physical activity patterns
and participant characteristics was analyzed using a logistic

regression model. The regression model was evaluated in
terms of pseudo-R2, accuracy, Hosmer-Lemeshow goodness
of fit, and the receiver operating characteristic curve. The
results of the logistic regression were presented as odds ratios
with 95% CIs and the corresponding P values. Statistical
significance was taken as P≤.05. The statistical analyses were
performed using RStudio (version 2022.07.2+576; Posit)
[28].
Ethical Considerations
The study was approved by the Institutional Review Board
of Mokpo National University (approval MNUIRB-210625-
SB-014-01). All participants provided informed consent
before study participation. The submitted data were anony-
mized before analysis. Participants who provided data and
finished the web-based survey received a compensation of
₩100,000 (US $77.65).

Results
General Participant Characteristics
Among the 47 participants, 23 (49%) were male and 24
(51%) were female (Table 1). In terms of age, 30 (64%)
participants were aged <40 years, whereas 17 (36%) were
aged ≥40 years. The majority (n=42, 89%) of the participants
had a sedentary job. The average EE during weekdays was
223 (SD 175) kcal, whereas that on weekends was 191
(SD 164) kcal. After using wrist-worn wearables, 29 (62%)
participants reported a decrease or no change in physical
activity, whereas 18 (38%) participants reported an increase.
In terms of health risk factors, 25 (53%) participants had only
1 risk factor, whereas 22 (47%) had >1 risk factors.
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Table 1. General participant characteristics.
Variable and level Value (N=47)
Sex, n (%)

Male 23 (49)
Female 24 (51)

Age group (y), n (%)
<40 30 (64)
≥40 17 (36)

Work type, n (%)
Sitting 42 (89)
Other 5 (11)

Daily EEa (kcal), mean (SD)

Weekdays 223 (175)
Weekends 191 (164)

Change in PAb, n (%)

No change or decrease 29 (62)
Increase 18 (38)

PA pattern group, n (%)

Stable 35 (75)
Shifting 12 (25)

Number of health risk factors, n (%)
1 25 (53)
>1 22 (47)

aEE: energy expenditure.
bPA: physical activity.

Physical Activity Patterns
The time-series cluster analysis resulted in the highest
silhouette index when there were 2 clusters (k=2) for both
weekdays and weekends. Therefore, 2 clusters each were
distinguished for weekdays and weekends (Figure 2). The
left and right columns of Figure 2 represent the weekday
and weekend clusters, respectively. Each cluster included

data from at least 2 participants, and 2 distinct cluster types
were distinguished with different starting times for physical
activity. The “early bird” type (represented by blue dots in
Figure 2) initiated physical activity after 6 AM, whereas the
“night owl” type (represented by orange dots in Figure 2)
began physical activity before 6 AM.
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Figure 2. Physical activity clusters on weekdays and weekends: (A) cluster 1: “early birds” on weekdays, (B) cluster 2: “night owls” on weekdays,
(C) cluster 3: “early birds” on weekends, and (D) cluster 4: “night owls” on weekends.

Among the 37 early birds on weekdays, 57% (n=21) were
female and 76% (n=28) were in their 30s, with female
participants in their 30s accounting for the highest propor-
tion (n=18, 48%). Among the 10 night owls on weekdays,
70% (n=7) were male and 80% (n=8) were in their aged
≥40 years, and 40% (n=4) were male individuals aged ≥40
years. Weekend physical activity patterns were mostly from
early birds (n=45, 96%) regardless of sex or age. Out of the
45 early birds on weekends, 51% (n=23) were female and
64% (n=29) were in their 30s, and 40% (n=18) were female
individuals aged <40 years. There was 1 participant per sex
and age group who was a night owl on weekends, and there
was no one who was a night owl on both weekdays and
weekends.

Figure 2A shows the physical activity patterns of the 37
(79%) out of 47 participants belonging to cluster 1 (early
birds) on weekdays. Physical activity occurred between 6
AM and 8 PM, with most activities being <10 kcal (mean
2.98 kcal). Meanwhile, cluster 2 included 10 (21%) “night
owls” on weekdays (Figure 2B). Physical activity for cluster 2
typically started at midnight and ended before 4 PM. Cluster
2 also exhibited greater EE, with an average of 9.51 kcal.

During the weekends, the majority (45/47, 96%) of
participants were early birds (cluster 3; Figure 2C). Cluster
3 had an average EE of 2.94 kcal. Cluster 4 (night owls)
included only 2 (4%) participants on weekends (Figure 2D)
and demonstrated a higher EE (average 8.60 kcal).

