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Abstract

Background: Unaddressed early-stage mental health issues, including stress, anxiety, and mild depression, can become a burden
for individuals in the long term. Digital phenotyping involves capturing continuous behavioral data via digital smartphone devices
to monitor human behavior and can potentially identify milder symptoms before they become serious.

Objective: This systematic literature review aimed to answer the following questions: (1) what is the evidence of the effectiveness
of digital phenotyping using smartphones in identifying behavioral patterns related to stress, anxiety, and mild depression? and
(2) in particular, which smartphone sensors are found to be effective, and what are the associated challenges?

Methods: We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) process to identify
36 papers (reporting on 40 studies) to assess the key smartphone sensors related to stress, anxiety, and mild depression. We
excluded studies conducted with nonadult participants (eg, teenagers and children) and clinical populations, as well as personality
measurement and phobia studies. As we focused on the effectiveness of digital phenotyping using smartphones, results related
to wearable devices were excluded.

Results: We categorized the studies into 3 major groups based on the recruited participants: studies with students enrolled in
universities, studies with adults who were unaffiliated to any particular organization, and studies with employees employed in
an organization. The study length varied from 10 days to 3 years. A range of passive sensors were used in the studies, including
GPS, Bluetooth, accelerometer, microphone, illuminance, gyroscope, and Wi-Fi. These were used to assess locations visited;
mobility; speech patterns; phone use, such as screen checking; time spent in bed; physical activity; sleep; and aspects of social
interactions, such as the number of interactions and response time. Of the 40 included studies, 31 (78%) used machine learning
models for prediction; most others (n=8, 20%) used descriptive statistics. Students and adults who experienced stress, anxiety,
or depression visited fewer locations, were more sedentary, had irregular sleep, and accrued increased phone use. In contrast to
students and adults, less mobility was seen as positive for employees because less mobility in workplaces was associated with
higher performance. Overall, travel, physical activity, sleep, social interaction, and phone use were related to stress, anxiety, and
mild depression.

Conclusions: This study focused on understanding whether smartphone sensors can be effectively used to detect behavioral
patterns associated with stress, anxiety, and mild depression in nonclinical participants. The reviewed studies provided evidence
that smartphone sensors are effective in identifying behavioral patterns associated with stress, anxiety, and mild depression.

(JMIR Mhealth Uhealth 2024;12:e40689) doi: 10.2196/40689
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Introduction

Background
Digital phenotyping is “the moment-by-moment quantification
of the individual level human phenotype in situ using data from
personal digital devices” [1]. Digital phenotyping applies the
concept of phenotypes, in other words, the observable
characteristics resulting from the genotype and environment,
to conceptualize observable patterns in individuals’digital data.
In the last decade, digital phenotyping studies have been able
to compare typical and atypical patterns in daily activities to
correlate atypical behavior with negative emotions [2,3].
Behavioral patterns include variations in mobility, frequency
of being in various locations, and sleep patterns. In smartphones,
user data can be stored, managed, interpreted, and captured in
enormous amounts [1,4,5]. This can be done actively or
passively. Active data collection requires the user to self-report
and complete surveys, whereas passive sensing collects data
automatically without user input [5]. Most studies combine
active and passive sensing to more accurately detect and predict
behavioral abnormalities. Modern smartphone analytics can be
used for the discovery of commonalities and abnormalities in
user behavior. The ease of using passive sensing makes it an
ideal data gathering method for mental health studies [6-8] and
an ideal technique for assessing mental health [9].

Digital phenotyping has been successful in the early detection
and prediction of behaviors related to neuropharmacology [10];
cardiovascular diseases [11]; diabetes [12]; and major severe
injuries, such as spinal cord injury [13], motivating further
adoption. Digital phenotyping has also proven useful for the
detection of severe mental health issues, such as schizophrenia
[14,15], bipolar disorder [16], and suicidal thoughts [17]. Digital
phenotyping has been so successful for specialized, clinical
populations that it is increasingly considered for mass market
use with nonclinical populations. Digital phenotyping
applications and software tools have been used to capture
employee information, such as their screen time and clicking
patterns [18]. However, there are not many digital phenotyping
studies that have specifically examined the detection or
prediction of stress, anxiety, and mild depression.

Individuals with stress, anxiety, and mild depression can develop
chronic mental health symptoms that impact their mobility,
satisfaction with life, and social interaction [19,20]. When these
symptoms are not detected early, they worsen, and the impact
is more significant [21-23], increasing the need for medication
and hospitalization. This makes mild mental health symptoms
a valid target for digital phenotyping, as its goal is to enable
early detection and, subsequently, early treatment. Smartphones
are increasingly ubiquitous [24], which makes them an optimal
platform for digital phenotyping. We constrained our systematic
literature search to the more challenging problem of the
detection of mild mental health symptoms using only
smartphone sensors and excluded studies that used additional
wearable sensors. In general, we believe that additional
wearables might increase the effectiveness of digital
phenotyping in detecting stress, anxiety, and mild depression.
Given the ubiquity of smartphones, we aimed to answer the

following question: what is the effectiveness of digital
phenotyping using smartphone sensors in detecting stress,
anxiety, and mild depression?

Objectives
The objective of this systematic literature review was to better
understand the current uses of digital phenotyping and results
of using digital phenotyping for the detection and prediction of
mild behavioral patterns related to stress, anxiety, and mild
depression. The 2 research questions this review sought to
answer were as follows:

1. What is the evidence of the effectiveness of digital
phenotyping using smartphones in identifying behavioral
patterns related to stress, anxiety, and mild depression?

2. In particular, which smartphone sensors are found to be
effective, and what are the associated challenges?

For these research questions, we considered statistically
significant associations between sensor patterns and behavioral
patterns as evidence of effectiveness.

