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Abstract

Background: Consumer sleep trackers (CSTs) have gained significant popularity because they enable individuals to conveniently
monitor and analyze their sleep. However, limited studies have comprehensively validated the performance of widely used CSTs.
Our study therefore investigated popular CSTs based on various biosignals and algorithms by assessing the agreement with
polysomnography.

Objective: This study aimed to validate the accuracy of various types of CSTs through a comparison with in-lab polysomnography.
Additionally, by including widely used CSTs and conducting a multicenter study with a large sample size, this study seeks to
provide comprehensive insights into the performance and applicability of these CSTs for sleep monitoring in a hospital environment.

Methods: The study analyzed 11 commercially available CSTs, including 5 wearables (Google Pixel Watch, Galaxy Watch 5,
Fitbit Sense 2, Apple Watch 8, and Oura Ring 3), 3 nearables (Withings Sleep Tracking Mat, Google Nest Hub 2, and Amazon
Halo Rise), and 3 airables (SleepRoutine, SleepScore, and Pillow). The 11 CSTs were divided into 2 groups, ensuring maximum
inclusion while avoiding interference between the CSTs within each group. Each group (comprising 8 CSTs) was also compared
via polysomnography.

Results: The study enrolled 75 participants from a tertiary hospital and a primary sleep-specialized clinic in Korea. Across the
2 centers, we collected a total of 3890 hours of sleep sessions based on 11 CSTs, along with 543 hours of polysomnography
recordings. Each CST sleep recording covered an average of 353 hours. We analyzed a total of 349,114 epochs from the 11 CSTs
compared with polysomnography, where epoch-by-epoch agreement in sleep stage classification showed substantial performance
variation. More specifically, the highest macro F1 score was 0.69, while the lowest macro F1 score was 0.26. Various sleep
trackers exhibited diverse performances across sleep stages, with SleepRoutine excelling in the wake and rapid eye movement
stages, and wearables like Google Pixel Watch and Fitbit Sense 2 showing superiority in the deep stage. There was a distinct
trend in sleep measure estimation according to the type of device. Wearables showed high proportional bias in sleep efficiency,
while nearables exhibited high proportional bias in sleep latency. Subgroup analyses of sleep trackers revealed variations in macro
F1 scores based on factors, such as BMI, sleep efficiency, and apnea-hypopnea index, while the differences between male and
female subgroups were minimal.
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Conclusions: Our study showed that among the 11 CSTs examined, specific CSTs showed substantial agreement with
polysomnography, indicating their potential application in sleep monitoring, while other CSTs were partially consistent with
polysomnography. This study offers insights into the strengths of CSTs within the 3 different classes for individuals interested
in wellness who wish to understand and proactively manage their own sleep.

(JMIR Mhealth Uhealth 2023;11:e50983) doi: 10.2196/50983
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Introduction

With the growing recognition of the importance of sleep for
overall health [1], there has been a significant rise in public
interest in monitoring sleep patterns using consumer sleep
trackers (CSTs) [2-4]. While the laboratory monitoring of sleep
using the traditional sleep analysis tool polysomnography has
several limitations associated with the need for cumbersome
sensors [5], CSTs facilitate individual monitoring of sleep at
home using minimal equipment. Recently, many big tech
companies, including Apple, Samsung, and Google, as well as
health care startups like Withings and Oura, have released their
own CSTs. These companies have made significant
contributions to enhancing the performance of CSTs by
integrating deep learning algorithms and biosignal sensing
technologies [6,7]. As a result, CSTs have emerged as accessible
solutions for home sleep monitoring [2,6,8-11]. CSTs are widely
used by not only individuals interested in wellness who wish
to understand and proactively manage their own sleep, but also
those who want to self-check and screen for sleep disorders.

This study classified CSTs into 3 types: wearables, nearables,
and airables. Wearable devices or wearables, such as
smartwatches and ring-shaped devices, are generally worn by
users to track sleep using sensors like photoplethysmography
sensors and accelerometers [6,12-16]. Nearable devices or
nearables, placed near the body without direct contact, have
radar or mattress pads to detect subtle movements during sleep
[9,17]. Airable devices or airables use mobile phones to analyze
sleep via built-in microphones or environmental sensors [2,3,8].
This classification is based on the measurement methods and
biological signals used in each category.

Given the surge of diverse CSTs, it is necessary to conduct
comprehensive and objective evaluations of the performance
of these CSTs available in the market [4,15,18-21]. Some studies
compared CSTs and alternative tools available for sleep analysis,
such as electroencephalography headbands [4] or subjective
sleep diaries [12] (without employing the gold standard
polysomnography), which failed to validate the consistency
between CSTs and polysomnography. Chinoy et al [11]
compared the performance of 7 CSTs with polysomnography

(Fatigue Science Readiband, Fitbit Alta HR, Garmin Fenix 5S,
Garmin Vivosmart 3, EarlySense Live, ResMed S+, and
SleepScore Max). However, this previous study showed
limitations of recruitment from a single institution and exclusion
of widely used CSTs available commercially.