Although the average EE was similar between early birds
and night owls, their physical activity patterns differed on
weekdays and weekends. Regardless of the cluster type,
physical activity tended to be shorter in duration on weekdays
(Figure 2A and B), becoming longer and more continuous

on weekends. Cluster 3, representing early birds on week-
ends, exhibited up to 10 consecutive physical activity periods,
which is equivalent to 100 minutes (4-8 AM; Figure 2C).
Cluster 4, representing the night owls on weekends, had the
highest total EE of 507.59 kcal and up to 16 consecutive
physical activity periods, which is equivalent to 160 minutes
(4-8 AM; Figure 2D).

Based on the analysis of physical activity patterns, 2
groups were identified: the stable group and the shifting
group. The stable group included individuals who maintained
the same physical activity pattern on weekdays and week-
ends, regardless of whether they were classified as early birds
or night owls. Among the 47 participants, 35 (74%) belonged
to the stable group, exhibiting early bird physical activity
patterns consistently throughout the week. There were no
participants belonging to both clusters 2 and 4. On the other
hand, the shifting group included individuals whose physical
activity patterns differed between weekdays and weekends.
There were 12 (26%) participants in the shifting group; 10
(21%) participants displayed an early bird pattern during
weekdays (cluster 1) but changed to the night owl pattern
on weekends (cluster 4). The remaining 2 (4%) participants
exhibited the opposite pattern, that is, a night owl pattern
during weekdays (cluster 4) and an early bird pattern on
weekends (cluster 1).

Demographic descriptive statistics for the physical activity
pattern groups, including the results of the χ2 test for
categorical variables and the t test for continuous variables,
are presented in Table 2. There were no significant differen-
ces between the physical activity pattern groups except in age
(P=.001) and EE (P<.001 for weekdays; P=.003 for week-
ends).
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Table 2. Weekly physical activity (PA) group characteristics.
Variable and level PA pattern group P value

Stable (n=35) Shifting (n=12)
Sex, n (%) .19a

Male 15 (43) 8 (67)
Female 20 (57) 4 (33)

Age group (y), n (%) .004a

<40 27 (77) 3 (25)
Work type, n (%) >.99a

Sitting 31 (89) 11 (92)
Other 4 (11) 1 (8)

Daily EEb (kcal), mean (SD)
Weekdays 169 (130) 383 (194) <.001c

Weekends 145 (100) 327 (230) .003c

PA changes, n (%) .74a

No change or decrease 21 (60) 8 (67)
Increase 14 (40) 4 (33)

Number of health risk factors, n (%) .18a

1 21 (60) 4 (33)
>1 14 (40) 8 (67)

aFisher exact test.
bEE: energy expenditure.
ct test.

Association Between Physical Activity
Patterns and Health Risk Factors
A logistic regression model was used to examine the
associations of sex, age, and the number of health risk
factors with weekly physical activity patterns (Table 3).
Logistic regression model accuracy and diagnostic results are

presented in Multimedia Appendix 1. Sex (P=.45) and the
number of health risk factors (P=.33) were not significantly
associated with the physical activity pattern. In contrast, age
showed a statistically significant association with physical
activity patterns; the higher age group had higher odds of
differences between weekday and weekend physical activity
patterns (odds ratio 8.68, 95% CI 1.95-48.85; P=.007).

Table 3. Associations between physical activity patterns and health risk factors.
Variable and level (reference) ORa (95% CI) P value
Sex: female (vs male) 0.69 (0.13-3.64) .45
Age group: ≥40 y (vs <40 y) 8.68 (1.95-48.85) .007
Number of health risk factors: >1 (vs 1) 2.21 (0.45-11.92) .33

aOR: odds ratio.

To account for the possibility of reverse causality, we
conducted another logistic regression analysis with the
number of health risk factors as the outcome variable.
Despite this adjustment, there were no significant associations
between physical activity patterns and health risk factors
(P>.99; Multimedia Appendix 1).

Discussion
Principal Findings
In this study, we assessed the effectiveness of the TAD-
Pole clustering method for identifying physical activity
patterns from wearable data. We also explored the association
between these patterns and health risk factors. We found that
physical activity patterns on weekdays and weekends were

categorized as either daytime (early bird) or nighttime (night
owl) patterns. Furthermore, 2 groups were distinguished:
1 with consistent physical activity patterns on weekdays
and weekends (stable group) and the other with different
patterns between weekdays and weekends (shifting group).
Age significantly influenced physical activity patterns.
Comparison to Prior Works
We found that physical activity patterns on weekdays and
weekends differed as age increased. Our findings shed
light on previously unaddressed or overlooked associations
between physical activity patterns and health risk factors.
Many previous studies did not report the association between
age and physical activity patterns [17,18], and this associa-
tion was reported only in a few studies [29-32]. Some of
these studies reported results consistent with our findings.
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A study by Caspersen et al [29], which analyzed physical
activity patterns according to sex and age, found that not only
inactivity but also vigorous activity increased with age. In
their study, those aged 18-29 years showed a pattern with the
lowest vigorous activity and the highest sustained physical
activity, whereas those aged ≥75 years showed a pattern with
the highest vigorous activity and the lowest sustained physical
activity, indicating differences in physical activity patterns
by age. Another study by Rossen et al [32], which analyzed
the physical activity patterns of individuals with diabetes for
2 years, found that the younger the age, the more physical
activity increased 2 years later, showing that physical activity
patterns can vary depending on age.