Methods

Type of Studies
This review followed the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines [25]
(Multimedia Appendix 1). Figure 1 shows the reviewing process
and search results. In the first round of screening studies, 1
author excluded studies that were not relevant to the research
questions. Another author reran the queries for confirmation.
Studies were included in this review if they were conducted to
measure and detect stress, anxiety, or mild depression, even if
they included other variables, such as job performance,
promotion, or discrimination. We included studies in which
data were collected through smartphones with an iOS (Apple
Inc) or Android (Google LLC) operating system. Data collected
through wearable devices were excluded. We included studies
in which the participants were adults aged ≥18 years and were
from a nonclinical population. Studies conducted with nonadult
participants (eg, teenagers and children) were excluded. Given
our research questions, if the studies’ participants had or had
had any severe mental health disorder, such as schizophrenia,
bipolar disorder, or psychosis, they were not included. We also
excluded personality and character measurement and phobia
studies. The primary research language was English. The studies
included were conducted from September 2010 to September
2023. Peer-reviewed conference articles and journal articles
were included. The data we wished to extract were the study
aim, data collected, operating system in the smartphone used
for data collection, behavioral patterns identified, surveys used
for verification, and sample size. A total of 3 authors reviewed
the studies independently to extract data and confirm the
extracted data. After the first round of data extraction, 1 author
re-examined the studies to extract the predictive modeling used.
These data are presented in the Results section. We noticed that
participants in the included studies fell into 1 of 3 major groups
(ie, students, adults, and employees). We refer to the participants
of the studies that recruited adults enrolled in universities as
“students,” participants of the studies that recruited adults
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unaffiliated to any particular organization as “adults,” and
participants of the studies that recruited adults employed at a

particular organization as “employees.”

Figure 1. Systematic literature reviewing process and search results with the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) diagram.

Search Strategy
A total of 3 databases were queried: Web of Science, ACM,
and PubMed. PubMed is a medicine-based database, ACM is
a technology-based database, and Web of Science is a
cross-domain database. The search query was the same for the
3 platforms: “digital phenotyping” OR “passive sensing” AND
(stress OR anxiety OR ((mild OR moderate) AND depression)).

Results

Duration
The study length varied from 10 days [26] to 3 years [27]. One
study [28] conducted in-depth interviews with students lasting
an average of 4.5 hours per person, and another study was a
controlled laboratory study [29]. These 2 studies are not
presented in Table 1. In the studies conducted with students, a
semester or spring or winter term was a common duration. The
studies with general nonclinical adult populations were typically
longer than those with students.

JMIR Mhealth Uhealth 2024 | vol. 12 | e40689 | p. 3https://mhealth.jmir.org/2024/1/e40689
(page number not for citation purposes)

Choi et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Duration of the reviewed studies (N=38; 2 studies are excluded, as 1 [28] is interview based and the other [29] is a controlled laboratory study).

Length of the study (d)Study, year

10Adams et al [26], 2014

14Cai et al [30], 2018

14Boukhechba et al [31], 2018

14Di Matteo et al [32], 2021

16Jacobson et al [33], 2020

21Wen et al [34], 2021

28Melcher et al [35], 2023

28Fukuzawa et al [36], 2019

35Rashid et al [37], 2020

35Zakaria et al [38], 2019

43DaSilva et al [39], 2019

60Nepal et al [40], 2020

68Saha et al [41], 2019

70Morshed et al [42], 2019

70Acikmese et al [43], 2019

81Zakaria et al [38], 2019

81Zakaria et al [38], 2019

98Boukhechba et al [44], 2017

98Tseng et al [45], 2016

98Morshed et al [42], 2019

106Xu et al [46], 2019

112Chikersal et al [47], 2021

112Meyerhoff et al [48], 2021

113Xu et al [46], 2019

121Rhim et al [49], 2020

121Wang et al [50], 2018

147Currey and Torous [51], 2022

153Di Matteo et al [52], 2021

153Sefidgar et al [53], 2019

153Mendu et al [54], 2020

181Pratap et al [55], 2017

260Mirjafari et al [56], 2019

336Currey et al [57], 2023

458Huckins et al [58], 2020

458Mack et al [59], 2021

458Xu et al [60], 2023

730Nepal et al [61], 2022

1095Servia-Rodríguez et al [27], 2017

Number of Participants
The number of participants ranged from a minimum of 7 adults
[26] to a maximum of 18,000 adults [27]. Apart from the 3-year
longitudinal study with 18,000 participants [27], the average

number of participants was 129.4 (SD 184.01). We observed a
pattern of attrition, where the number of participants who
completed the study was lower than the number of the
participants recruited. The number of participants reported in
this review is the final sample size. For example, one of the
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studies [52] recruited 112 participants, of whom 84 (75%)
completed the study. In the study by Pratap et al [55], there was
a drastic drop in participants, with only 359 (30.42%) of the
1180 enrolled participants completing the study. Another
significant drop was seen in the study by Nepal et al [40], where
750 participants were interested in the research, whereas only
141 (18.8%) of them completed the study. Some studies were

less affected; for example, 86 participants started the study by
Rhim et al [49], and 78 (91%) completed it.

Publication Years of the Studies
Although the query started with the year 2010, the earliest
publication was from 2014 [26], extending to articles published
as of April 2023 [35]. Over the years, the interest in detecting
and predicting stress, anxiety, and mild depression in the
nonclinical population has increased (Table 2).

Table 2. Number of reviewed reports (N=36) by year.

Publication, n (%)Year

1 (3)2014

1 (3)2016

3 (8)2017

4 (11)2018

10 (28)2019

6 (17)2020

6 (17)2021

2 (6)2022

3 (8)2023

Studies With the iOS and Android Operating Systems
The Android operating system was more common than iOS.
Among the 40 included studies, only 2 (5%) were compatible
with only iOS [29,51]. A total of 27 (68%) studies were
ava i l a b l e  f o r  b o t h  i O S  a n d  A n d r o i d
[26,28,30,34,35,37-42,45-47,50,53-61]. A total of 11 (28%)
s t u d i e s  w e r e  f o r  o n l y  A n d r o i d  u s e r s
[27,31-33,36,42-44,48,49,52]. The reasons identified for the
use of the Android operating system were that it has more
freedom to capture more modalities, such as keyboard typing
and use of apps, and that Android devices enable apps to run
more easily in the background [49].

Studies With Students
Table 3 presents the data extracted from the studies that were
conducted with student populations. The average length of the
studies with students was 158.6 (SD 176.4) days. The average
number of participants was 137.3 (SD 152.1). There were
significantly more studies with students than studies with
employees or general adults. The sample sizes of the studies
with students were similar to those of the studies with adults
but smaller than those of the studies with employees. In the
studies with students, various passive sensors were used, and
some were found to be effective for detection, prediction, or
both.