To address these limitations, we conducted a multicenter study
comparing widely used or newly released CSTs with in-lab
polysomnography in a hospital setting. By simultaneously
assessing multiple CSTs, we aimed to minimize bias and
evaluate their performance across various metrics. Subgroup
analysis was also performed to assess the impact of demographic
factors on performance, including sex assigned at birth,
apnea-hypopnea index (AHI), and BMI. By performing the most
extensive simultaneous comparison of widely used CSTs and
conducting a multicenter study with diverse demographic
groups, this study offers comprehensive insights into the
performance and applicability of these CSTs for sleep
monitoring.

Methods

Participants
The demographic information of the study participants is
presented in Table 1. A total of 75 individuals were recruited
from Seoul National University Bundang Hospital (SNUBH)
and Clionic Lifecare Clinic (CLC). Of these 75 individuals, 37
(27 males and 10 females) with scheduled polysomnography
for sleep disorders were recruited from SNUBH and 38 (12
males and 26 females) were recruited through an online platform
from CLC. Both institutions used the same inclusion criteria,
including age between 19 and 70 years and presence of
subjective sleep discomfort. Individuals with uncontrolled acute
respiratory conditions were excluded. Participant demographics
revealed that the sample consisted of 52% (39/75) males, with
a mean age of 43.59 (SD 14.10) years and a mean BMI of 23.90

(SD 4.07) kg/m2. Significant differences in sleep measures were
observed between the 2 institutions, including time in bed, total
sleep time, wake after sleep onset (WASO), and AHI.
Multimedia Appendix 1 presents the number of measurements
and data collection success rate for each CST.
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Table 1. Comparative analysis of participant demographics.

P valuecCLCb (n=38)SNUBHa (n=37)Total (N=75)Characteristic

<.001d12 (32)27 (73)39 (52)Male, n (%)

<.001d33.95 (8.07)53.49 (11.96)43.59 (14.10)Age (years), mean (SD)

.1223.18 (3.98)24.64 (4.07)23.90 (4.07)BMI (kg/m2), mean (SD)

<.001d6.49 (0.66)8.01 (0.31)7.24 (0.92)Time in bed (hours), mean (SD)

.005d5.40 (1.33)6.26 (1.2)5.82 (1.33)Total sleep time (hours), mean (SD)

.930.26 (0.38)0.27 (0.38)0.27 (0.37)Sleep latency (hours), mean (SD)

.02d0.83 (1.23)1.48 (1.22)1.15 (1.2)Wake after sleep onset (hours), mean (SD)

.2083.54 (19.1)78.40 (15.54)81.00 (17.5)Sleep efficiency (%), mean (SD)

<.001d10.02 (10.99)26.56 (24.25)18.18 (20.39)Apnea-hypopnea index, mean (SD)

aSNUBH: Seoul National University Bundang Hospital.
bCLC: Clionic Lifecare Clinic.
cAll P values were obtained using 2-sample independent t tests. For the male category, Fisher exact test was applied.
dStatistical significance (P<.05).

Evaluation of CSTs
We evaluated 11 different CSTs in this study. Wearables
included ring-type devices (Oura Ring 3, Oura) and watch-type
devices (Apple Watch 8, Apple Inc; Galaxy Watch 5, Samsung
Electronics Co, Ltd; Fitbit Sense 2, Fitbit Inc; and Google Pixel
Watch, Google LLC). Nearables included pad-type devices
(Withings Sleep Tracking Mat, Withings) and motion sensor
devices (Amazon Halo Rise, Amazon Inc; and Google Nest
Hub 2, Google LLC). Airables included mobile apps
(SleepRoutine, Asleep; SleepScore App, SleepScore Labs; and
Pillow, Neybox Digital Ltd) with iPhone 12s and Galaxy S21s.
The selection of these devices was based on their popularity
and availability in the market at the time of the study. The
methods of usage and application for each sleep tracker were
based on user instructions provided by the respective
manufacturers. To mitigate a possible learning curve for each
device, the researchers educated participants on how to use each
device before measurements, and in the case of wearable CSTs,
they ensured that the devices were properly fitted. During the
study, software updates of all devices were performed on March
1, 2023, to ensure that they were up-to-date, and automatic
updates were disabled.