The physical activity patterns identified in our study were
similar to chronotypes, which categorize individuals into
morning type (M-type), evening type (E-type), and inter-
mediate type (N-type) based on their preferred timings of
activities and sleep [33]. M-type individuals are typically
early birds, whereas E-type individuals are night owls who
prefer late activity and sleep schedules. N-type individuals do
not fall strictly into either category, and most adults belong
to this type [33]. Previous studies have suggested that E-type
individuals have lower physical activity levels and a higher
risk of metabolic syndrome [34,35]. However, this study
found that the individuals with night owl tendencies, that is,
E-type individuals, exhibited higher physical activity levels
compared to early birds, that is, M-type individuals. It is
important to note that most participants in our study reported
engaging in sedentary work, indicating that the increased
physical activity levels among night owls were likely due to
leisure activities rather than occupational tasks. This suggests
that physical activity patterns are not determined solely by
chronotype and that other factors, such as health awareness,
can have a significant impact. It is worth noting that an
individual’s chronotype and activity times may vary based
on age and occupation, potentially leading to health issues if
not addressed [36]. Therefore, it is crucial to make efforts to
achieve the recommended level of physical activity regardless
of the specific activity pattern or chronotype.

None of the participants in our study met the criteria for
“weekend warriors,” which refers to individuals engaging in
1 or 2 sessions of physical activity, particularly on week-
ends, per week, consuming at least 1000 kcal [37]. Although
the combined EE for cluster 2 (weekday night owls) and
cluster 4 (weekend night owls) was the closest to that of
weekend warriors at 735 kcal, no participants were included
in both clusters. In a study conducted by Jang et al [38] in
South Korea, only 2.1% of the participants were classified as
weekend warriors, but there was no significant difference in
metabolic risk between weekend warriors and the regularly
active group. The weekend warrior physical activity pattern,
which is popular in the United Kingdom, the United States,
and Latin America [39], is associated with several health
benefits, including a lower risk of obesity [38] and all-cause
mortality [37]. A study of Chinese adults found that the

weekend warrior physical activity pattern was associated
with a lower risk of metabolic syndrome, hypertension, and
diabetes in both male and female individuals [40]. Promot-
ing physical activity guidelines may increase the number of
weekend warriors in South Korea, where sedentary jobs are
common (Table 1).

The TADPole clustering method addresses the limitations
of previously popular time-series clustering techniques such
as the k-means and hierarchical clustering methods in data
analysis. As we mentioned in the introduction, the k-means
clustering method often produced unstable results with
clusters changing each time, whereas the TADPole clustering
method consistently provided reliable clustering outcomes.
However, similar to k-means, we iteratively performed
the analysis to obtain the optimal clustering results. The
TADPole clustering method stands out by providing more
reliable results compared to hierarchical clustering and
DBSCAN, as it uses all available data without any loss or
exclusion. Additionally, our study demonstrated the feasibil-
ity of the TADPole clustering method, showing its suitabil-
ity for handling large and multidimensional data such as
wearable data.
Strengths
A key advantage of our study was that we used multiple
wrist-worn device models. Although wearables provide data
in different formats depending on the model, we standar-
dized the data into a single format to successfully conduct
statistical analyses. Furthermore, the TADPole clustering
method allowed us to overcome the limitations of hierarchical
and k-means clustering, which are commonly used time-series
clustering methods, resulting in robust and reliable findings.
Limitations
This study had several limitations. It only included 47
participants, which may not have been sufficient to gener-
ate meaningful results. The measurement period for physi-
cal activity was only 7 days, which may not have been
representative of the daily physical activity. Additionally,
we assumed that the EE for physical activities exceeding 10
minutes was consistent across 10-minute intervals. Although
these assumptions may not perfectly reflect reality, they were
considered reasonable given that the participants were going
about their normal daily routines.
Conclusions
This study successfully performed time-series clustering
using various wrist-worn device models and found TAD-
Pole clustering to be a suitable tool for analyzing the data.
Physical activity patterns on weekdays and weekends could
be categorized into “early birds” and “night owls,” and these
patterns were significantly influenced by age. To address the
limitations of our study, additional studies with larger sample
sizes are required.
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