Of the 28 studies with students, 23 (82%) used machine learning
models for prediction. A total of 12 studies (43%)
[30,31,33,37,38,44,46,47,54] used decision tree–based methods,
and 9 studies (32%) [37,39,42,49-51,57,58] used
regression-based methods. A total of 3 (11%) studies conducted
in recent years [43,60,61] used deep neural networks because
of their enhanced ability to discern underlying patterns in large
unstructured data sets. Tree-based models have the best
performance when trained with structured data, and the reported
studies mostly used tree-based models and structured data.
Among the 28 studies, 2 studies [57,60] conducted in 2023
addressed the generalizability of their proposed detection method
and verified its applicability across students from various years,
classes, and institutions. Two (7%) studies [42,43] in Table 3
used the StudentLife data set [62]. Each study contributed
substantial original analyses including different behavioral
patterns and was considered a “study” in this systematic review.
Entries with “N/A” in the predictive modeling column indicate
that the study did not involve any attempts to predict future
occurrences. However, these studies may still contain statistical
analyses as part of their research approach. Overall, students
who experienced depression, anxiety, and stress visited fewer
locations [39,44,50,58-60] and were more sedentary
[47,50,58-60]. Depression was also associated with shorter or
irregular sleep [35,46,47,50,52,59,60] and accrued phone use
[46,47,50,51,58-60].
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Table 3. Summary of the reviewed studies with student participants.

Sample
size, n

Verification sur-
veys

Predictive modelingBehavioral patternsOperating
system

Data collectedAimStudy,
year

217 stu-
dents

PHQa-4Linear regressors were
used to inspect how be-
havioral changes were

At the start of the COVID-19
pandemic, students were more
depressed and anxious, used their

iOS (Apple
Inc) and
Android

GPS, accelerom-
eter, phone lock
and unlock, and
light sensor data

Understand
how students’
behavioral
health and
mental health

Huckins
et al
[58],
2020 affected by COVID-19

news reports.
phones more, visited fewer loca-
tions, and spent more time
sedentary. Depression and stress

(Google
LLC)

are affected by
were associated with increasingthe COVID-

19 pandemic COVID-19–related news cover-
age.

100 stu-
dents

PHQ-9, DASSc,

SIASd, GAD-7e,

N/AbIndividuals with more irregular
sleep patterns had worse sleep
quality and were experiencing

iOS and
Android

GPS, accelerom-
eter, call log,
and phone use
data

Understand
how behav-
ioral patterns
correlate with
mental health

Melcher
et al
[35],
2023 PQf, PSSg,

PSQIh, BASISi,
more depression and more stress
than those with consistent sleep
patterns.for students

during the
SFj-36, SFSk,
Flourishing

COVID-19
pandemic Scale, CGIl,

HDRSm, CASn,

HAIo, and

UCLAp-Loneli-
ness Scale

59 stu-
dents

SIAS, DASS-21,

and PANASs
XGBoostq with LOOCVr

was used to predict social
anxiety symptom severi-
ty.

Measures of SMS text message
and call response time discrimi-
nated among depression, nega-
tive affect, and positive affect.
Accelerometer patterns suggested

AndroidAccelerometer,
call log, and
SMS text mes-
sage data

Predict social
anxiety symp-
tom severity
and discrimi-
nate between

Jacob-
son et al
[33],
2020

that persons with low social anx-depression,
iety walked at a steady pace,negative af-
whereas persons with high socialfect, and posi-

tive affect anxiety walked more quickly
with more irregularity.

94 stu-
dents

MPSMtPenalized generalized es-
timating equations were
used to prune features

Students with stress were more
likely to spend less time in cam-
pus food locations and more time

iOS and
Android

GPS, accelerom-
eter, phone lock
and unlock, mi-

Predict stressDaSilva
et al
[39],
2019 and fit a marginal regres-

sion model to predict
stress.

in schoolwork locations. Students
with stress traveled less, engaged
in fewer conversations, and were
in quieter environments during
evenings.

crophone, and
light sensor data

48 stu-
dents

Self-reported
stress

LSTMu, CNNv, and
CNN-LSTM were used

Students were successfully cate-
gorized as stressed or nonstressed
using the measured sensors.

AndroidAccelerometer,
microphone,
Bluetooth, light
sensor, phone

Predict stress
level

Acikmese
and
Alptekin
[43],
2019

to classify stress, with
LSTM yielding the best
accuracy.lock and un-

lock, phone
charge, and app
use data (GPS
and Wi-Fi data
were collected
but not used)
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Sample
size, n

Verification sur-
veys

Predictive modelingBehavioral patternsOperating
system

Data collectedAimStudy,
year

15 stu-
dents

PHQ-9, GAD-7,

and WEMWBSw
N/ANone of the results related sen-

sors to symptoms of depression
or anxiety. Students have privacy
concerns regarding the use of app
use logs, Bluetooth data, call
logs, camera data, keyboard data,
and microphone data but not re-
garding the use of battery, or
light sensor. Students had priva-
cy concerns with the use of SMS
text message content but not with
counts of messages.

iOS and
Android

GPS, phone
lock and un-
lock, phone
charge, battery,
microphone,
Bluetooth, light
sensor, SMS
text message,
email, app use,
call log, cam-
era, and key-
board data

Understand
students’ per-
spectives
about digital
phenotyping

Rooks-
by et al
[28],
2019

138 stu-
dents

BDIx-IITrained an ensemble
classifier with the outputs
from models containing
features from 1 sensor,
with different setting
combinations.

Depression was predicted by
participants’ social context in the
afternoons and evenings, phone
use throughout the day, long pe-
riods without exercise, periods
of disturbed sleep at night, and
time spent outdoors.

iOS and
Android

GPS, accelerom-
eter, Bluetooth,
Wi-Fi, phone
use, call log,
and microphone
data

Predict
postsemester
depressive
symptoms

Chiker-
sal et al
[47],
2021

48 stu-
dents

EMAsy, PAMz,
and PANAS

Ridge regression with
regularization was used
to infer mood instability
score.