Study Design
This was a prospective cross-sectional study conducted to
investigate the accuracy of various CSTs and polysomnography
in analyzing sleep stages. It was conducted at 2 independent
medical institutions in South Korea, namely SNUBH, a tertiary
care hospital, and CLC, a primary care clinic.

All participants were contacted by phone at least 2 days prior
to participating in the polysomnography study and were
provided with instructions. On the day before and the day of
the test, they were advised to abstain from alcohol and caffeine
consumption and refrain from engaging in strenuous exercise,
and were informed of the designated test time. These measures
were taken to standardize participant behaviors and minimize

the influence of potential confounding factors. On the designated
test days, participants visited the hospitals and received detailed
explanations about the study. They provided written informed
consent and underwent polysomnography at each institution.
Polysomnography recordings were conducted in a controlled
sleep laboratory environment in accordance with the guidelines
recommended by the American Academy of Sleep Medicine
(AASM) [22]. Two technicians independently interpreted the
results, followed by a review by sleep physicians.

To address the issue of interference due to multiple CSTs
sharing the same biosignals, the participants were divided into
2 groups in both medical institutions: multi-tracker group A
and multi-tracker group B, as illustrated in Figure 1. The
configurations of the CSTs are presented in Figure 2.
Specifically, at SNUBH, multi-tracker group A consisted of 18
individuals and multi-tracker group B consisted of 19
individuals. Similarly, at CLC, each group included 19
individuals. Across both institutions, the demographic statistics
for participants in multi-tracker groups A and B demonstrated
no significant differences across all metrics, as presented in
Multimedia Appendix 2. Each group included a combination
of noninterfering CSTs. Specifically, the nearables Google Nest
Hub 2 and Amazon Halo Rise, which use similar radar sensors
to detect motion, were allocated to different groups. In the case
of wearables, participants were allowed to simultaneously wear
a maximum of 2 watch devices, which are a type of wearable,
with 1 on each wrist. Consequently, Fitbit Sense 2 and Pixel
Watch were assigned to multi-tracker group A, while Galaxy
Watch 5 and Apple Watch 8 were assigned to multi-tracker
group B. As a result, these devices were expected to yield
approximately half of the intended measurements. Airables,
which were available on both iOS and Android devices
(SleepRoutine and SleepScore), were analyzed, with half of
them on iOS and the other half on Android. We used Pillow on
iOS, as it is not available on Android. The polysomnography
and CST results were then compared and analyzed.
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Figure 1. Flowchart outlining the experimental design. Experimental procedures involving subject enrollment, CST assignment, and experimental
settings for simultaneous measurement involving both CSTs and PSG. CLC: Clionic Lifecare Clinic; CST: consumer sleep tracker; PSG: polysomnography;
SNUBH: Seoul National University Bundang Hospital.

Figure 2. Configuration of consumer sleep trackers used in the experiment.
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Ethics Approval
Ethics approval was obtained from the respective Institutional
Review Board (IRB) of each institution (IRB number
B-2302-908-301 from SNUBH and number P01-202302-01-048
from CLC).

Statistical Methods and Evaluation Metrics
Two-sample independent t tests were employed to compare
demographic information (Table 1) and sleep measures, and
significance was determined based on a P value of <.05. The
average sleep measurements were compared, and any
proportional bias was assessed using Pearson correlation and a
Bland-Altman plot. The study used sensitivity, specificity, and
F1 scores as evaluation metrics for sleep stage classification.
Macro F1 scores, weighted F1 scores, and kappa values were
used to summarize the results of the evaluation, considering the
imbalance in data classes, such as sleep stages. All statistical
analyses and visualizations were conducted using Python 3
(version 3.9.16) and used the scikit-learn, matplotlib, and scipy
libraries.

Data Preprocessing
Three main steps were followed in the data processing stage.
First, raw sleep score data were extracted from each CST device,
either through direct download via the manufacturer’s app or
the web portal, or by requesting raw data from the SleepRoutine
device manufacturer. The sleep score codes were standardized
across devices, with the wake stage assigned 0, the light stage
assigned 1, the deep stage assigned 2, and the rapid eye
movement (REM) stage assigned 3. Apple Watch 8 used
alternative expressions, such as “core sleep” instead of light
sleep.

The extracted data were synchronized in time to compare CST
results of sleep tracking with polysomnography accurately. The
sleep stages measured by devices earlier than polysomnography
scores were discarded. Conversely, for devices that started
measuring after polysomnography scoring, the sleep stages were
marked as the wake stage until the measurement began. The
end point of all device measurements was aligned with the end

of polysomnography, resulting in consistent measurement of
total time in bed across the devices. 

Because the sleep stages changed at every epoch, the results
may be inaccurate if the start time of the 30-second epoch
differed. Therefore, the results of sleep stages involving all
devices, including polysomnography, were segmented into
1-second intervals and compared every second. This approach
enabled a more precise comparison of sleep stage results
between polysomnography and CST measurements, and
eliminated potential bias.

Results

Epoch-by-Epoch Analysis: Overall Performance
Table 2 presents the results of epoch-by-epoch agreements
between polysomnography and each of the 11 CSTs under the
sleep stage classification. SleepRoutine (airable) demonstrated
the highest macro F1 score of 0.6863, which was closely
followed by Amazon Halo Rise (nearable), with a macro F1
score of 0.6242. In terms of Cohen κ, a measure of interrater
agreement, 3 wearables (Google Pixel Watch, Galaxy Watch
5, and Fitbit Sense 2), 1 nearable (Amazon Halo Rise), and 1
airable (SleepRoutine) demonstrated moderate agreement with
sleep stage classification (κ=0.4-0.6). On the other hand, 2
wearables (Apple Watch 8 and Oura Ring 3), 1 nearable
(Withings Sleep Tracking Mat), and 1 airable (SleepScore)
showed a fair level of agreement (κ=0.2-0.4). Finally, Google
Nest Hub 2 (nearable) and Pillow (airable) exhibited only a
slight level of agreement across sleep stage classifications. The
performance of CSTs was assessed in 2 distinct institutions,
where the macro F1 scores, averaged over all devices in each
institution, were 0.4973 and 0.4876 at SNUBH and CLC,
respectively. There was no significant difference in performance
between these 2 locations. Among the 11 CSTs evaluated, 5
(Galaxy Watch 5, Apple Watch 8, Amazon Halo Rise, Pillow,
and SleepRoutine) exhibited better performance at SNUBH,
while the remaining CSTs demonstrated superior performance
at CLC.
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Table 2. Epoch-by-epoch agreement: classification of 4 sleep stages.

CLCbSNUBHaOverallVariable

Macro F1Macro F1Macro F1Cohen κWeighted F1Accuracy

Airable

0.6551d0.7188d0.6863d0.5565d0.7166d0.7106dSleepRoutine (n=67)c

0.30940.44080.40490.20650.44720.4329SleepScore (n=38)

0.25640.26040.25880.07410.29060.2830Pillow (n=74)

Nearable

0.48370.42050.44960.24550.50070.4921Withings Sleep Tracking Mat
(n=75)

0.32990.26760.30090.06440.40890.4121Google Nest Hub 2 (n=33)

0.60310.62310.62420.48070.67060.6634Amazon Halo Rise (n=28)

Wearable

0.59250.53810.56690.40440.61430.6355Google Pixel Watch (n=30)

0.56510.62610.57610.41770.64990.6494Galaxy Watch 5 (n=22)

0.62680.51300.58140.41850.62960.6464Fitbit Sense 2 (n=26)

0.42030.54360.49100.29760.57310.5640Apple Watch 8 (n=26)

0.52110.51870.51860.34920.55180.5427Oura Ring 3 (n=53)

aSNUBH: Seoul National University Bundang Hospital.
bCLC: Clionic Life Center.
cThe number in parenthesis indicates the number of participants tested with each device.
dTop-performing consumer sleep tracker.

Epoch-by-Epoch Analysis: Performance According to
Sleep Stages
The performance of various sleep trackers across different sleep
stages is presented in Table 3. For the wake and REM stages,
SleepRoutine (airable) achieved the highest macro F1 scores of
0.7065 and 0.7596, respectively. These scores substantially
surpassed those of the second-best tracker, Amazon Halo Rise
(nearable), by a margin of 0.1098 for the wake stage and 0.0313
for the REM stage. For the deep stage, Google Pixel Watch and
Fitbit Sense 2, which are wearables, exhibited superior
performance with macro F1 scores of 0.5933 and 0.5564,
respectively. Google Pixel Watch achieved the highest
performance with a substantial margin. It surpassed Fitbit Sense
2 by a margin of 0.0368 and outpaced SleepRoutine, which was
the sleep tracker with the third highest score, with an even larger
margin of 0.0567. For the light stage, an array of sleep trackers,
including 3 wearables (Google Pixel Watch, Galaxy Watch 5,
and Fitbit Sense 2), 1 nearable (Amazon Halo Rise), and 1
airable (SleepRoutine), demonstrated similarly high levels of
performance, with a macro F1 score ranging from 0.7142 to
0.7436. Additional detailed assessments of sleep stage
performance, including accuracy, weighted F1, and area under
the receiver operating characteristic curve metrics, are presented
in Multimedia Appendices 3-6.