Mood instability was negatively
correlated with the duration of
sleep, the number of conversa-
tions, the amount of activity, and
outdoor mobility.

AndroidAccelerometer,
microphone,
Bluetooth, light
sensor, Wi-Fi,
GPS, phone
lock and un-
lock, and phone
charge data

Predict mood
instability

Mor-
shed et
al [42],
2019

62 stu-
dents

PSS-4, PHQ-8,

and BFIaa
The random forest stress
model with domain-spe-
cific features achieved
the best result, with fea-
ture sets changed every 6
days.

Students with severe stress spent
significantly less time on campus
and were less involved in work-
related activities than students
with normal stress. Students with
severe stress were more involved
in these activities at the start of
the semester, but the involvement
decreased over time.

iOS and
Android

Wi-Fi dataDetect depres-
sion and stress

Zakaria
et al
[38],
2019

11 stu-
dents

PSS-4, PHQ-8,
and BFI

The random forest model
that excluded domain-
specific features achieved
the best result, with fea-
ture sets changed every 6
days.

Same patterns as those men-
tioned earlier.

iOS and
Android

Wi-Fi dataDetect depres-
sion and stress

Zakaria
et al
[38],
2019

35 stu-
dents

PSS-4, PHQ-8,
and BFI

The best model is a ran-
dom forest model with
the neuroticism score
added as an additional
feature, with sensor data
sets calculated with a 6-
day interval.

Same patterns as those men-
tioned earlier.

iOS and
Android

Wi-Fi dataDetect depres-
sion and stress

Zakaria
et al
[38],
2019

83 stu-
dents

PHQ-4 and PHQ-
8

LASSOab regression was
used to predict presurvey
and postsurvey PHQ-9
scores.

Students who experienced depres-
sion had more irregular sleep
patterns, used their phones more
at study places, spent more time
stationary, and visited fewer loca-
tions.

iOS and
Android

Light sensor,
GPS, accelerom-
eter, micro-
phone, screen
on and off, and
phone lock and
unlock data

Predict depres-
sion

Wang et
al [50],
2018

11 stu-
dents

Self-reported
stress

N/AStudents’ typing pressure in-
creased under stress.

iOSKeyboard 3D
touch data

Detect stressExposi-
to et al
[29],
2018
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Sample
size, n

Verification sur-
veys

Predictive modelingBehavioral patternsOperating
system

Data collectedAimStudy,
year

78 stu-
dents

COMOSWBac,

PHQ, SASad,

PPCae, and BFI

Hierarchical regression
models were used to pre-
dict subjective well-be-
ing.

Lower subjective well-being was
associated with more time spent
on campus, more time spent sta-
tionary, increased phone use in
the evenings, and more expenses.

AndroidAccelerometer,
GPS, screen on
and off, app
use, and notifi-
cation data

Detect subjec-
tive well-be-
ing and stress

Rhim et
al [49],
2020

176 stu-
dents

UCLA Loneli-

ness Scale, SSSaf,

MAASag, ERQah,

BRSai, PSS,

CES-Daj,

STAIak, and self-
reported affect
and fairness of
treatment

Linear regression was
used to predict long-term
changes in mental health
states; hierarchical linear
modeling was used for
short-term prediction.

Students who experienced dis-
crimination became more physi-
cally active; their phone use in-
creased in the morning, they had
more calls in the evening, and
they spent more time in bed on
the day of the discrimination.

iOS and
Android

Accelerometer,
GPS, phone
lock and un-
lock, screen on
and off, and call
log data

Detect stress,
anxiety, and
gender dis-
crimination

Sefidgar
et al
[53],
2019

220 stu-
dents

SIAS and self-re-
ported affect
(EMAs)

Compared support vector
machine, random forest,
and XGboost with

LOSOCVal and LOOCV
to predict negative affect.
The best model was sup-
port vector machine with
LOOCV.

Negative emotions were related
to geographical locations, but
this was affected by personal
routines and preferences, for ex-
ample, liking cinema theatres.
On Fridays and Saturdays, stu-
dents reported less negative
states.

iOS and
Android

Accelerometer,
GPS, call log,
and SMS text
message data

Detect state
affect, stress,
anxiety, and
depression

Cai et al
[30],
2018

65 stu-
dents

Self-reported af-
fect (EMAs)

Used random forest, sup-
port vector machine, and
a multilayer perceptron
of 1 hidden layer with
LOOCV to predict the
compliance rate of EMA
responses.

None of the results related sen-
sors to symptoms of depression
or anxiety.

AndroidGPS, call log,
accelerometer,
and SMS text
message data

Predict re-
sponse rate
and latency to
EMA

Boukhech-
ba et al
[31],
2018

138 stu-
dents

BDI-IIAdaBoostam with deci-
sion tree–based compo-
nents achieved the best
performance when fea-
tures were hybrid (contex-
tually filtered + uni-
modal).

Students who experienced depres-
sion had more disturbed sleep
patterns and more phone interac-
tions than students who did not
experience depression.

iOS and
Android

Accelerometer,
battery or
charge, Blue-
tooth, call log,
screen, location,
and phone lock
and unlock data

Detect depres-
sion

Xu et al
[46],
2019

212 stu-
dents

BDI-IIAdaBoost with decision
tree–based components
achieved a similar result
to majority-based base-
line predictors.

Same patterns as those men-
tioned earlier.

iOS and
Android

Accelerometer,
battery or
charge, Blue-
tooth, call log,
screen, location,
and phone lock
and unlock data

Detect depres-
sion

Xu et al
[46],
2019

54 stu-
dents

SIASDecision tree was used to
predict SAS.

Students who experienced high
social anxiety may be more like-
ly to buy food so they can eat at
home; they tended to visit fewer
places and had a narrower range
of activities.

AndroidGPS, call log,
and SMS text
message data

Predict social
anxiety

Boukhech-
ba et al
[44],
2017

80 stu-
dents

SIAS and self-re-
ported dimen-
sions of social
anxiety

Evaluated 7 predictive
models: linear regression,
decision tree, XBboost,

lightGBMan, random for-

est, MERFao, and Cat-
Boost.