Figure 3 presents the confusion matrices for the sleep stages of
the 11 CSTs, providing a clear visual representation of
prediction biases and misclassification. Multimedia Appendix
7 presents the mean and variance of predicted values across

participants. Analysis of the average tendencies across all
devices revealed a prediction bias toward the light sleep stage.
Google Nest Hub 2 (nearable) showed the largest bias toward
the light stage among all the devices. Unlike other devices,
Pillow (airable) was highly biased toward the deep stage,
predicting 59% of epochs as deep, whereas only 10.8% of
epochs were deep based on the results of polysomnography.
The confusion matrices also revealed distinct patterns of
misclassification in sleep stage prediction for device types.
Wearables primarily misclassified wake as light, while nearables
strongly misclassified REM as light. Airables, on the other hand,
demonstrated a relatively higher frequency of confusion between
the light and deep stages. Figure 4 presents a comparison of
hypnograms illustrating the epoch-by-epoch agreement at the
individual level, which facilitated the evaluation of agreement
between CSTs and polysomnography in a time-series format.
Additional hypnograms are presented in Multimedia Appendix
8.

Regarding Figure 4, the division of groups was necessary owing
to the limited number of watches worn simultaneously, as
explained in the Methods section. As 9 devices were used
simultaneously for each subject, the hypnograms for each device
are presented, with the polysomnography result displayed at
the top. As shown in Figure 4, SleepRoutine, Amazon Halo
Rise, and Galaxy Watch 5 exhibited more frequent transition
of stages and predicted wake in the middle of sleep more
frequently, resulting in better estimation of WASO, as shown
in the analysis of sleep parameters.
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Table 3. Epoch-by-epoch agreement: classification for detecting individual sleep stage.

REMb stageaDeep stageaLight stageaWake stageaVariable

Speci-
ficity

Sensitiv-
ity

F1Speci-
ficity

Sensitiv-
ity

F1Speci-
ficity

Sensitiv-
ity

F1Speci-
ficity

Sensitiv-
ity

F1

Airable

0.9609d0.73940.7596d0.89730.67120.53550.7665d0.70540.7436d0.92690.7246d0.7065dSleepRoutine

(n=67)c

0.78950.45870.34180.82640.52470.35740.72720.43550.51470.86960.36650.4057SleepScore (n=38)

0.91260.11400.14400.44490.8594d0.26730.75340.24900.34090.95720.19340.2828Pillow (n=74)

Nearable

0.89060.39640.40010.82700.56330.38000.63360.53280.57640.88540.41720.4419Withings Sleep
Tracking Mat
(n=75)

0.85140.18050.18760.88830.13080.12450.45180.57720.56190.86490.30680.3296Google Nest Hub
2 (n=33)

0.94010.7490d0.72830.90180.54670.45750.74840.66090.71420.89210.66120.5967Amazon Halo Rise
(n=28)

Wearable

0.90290.65480.61460.92900.69370.5922d0.56200.76570.71500.9784d0.22770.3456Google Pixel
Watch (n=30)

0.90580.62650.59820.9481d0.47520.49630.64120.72800.73460.91040.48140.4755Galaxy Watch 5
(n=22)

0.92970.68120.66230.92470.67100.55640.57270.7734d0.72620.96020.27140.3807Fitbit Sense 2
(n=26)

0.90700.42760.43940.84120.41300.30730.57370.66490.66800.96240.44810.5493Apple Watch 8
(n=26)

0.87160.71180.59930.79740.77840.42720.76300.50720.59530.92640.38220.4527Oura Ring 3
(n=53)

aIndividual sleep stage classification was used to categorize each class and the remaining classes.
bREM: rapid eye movement.
cThe number in parenthesis indicates the number of participants tested with each device.
dTop-performing consumer sleep tracker.
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Figure 3. Normalized confusion matrices for 11 consumer sleep trackers (CSTs). Four-stage sleep classification confusion matrices comparing CSTs.
Each row in the confusion matrix is the sleep stage annotated by polysomnography, while each column represents the sleep stage annotated by the CST.
REM: rapid eye movement.
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Figure 4. Sample hypnograms of 11 consumer sleep trackers (CSTs) involving 2 subjects in different groups. Hypnogram samples for each CST were
selected based on the last measured subjects in multi-tracker group A (female; age, 35 years; BMI, 30.1; apnea-hypopnea index [AHI], 2.9) and
multi-tracker group B (female; age, 26 years; BMI, 20; AHI, 3.5). PSG, polysomnography.

Sleep Measure Analysis
Figure 5 presents the Bland-Altman plots of CSTs, illustrating
the performance of sleep measurements, including sleep
efficiency, sleep latency, and REM latency, when compared
with polysomnography. The average value of polysomnography
sleep efficiency ranged from 77.57% to 86.05%, while the bias
for each CST varied from −3.4909 percentage points (Amazon
Halo Rise) to 12.8035 percentage points (Google Pixel Watch).
Polysomnography values for sleep latency ranged from 10.80
minutes to 19.80 minutes, with CST biases ranging from −0.81
minutes (Apple Watch 8) to 39.42 minutes (Google Nest Hub
2). Polysomnography values for REM latency ranged from
87.00 minutes to 112.20 minutes, with CST biases ranging from
−49.89 minutes (Amazon Halo Rise) to 65.29 minutes (Google

Pixel Watch). The devices demonstrated distinct and best
performances for each sleep metric. In terms of sleep efficiency,
Galaxy Watch 5 (wearable) achieved a minimal bias of −0.4%.
In the case of estimation of sleep latency, Apple Watch 8
(wearable) exhibited a bias of 0.81 minutes. Lastly,
SleepRoutine (airable) demonstrated the best performance for
REM latency with a bias of 1.85 minutes. The proportional bias,
presented as “r” in Figure 5, indicates how consistent the mean
bias was regardless of the sleep measure. Oura Ring and
SleepRoutine showed no proportional bias (ie, no significant
correlation in the Bland-Altman plot) for any sleep measure.
The difference in mean values between polysomnography and
each CST for each sleep measure is described in Multimedia
Appendix 9. Additional information is provided in Multimedia
Appendix 10.
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Figure 5. Bland-Altman plots of consumer sleep trackers (CSTs) and polysomnography (PSG) for sleep efficiency, sleep latency, and rapid eye
movement (REM) latency measurements. The plots present the mean bias (middle horizontal black solid line), and upper (upper horizontal black dashed
line) and lower (lower horizontal black dashed line) limits of agreement. In the figure, “b” represents bias and “r” denotes the Pearson correlation
coefficient between the mean of measurements and the difference between the CSTs and PSG. The correlation coefficient is displayed along with its
corresponding P value. The red line indicates the estimated linear regression line.

Subgroup Analysis
Subgroup analyses were conducted for all devices, considering
factors, including sex assigned at birth, AHI, sleep efficiency,
and BMI. The macro F1 scores for each subgroup are presented
in Table 4. Multimedia Appendix 11 presents the subgroup
analysis results of epoch-by-epoch agreement for the AHI. The
average performance of CSTs showed a comprehensive
relationship between sleep tracker performance and these
parameters. In terms of BMI, the average macro F1 score was

0.5043 for individuals with a BMI of ≤25 kg/m2, whereas it

dropped to 0.4790 for those with a BMI of >25 kg/m2, indicating
a gap of 0.0253. Similarly, for sleep efficiency, the scores were
0.4757 for individuals with a sleep efficiency of ≤85% and
0.4902 for those with a sleep efficiency of >85%, with a

difference of 0.0145. In the case of the AHI, the scores were
0.4905 for an AHI of ≤15 and 0.5024 for an AHI of >15,
resulting in a difference of 0.0119. In contrast, the difference
between male and female subgroups was minimal, with a macro
F1 score of 0.4926 for males and 0.4932 for females, resulting
in a negligible difference of 0.0006. In each subgroup, the
highest variations were observed with the airable SleepScore
for AHI (difference: 0.0929), the nearable Google Pixel Watch
for sleep efficiency (difference: 0.1067), the wearable Galaxy
Watch 5 for BMI (difference: 0.0785), and the airable
SleepScore for sex assigned at birth (difference: 0.0872).
Multimedia Appendices 12 and 13 present the subgroup analysis
results of epoch-by-epoch agreement in the institutions.
Additionally, Multimedia Appendices 14 and 15 provide an
overview of the average macro F1 scores individually calculated
for each participant.
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Table 4. Epoch-by-epoch agreement: subgroup analysis of the apnea-hypopnea index and demographic characteristics.

GenderBMISleep efficiencyApnea-hypopnea indexVariable

FemaleMale>25≤25>85%≤85%>15≤15

Airable

0.6568b0.7137b0.6889b0.6840b0.6490b0.6971b0.7320b0.6536bSleepRoutine (n=67)a

0.35590.44310.39370.41180.38080.41070.45650.3636SleepScore (n=38)

0.24460.26700.25480.26010.25670.24720.25670.2602Pillow (n=74)

Nearable

0.43550.45870.39640.47600.46530.37660.42250.4644Withings Sleep Tracking Mat
(n=75)

0.30590.28890.25170.32090.27620.31150.30590.3000Google Nest Hub 2 (n=33)

0.64910.60750.58010.64140.58570.62970.63890.6160Amazon Halo Rise (n=28)

Wearable

0.59560.52350.57910.56530.61020.50350.56260.5670Google Pixel Watch (n=30)

0.58670.56550.63060.55210.55470.60290.57900.5701Galaxy Watch 5 (n=22)

0.61290.53200.55410.59100.60900.53250.57530.5839Fitbit Sense 2 (n=26)

0.44140.52630.45610.50930.48040.43260.49500.4861Apple Watch 8 (n=26)

0.54050.49260.48300.53540.52450.48820.50210.5302Oura Ring 3 (n=53)

aThe number in parenthesis indicates the number of participants tested with each device.
bTop-performing consumer sleep trackers.