The level of social anxiety was
predicted, but there were no spe-
cific patterns relating sensors to
symptoms of social anxiety.

iOS and
Android

GPS, pedome-
ter, accelerome-
ter, call log, and
SMS text mes-
sage data

Predict social
anxiety and
evaluate the
effectiveness
of imputation
methods in
handling miss-
ing data

Rashid
et al
[37],
2020
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Sample
size, n

Verification sur-
veys

Predictive modelingBehavioral patternsOperating
system

Data collectedAimStudy,
year

103 stu-
dents

STAI, UCLA
Loneliness Scale,

and TIPIap

Used random forest clas-
sifier to select features
and support vector ma-
chine with LOOCV to
predict each psychologi-
cal measure binarily.

Students who experienced anxi-
ety received responses later, had
more night-time communica-
tions, talked less about games
and sports, and used more plural
pronouns.

iOS and
Android

Facebook (Meta
Platforms, Inc)
private mes-
sages

Explore the re-
lationships
among private
social media
messages, per-
sonality traits,
and symptoms
of mental ill-
ness

Mendu
et al
[54],
2020

22 stu-
dents

PSQI, ESSaq,

MCTQar,

PROMISas-10,

BHMat-20, CD-

RISCau, Flourish-
ing Scale, Per-
ceived Stress
Scale, BFI, PHQ-
8, and UCLA
Loneliness Scale

N/AStudents slept less during exami-
nation periods and more during
breaks; they felt more stressed
during the breaks and examina-
tion periods; sensor data were
able to capture different routines
during weekdays, weekends, and
breaks.

iOS and
Android

Location, activi-
ty, step count
(iOS only), au-
dio, accelerome-
ter (iOS only),
device use,
charging event,
battery, light
(Android only),
SMS text mes-
sage (Android
only) and call
(Android only)
data and data
about currently
running apps
(Android only)

Detect stress
and its relation-
ship with aca-
demic perfor-
mance

Tseng et
al [45],
2016

217 stu-
dents

PHQ-4 and
EMAs

N/ADuring the COVID-19 pandemic,
students experienced more de-
pression and anxiety and in-
creased sedentary time and phone
use, whereas sleep and the num-
ber of locations visited de-
creased.

iOS and
Android

GPS, accelerom-
eter, phone lock
and unlock, and
light sensor data

Understand
the association
between be-
havioral and
mental health
and the
COVID-19
pandemic

Mack et
al [59],
2021

534 stu-
dents

Weekly surveys
on self-reported
depression symp-
toms and affect,
BDI-II, and
PHQ-4

A multitask learning
model with the 1D-

CNNav–based embed-
ding, fully connected
layers for reordering and
classification.

Individuals who experienced de-
pression had shorter sleep dura-
tion, had more interrupted sleep,
had more frequent phone locks
and unlocks, spent more time at
home, were more sedentary, had
fewer physical activities, visited
fewer uncommon places, and had
more consistent mobility pat-
terns.

iOS and
Android

GPS, accelerom-
eter, phone lock
and unlock,
Bluetooth, Wi-
Fi, call log, mi-
crophone, gyro-
scope, and light
sensor data

Evaluate the
cross–data set
generalizabili-
ty of depres-
sion detection

Xu et al
[60],
2023

180 stu-
dents

Self-reported af-
fect and PHQ-4

Evaluated different deep
learning models in terms
of their classification of
COVID-19 concerns:
CNN, InceptionTime,

MCDCNNaw, ResNetax,
multilayer perceptron,

TWIESNay, LSTM, and

FCNNaz; FCNN per-
formed the best, with an

AUROCba score of 0.7.

Heightened COVID-19 concerns
correlated with increased depres-
sion, anxiety, and stress. No spe-
cific results relating sensors to
symptoms of depression, anxiety,
or stress were observed.

iOS and
Android

GPS, accelerom-
eter, phone lock
and unlock,
light sensor,
and phone use
data

Explore the
association be-
tween stu-
dents’
COVID-19
concerns and
behavioral and
mental health

Nepal et
al [61],
2022

147 stu-
dents

PHQ-9, GAD-7,
PSS, UCLA
Loneliness Scale,
PQ-16, and PSQI

Logistic regression was
used to predict survey
scores.

Individuals at higher risks of
psychosis spent less time at
home. Individuals who were
lonelier had longer sleep duration
and fewer calls. Individuals who
experienced stress or depression
had longer outgoing calls.

iOSGPS, accelerom-
eter, call, and
screen time data

Predict survey
results on
mental health
from passive
sensors

Currey
and
Torous
[51],
2022
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Sample
size, n

Verification sur-
veys

Predictive modelingBehavioral patternsOperating
system

Data collectedAimStudy,
year

698 stu-
dents

PHQ-9, GAD-7,
PSS, UCLA
Loneliness Scale,
PSQI, PQ-16,

and DWAIbb

Logistic regression was
used to predict weekly
score improvement from
both active and passive
features.

Logistic regression was able to
predict changes in mood across
2 data sets of student partici-
pants. No results relating sensors
to symptoms of depression or
anxiety were observed.

iOS and
Android

GPS, accelerom-
eter, and screen
time data

Explore the
cross–data set
generalizabili-
ty of symptom
improvement
based on the
surveys