Discussion

Principal Findings
We conducted an extensive analysis of 11 CSTs involving 75
subjects, which, to the best of our knowledge, represents the
largest number of devices simultaneously evaluated in the

literature [3,4,10,11,13,18]. The findings are illustrated in Figure
6, which presents the relative performances of the 11 CSTs in
estimating sleep stages and sleep measures. Our findings
revealed that Google Pixel Watch, Galaxy Watch 5, and Fitbit
Sense 2 demonstrated competitive performance among
wearables, while Amazon Halo Rise and SleepRoutine stood
out among nearables and airables, respectively.
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Figure 6. Relative performance rank heatmap of 11 consumer sleep trackers (CSTs). Heatmap of the relative performance of sleep stage and classification
of sleep measures normalized to the highest and lowest macro F1 values in each CST. D: deep; EBE: epoch-by-epoch agreement; L: light; R: rapid eye
movement; RL: rapid eye movement latency; SE: sleep efficiency; SL: sleep latency; W: wake.

Wearables
Wearables, including watch and ring-type sleep trackers,
represent the most prevalent CSTs in the market [23,24]. They
employ photoplethysmography sensors and accelerometer
sensors to measure cardiac activity (eg, heart rate variability)
and body movements. Given their reliance on similar biosignals
for sleep tracking, wearables exhibit consistent patterns in
estimating sleep stages. First, most wearables generally
overestimate sleep by misclassifying wake stages, leading to a
substantial negative proportional bias in estimating sleep
efficiency, which results in worse performance for individuals
with low sleep efficiency (Figure 5). This bias was specifically
observed when actigraphy was used to measure sleep efficiency
and WASO [5,11]. This can be attributed to the dependence of
actigraphy and wearables on body movement to determine
sleep-wake states. Insomniacs often lie still in bed while trying
to sleep, even though they are actually awake [24]. As a result,
these periods of wakefulness can be misinterpreted as sleep.
Nevertheless, Oura Ring showed negligible proportional bias,
potentially owing to its use of additional features, such as body
temperature and circadian rhythm, for sleep staging [6]. Second,
wearables comprising the top 3 CSTs demonstrated substantial
alignment in the classification of deep stages. In particular, the
results from Oura Ring 3 and Fitbit Sense 2 in this study showed
improved accuracy in sleep stage detection compared to previous
studies that focused on earlier versions of Oura Ring and Fitbit
in assessing the accuracy of wearable sleep evaluations [25,26].
Thus, wearables may facilitate accurate detection of different
stages of deep sleep, given their unique association with

autonomic nervous system stabilization. Heart rate variability,
a key indicator of autonomic nervous system activity, can be
directly measured by photoplethysmography sensors [27].
Therefore, wearables are effective in monitoring deep sleep
stages.

Nearables
Nearables, encompassing pad and motion sensor-type sleep
trackers, use overall body movements and respiratory efforts
(thoracic and abdominal) for sleep monitoring. Similar to
wearables, nearables also exhibit aligned tendencies. First, all
nearables tend to overestimate sleep onset latency, resulting in
a significant mean bias (29.02 minutes for nearables, −2.71
minutes for wearables, and 4.34 minutes for airables) and a
significant positive proportional bias in sleep latency
measurement. This indicates that nearables may overestimate
sleep latency, particularly in individuals with prolonged sleep
latency. During extended periods of attempting to fall asleep in
bed, users may experience increased restlessness and movement,
which makes it challenging for nearables to estimate the sleep
stage using radar-like sensors [28]. Second, unlike wearables,
nearables demonstrated the least sensitivity in deep stage
classification (as shown in Figure 3). Distinguishing stages of
deep sleep from light sleep based on variations in respiratory
patterns requires precise monitoring of respiratory activity.
However, the radar-like sensors employed by nearables, while
efficient at detecting larger body movements, have difficulty
capturing smaller fidgeting movements, which represent a
challenge in accurately identifying the stage of deep sleep.
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Airables
Airables excel in terms of their accessibility by not requiring
the purchase of additional hardware. However, their clinical
validation is not well-established as noted in previous studies
up until 2022, which highlighted the limited agreement between
airables and polysomnography as a notable limitation [25,29].
In this study, our aim was to validate the latest airable CSTs.
One distinguishing feature of airable CSTs is their use of diverse
sensor types, and the variation in performance is substantially
influenced by the specific sensor type and accompanying
algorithm. Thus, we chose 3 types of airable CSTs considering
diversity (microphone, ultrasound, and accelerometer-based
applications). These methodological distinctions contribute to
pronounced variations in the determination of sleep stage. Pillow
requires placement on the mattress and uses the smartphone’s
accelerometer sensor to detect user movements through the
mattress. Notably, Pillow showed a prediction bias toward the
deep stage, suggesting that movement information during sleep
was insufficient for the accurate determination of sleep stage.
SleepScore uses a sonar biomotion sensor and directs the
smartphone’s speaker toward the chest area to emit ultrasonic
signals above 18 kHz, tracking thoracic respiratory effort.
Depending on the biosignal used, SleepScore shows similar
tendencies with nearables, demonstrating a substantial mean
bias and positive proportional bias in estimating sleep onset
latency. SleepRoutine analyzes the sound recorded during sleep
[2]. Sleep sounds provide a wealth of sleep-related information,
including changes in breathing regularity linked to autonomic
nervous system stabilization, changes in breathing sound
characteristics (such as tone, pitch, and amplitude) due to altered
respiratory muscle tension, and noise from body movements.
Among all CSTs, SleepRoutine exhibited the highest accuracy
in predicting the wake and REM stages.

REM Sleep Stage Estimation Performance
REM was the stage where most CSTs demonstrated relatively
higher agreement with polysomnography compared with other
stages. Among the top 5 CSTs with the highest macro F1 scores
(SleepRoutine, Amazon Halo Rise, Fitbit Sense 2, Galaxy Watch
5, and Google Pixel Watch), the REM stage showed a
substantially higher average F1 score of 0.672, compared with
0.501 for wake and 0.528 for deep sleep. This can be attributed
to the unique characteristics of REM sleep, which include
increased irregularity in heart rate and breathing, minimal
muscle movement, and rapid variations in blood pressure and
body temperature [30]. These features allow easy detection of
different types of biosignals and accurate classification of REM
sleep.

Cost-Effectiveness
We evaluated the costs of 11 sleep tracking technologies based
on the costs analyzed in Multimedia Appendix 16. Wearables,
with an average price of US $386, offer a wide range of
functions, including messaging and various apps, beyond sleep

tracking. Oura Ring, while lacking these supplementary features,
provides a broad spectrum of health tracking functions.
Nearables, with an average price of US $123, include a variety
of features across different models. Google Nest Hub and
Amazon Halo Rise offer extra features, such as an IoT hub and
wake-up light, whereas Withings Sleep Mat is exclusively
designed for sleep tracking. Airables, which are app-based
technologies, harness smartphone sensors for sleep tracking,
requiring only a subscription fee of US $53 and no additional
hardware. This economical and flexible option, which can be
easily canceled, represents a cost-effective solution for sleep
tracking.

Standardized Validation and Data Transparency
Standardized methods of validation and data transparency are
crucial for comparing sleep trackers [31], particularly due to
the increasing use of deep learning algorithms whose inner
workings are often opaque. In our study, we adhered to
established frameworks for standardized validation [15,32],
while also conducting multi-center evaluations based on diverse
demographic factors. Regarding data transparency, we provided
comprehensive details of validation; however, obtaining access
to the training data of each CST was challenging. Transparency
in both training and validation data is essential for building
trustworthy artificial intelligence models and can also contribute
to a better understanding of CSTs [33].

Limitations
It is important to note the limitations of our study. First, data
collection rates significantly varied between the 2 institutions
as the study was independently implemented. Issues, such as
battery management, account management, and human errors,
resulted in data omissions. Second, demographic differences
were detected between the institutions, including disparities in
time spent in bed and total sleep time. Operational issues led to
slightly earlier waking of participants in CLC. Third, this study
focused solely on the Korean population, with limited ability
to analyze performance differences among various races. Future
studies should incorporate multiracial comparisons and evaluate
CST performance across diverse home environments for realistic
assessments.

Conclusions
Our study represents a comprehensive and comparative analysis
of 11 CSTs and their accuracy in tracking sleep in a sleep lab
setting. The objective of this study was to gain insights into the
performance and capabilities of these CSTs. Personalized sleep
health management is necessary to enable individuals to make
informed choices for monitoring and improving sleep quality.
Further, our findings emphasize the importance of understanding
the characteristics and limitations of these devices. It lays the
foundation for guiding the development of sleep trackers in the
future. Accordingly, future studies should focus on developing
accurate sleep stage classification systems by integrating
different types of biosignals in a home environment.
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