Currey
et al
[57],
2023

aPHQ: Patient Health Questionnaire.
bN/A: not applicable.
cDASS: Depression Anxiety Stress Scales.
dSIAS: Social Interaction Anxiety Scale.
eGAD-7: Generalized Anxiety Disorder Scale-7.
fPQ: Prodromal Questionnaire.
gPSS: Perceived Stress Scale.
hPSQI: Pittsburgh Sleep Quality Index.
iBASIS: Behavior and Symptom Identification Scale.
jSF: Short Form Health Survey.
kSFS: Social Functioning Schedule Scale.
lCGI: Clinical Global Impressions Scale.
mHDRS: Hamilton Depression Rating Scale.
nCAS: Coronavirus Anxiety Scale.
oHAI: Health Anxiety Inventory.
pUCLA: University of California, Los Angeles.
qXGBoost: extreme gradient boosting.
rLOOCV: leave-one-out cross validation.
sPANAS: Positive and Negative Affect Schedule.
tMPSM: Mobile Photographic Stress Meter.
uLSTM: long short-term memory.
vCNN: convolutional neural network.
wWEMWBS: Warwick-Edinburgh Mental Well-Being Scale.
xBDI: Beck Depression Inventory.
yEMA: ecological momentary assessment.
zPAM: Patient Activation Measure.
aaBFI: Big Five Inventory.
abLASSO: least absolute shrinkage and selection operator.
acCOMOSWB: Concise Measure of Subjective Well-Being.
adSAS: Sport Anxiety Scale.
aePPC: Perceived Personal Control.
afSSS: Social Support Scale.
agMAAS: Mindful Attention Awareness Scale.
ahERQ: Emotion Regulation Questionnaire.
aiBRS: Brief Resilience Scale.
ajCES-D: Center for Epidemiological Studies-Depression.
akSTAI: State Trait Anxiety Inventory.
alLOSOCV: leave-one-subject-out cross validation.
amAdaBoost: adaptive boosting.
anLightGBM: light gradient boosting machine.
aoMERF: mixed-effects random forest.
apTIPI: Ten-Item Personality inventory.
aqESS: Epworth Sleepiness Scale.
arMCTQ: Munich Chronotype Questionnaire.
asPROMIS: Patient-Reported Outcomes Measurement Information System.
atBHM: Behavioral Health Measure.
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auCD-RISC: Connor-Davidson Resilience Scale.
av1D-CNN: 1-dimensional convolutional neural network.
awMCDCNN: multi-channel deep convolutional neural network.
axResNet: residual network.
ayTWIESN: time warping invariant echo state network.
azFCNN: fully convolutional neural network.
baAUROC: area under the receiver operating characteristic curve.
bbDWAI: Digital Working Alliance Inventory.

Studies With Adults
Table 4 presents the data extracted from the studies conducted
with the general adult population. The average study duration
was 201.6 (SD 367) days. Apart from a 3-year longitudinal
study with 18,000 participants, the average number of
participants was 123.4 (SD 139.8). Of the 8 studies with adults,
2 (25%) [32,52] were conducted with the same set of
participants. A total of 3 (38%) studies used predictive modeling,

with regression-based models being the most common
[34,36,52], and 1 (12%) study identified gender differences in
behavioral patterns [27]. Overall, the research with adults
showed that GPS, accelerometer, ambient audio, and illuminance
data related to individuals’ emotional state. Adults with
depression were less likely to leave home and were less
physically active, whereas adults who were socially anxious
were more active and left their home more often but avoided
going to places where they needed to socially interact.
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Table 4. Summary of the reviewed studies with adult participants.

Sample
size, n

Verification
surveys

Predictive modelingBehavioral patternsOperating
system

Data collectedAimStudy,
year

86 Cana-
dian
adults

LSASb, GAD-

7c, PHQd-8,

and SDSe

N/AaGeneralized anxiety and de-
pression were correlated with
reward-related words. Social
anxiety was correlated with
vision-related words.

AndroidMicrophone da-
ta

Understand
whether ambient
speech correlates
with social anxiety,
generalized anxi-
ety, and depressive
symptoms

Di Mat-
teo et al
[32],
2021

84 Cana-
dian
adults

LSAS, GAD-
7, PHQ-8, and
SDS

A total of 3 logistic re-
gression models were
used to predict social
anxiety disorder and

Depression and social anxiety
were associated with in-
creased screen use. Depres-
sion was associated with sleep

AndroidGPS, micro-
phone, screen
on and off, and
light sensor data

Predict general
anxiety disorder,
social anxiety disor-
der, and depression

Di Mat-
teo et al
[52],
2021

generalized anxiety dis-disturbance and death-related
word features. order with repeated k-

fold cross validation.

26 adultsBISg-15, UP-

PSh, PAMi,

Used LASSOf regular-
ization to first select
features and trained a

Impulsivity was correlated
with increased phone use and
screen checking.

iOS and
Android

Call log, phone
lock and un-
lock, and phone
charging data

Detect impulsive
behavior, positivi-
ty, and stress

Wen et al
[34],
2021

and self-report-
ed feelingslinear regression model

to estimate trait impul-
sivity scores.

20 adultsSTAIkUsed linear classifier by

LASSO and XGBoostj
Anxiety was higher from
Monday to Thursday than on
Friday and Saturday. In-

AndroidLight sensor,
gyroscope, ac-
celerometer,

Predict anxiety
levels and stress

Fukazawa
et al [36],
2019 to classify the change

of anxiety.creased anxiety was associat-
ed with decreased mobility.

and app use da-
ta

During mild exercise, anxiety
was reduced.

359 His-
panic or

PHQ-2 and
PHQ-9

N/ANone of the results related
sensors to symptoms of de-
pression.

iOS and
Android

GPS, call log,
and SMS text
message data

Detect depressionPratap et
al [55],
2017 Latino

adults

7 adultsPANASl,

PSSm-14,

N/AStress can be recognized from
pitch, speaking speed, and
vocal energy.

iOS and
Android

Microphone da-
ta

Detect stress levelAdams et
al [26],
2014

MAASn, and
self-reported
affect

282
adults

GAD-7, PHQ-

8, and SPINo
N/AChanges in the number of lo-

cations visited and social ac-
tivity duration were associat-

AndroidGPS, call log,
app use, and
SMS text mes-
sage data

Detect anxiety and
depression

Meyer-
hoff et al
[48],
2021 ed with depression. Time

spent at exercise locations
was positively correlated with
changes in depressive symp-
toms.

18,000
adults
mainly

Big-5 personal-
ity test, self-
reported
mood, and

Used stacked RBMsp to
classify moods.

A strong correlation was
identified between daily rou-
tines and users’ personality,
well-being perception, and

AndroidGPS, Wi-Fi,
cell tower, ac-
celerometer,
microphone,

Predict moodServia-
Ro-
dríguez et
al [27],
2017 self-reports of

locations
other psychological variables;
the participants who were the
most emotionally stable tend-

SMS text mes-
sage, and call
data

ed to be more active, stayed
in more noisy places, and
texted less than participants
who were unstable.

aN/A: not applicable.
bLSAS: Liebowitz Social Anxiety Scale.
cGAD-7: Generalized Anxiety Disorder Assessment-7.
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dPHQ: Patient Health Questionnaire.
eSDS: Sheehan Disability Scale.
fLASSO: least absolute shrinkage and selection operator.
gBIS: Barratt Impulsiveness Scale.
hUPPS: Impulsive Behavior Scale.
iPAM: Patient Activation Measure.
jXGBoost: extreme gradient boosting.
kSTAI: State Trait Anxiety Inventory.
lPANAS: Positive and Negative Affect Schedule.
mPSS: Perceived Stress Scale.
nMAAS: Mindful Attention Awareness Scale.
oSPIN: Social Phobia Inventory.
pRBM: Restricted Boltzmann Machine.

Studies With Employees
Table 5 presents the data extracted from the studies that were
conducted with employees. Among the 4 studies with
employees, 1 (25%) study recruited its own participants [56],
and the other 3 (75%) studies [40-42] used the Tesserae data
set [63]. Compared with students and adults, the employee
population was the least studied, with the fewest articles.
However, the studies with employees had the largest number
of participants, with a mean of 427.3 (SD 280.3). All 4 studies
used regression-based predictive modeling, and 2 (50%) of them

[40,56] evaluated a variety of models, with logistic regression,
support vector machine, and random forest being the most
common methods. Detecting and predicting employees’ stress
in workplaces were examined in tandem with employees’ work
performance. The research goal for these studies was to
understand the underlining reasons for lowered work-related
productivity. In contrast to the other 2 populations (ie, students
and adults), less mobility was seen as positive for employees
because less mobility in workplaces was associated with more
positivity and higher performance.
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Table 5. Summary of the reviewed studies with employee participants.

Sample size, nVerification
surveys

Predictive modelingBehavioral patternsOperating
system

Data collectedAimStudy, year

554 employ-
ees

ITPb, IRBc,

OCBd, and

CWBe

Evaluated logistic regres-
sion, support vector ma-
chine, random forest, and

XGBoosta in terms of em-
ployee performance classi-
fication; XGBoost was the
best model with 5-fold
cross validation.

Higher performers un-
locked their phone fewer
times during evenings, had
less physical activity, visit-
ed fewer locations on
weekday evenings, were
more mobile, and visited
more locations during
weekends.

iOS and
Android

Accelerometer,
GPS, phone
lock and un-
lock, and light
sensor data

Predict stress
and job per-
formance

Mirjafari et
al [56], 2019

141 employ-
ees

CWB, OCB,
IRB, and
ITP

Evaluated logistic regres-
sion, support vector ma-
chine, Gaussian naive
Bayes, random forest, and
k-nearest neighbor in terms
of their classification be-
tween promoted and non-
promoted periods; the best
model was logistic regres-
sion trained on ROCK-

ETf-based features.

Promoted employees spent
more time on their phones
during early mornings and
late evenings and had more
unlocks during the night
time than nonpromoted
employees. Women’s mo-
bility increased after pro-
motion, whereas men’s
mobility decreased.

iOS and
Android

GPS, phone
lock and un-
lock, accelerom-
eter, Bluetooth,
and phone use
data

Detect
stress, well-
being, and
mood

Nepal et al
[40], 2020

257 employ-
ees

IRB, ITP,
and OCB

Linear regression was used
to predict a well-being
score.

Stress was higher with in-
creased role ambiguity.

iOS and
Android

Light sensor,
GPS, accelerom-
eter, and phone
lock and unlock
data

Predict stress
and work-
place perfor-
mance

Saha et al
[41], 2019

757 employ-
ees

EMAsg,

PAMh, and

PANASi

Ridge regression with reg-
ularization was used to in-
fer a mood instability
score.

Mood instability was nega-
tively correlated with the
duration of sleep, the
number of conversations,
the amount of activity, and
outdoor mobility.

iOS and
Android

Light sensor,
GPS, accelerom-
eter, and phone
lock and unlock
data

Predict
mood insta-
bility

Morshed et
al [42], 2019

aXGBoost: extreme gradient boosting.
bITP: Psychological Type Indicator.
cIRB: in-role behavior.
dOCB: organizational citizenship behavior.
eCWB: counterproductive work behavior.
fROCKET: random convolutional kernel transform.
gEMA: ecological momentary assessment.
hPAM: Patient Activation Measure.
iPANAS: Positive and Negative Affect Schedule.

Passive Sensors

Overview
Table 6 provides an overview of the range of sensors used to
detect patterns related to mild mental health symptoms and
summarizes the evidence of the effectiveness of the various
sensors. The first column lists the sensor, and the second column
presents how the data from that sensor are interpreted; in other

words, it presents the behavior-related information that the
sensor data are intended to represent. The third column indicates
which articles found significant associations between the specific
sensor and stress, anxiety, or mild depression. The fourth column
indicates which articles found no significant associations
between the specific sensor and mental health outcomes (ie,
explicitly stated so in the articles). In the subsequent sections,
we discuss the types of activities detected by the sensors.
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Table 6. Sensor summary of the reviewed studies.

No evidenceEvidence for effectivenessBehaviorSensor

[28,31,55][27,30,35,37,39-42,44-53,56-61]Location and physical activityGPS

[28,41,47][26,27,32,39,42,43,45,48,50,52,60]Voice recognition, ambient sound, and
sleep

Microphone

[28,42,48][36,39,41,43,45,50,52,56,58-61]Time spent in darkness and sleepLight sensor

[31,33][27,30,35-37,39-43,45-47,49-51,53,56-61]Movement and physical activityAccelerometer

[28,41,42][34,35,39,40,43,45-47,50,53,56,58-61]Phone usePhone locks and unlocks

[28,30,31,35,47,48,55][27,33,34,37,44-46,51,53,60]Social interaction and incoming and
outgoing calls

Call logs

[28,51][40,42,43,46,47,60]Social interactionBluetooth

None[27,38,42,47,60]Indoor locationWi-Fi

[28][29]Typing patterns and muscle activityKeyboard

[28,30,31,48,55][27,32,33,37,44,45,52]Social interaction and incoming and
outgoing messages

SMS text messages and emails

None[28,35,36,40,43,45,48,49,61]Phone use and social mediaApp use

[51][40,45,46,49,50,52,53,55,57]Phone useScreen on and off

None[36,60]Orientation of the smartphoneGyroscope

Social Interaction: Call and Text Logs, Audio,
Microphone, and Bluetooth
The social interaction of an individual is reflective of their
current mood and mental state [44,64,65,66]. Individuals with
depression and stress may be expected to decrease their social
interactions. This is measured through the frequency of receiving
texts and calls, how fast individuals respond, and the frequency
of being around others. Among the 40 included studies, 18
(45%) [27,28,30,31,33-35,37,44-48,51,53,55,60] examined call
logs to understand social interaction patterns, mainly through
the number of incoming and outgoing calls, the number of
missed calls, and the duration of calls. Individuals who
experience depression and stress may engage in longer outgoing
calls [51]. Evening communications were predictive of
depression [47], anxiety, and loneliness [54]. Students who
experienced discriminations [53] and anxious participants had
more evening communications [54]. Metadata on SMS text
messages  were  examined in  10  (25%)
[27,28,30,31,33,37,44,45,48,55] of the 40 studies, including the
frequency of receiving SMS text messages and the average time
of responses. People who are socially anxious were found to
take different amounts of time to respond to SMS text messages
and calls [33]. Increases in the number of calls were associated
with increased social anxiety [48]. Those who experienced social
anxiety were less likely to call or text in public [44]. For
students, fewer conversations were associated with more stress
[39] and more mood instability [42]. One of the studies found
that more emotionally unstable individuals tended to text more
than emotionally stable individuals [27].

Location: GPS, Bluetooth, and Wi-Fi
Location data can provide insights into individuals’ mental
health state in terms of the normal or abnormal variety and
frequency of locations visited [67]. As presented in Table 6,
GPS has been one of the most commonly used passive sensors

for stress, anxiety, and mild depression research. The findings
regarding location consistently demonstrate that students and
adults who experienced depression, anxiety, or stress tended to
visit fewer places [39,44,50,58-60]. One of the studies [48]
found that location data are highly inversely correlated with
mild depression severity. The main way in which this is
measured is through the frequency of exiting the house, the
variety of locations visited, and mobility. The frequency of
exiting the house is less for individuals who are depressed, and
there is less variety in the visited locations for individuals who
are socially anxious. Individuals who are feeling depressed often
experience being less energetic [68,69]. Overall, negative
emotions were associated with time spent at specific locations,
but this is also affected by personal routines and preferences
[30]. For students, stress and lower subjective well-being were
associated with more time spent on campus [39,49] and less
time spent at campus food locations [39]. Students who
experienced depression spent more time at home [60], whereas
individuals at higher risk of psychosis spent less time at home
[51]. Time spent at exercise locations was positively correlated
with changes in depressive symptoms [48]. Another study [38]
distinguished between students experiencing severe stress and
those with normal stress levels, revealing that students with
severe stress spent significantly less time on campus and were
less involved in work-related activities compared with their
counterparts with normal stress levels. As for employees, higher
performers were found to visit fewer locations on weekday
evenings but more locations during weekends [56].

Voice Recognition: Audio
The microphone is used to measure audio data of speech and
ambient noises. One of the studies [26] examined how people
with stress speak by analyzing their voice, including the speed
of speech, how energetic their vocality is, and the pitch. One
caveat is that the study by Adams et al [26] used audio captured
within laboratory environments and found that stress could be
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recognized from the absence of speech. In variable
environments, it will be harder to recognize the changing voice
patterns. One study found that generalized anxiety and
depression related to reward-related words in ambient speech,
and social anxiety related to vision-related words [32]. Another
study [52] identified that people with depression tend to speak
less and use more death-related words.

Sleep: Accelerometer, Audio, and Illuminance
Sleep is highly correlated with individuals’ mental state
[26,35,36,42,45-47,59,60]. Among the 40 included studies, 5
(13%) [35,46,52,60] found that more disturbed sleep correlated
with more depressive symptoms. However, occasional sleep
disturbance is not necessarily predictive. For example, for those
with social anxiety, sleep disturbance might be positive because
it suggests night-time activity and social interactions. Metadata
on the time spent in darkness can be indicative of sleep patterns.
The study by Fukazawa et al [36] stated that anxiety levels
increase when the time spent in darkness increases. The study
by Di Matteo et al [52] found that individuals with symptoms
related to social anxiety and depression spent less time in darker
environments. Another study [39] stated that stress changed
students’ sleep patterns, where they became less likely to move
around between 6 PM and midnight. Of the 40 studies, 6 (15%)
found that shorter sleep duration was correlated with more mood
instability [42], more depressive symptoms [59,60], and more
stress [36,44]. One of the studies [45] also found that the student
population, in general, tended to sleep less during examination
periods and slept more during breaks, and they felt more stressed
during both breaks and examination periods.

Phone Use: On and Off Screen, Lock and Unlock, and
App Use
Today, smartphones are used for self-regulated “distractions,”
such as the use of social media [38]. This type of self-regulated
distraction can temporarily reduce stress. The study by Chikersal
et al [47] showed that depression can impact concentration
levels, so if distraction by phone can be measured, this could
be a potential predictive marker. Several studies found that
increasing phone use was correlated with more depressive
symptoms [46,47,50,52,58-60], anxiety [52,59], impulsivity
[34] and lower subjective-wellbeing [49]. The study by Morshed
et al [42] outlined that for postsemester depression, phone use
at night is not predictive, whereas another study [47]
summarized that phone use during the day is predictive of
depression. More frequent phone locks or unlocks correlated
with higher levels of depressive symptoms [60] and impulsivity
[34]. Higher performing employees tended to unlock their
phones less frequently in the evenings [56]. Additionally,
individuals who were promoted spent more time on their phones
during early mornings and late evenings, with more unlocks
occurring during nighttime compared with their nonpromoted
counterparts [40].

Physical Activity and Mobility: Accelerometer
According to Table 6, along with GPS, accelerometer is one of
the most widely used passive sensors in digital phenotyping
research to monitor participant’s mobility, activity, and
sedentary periods. Increased sedentary time was correlated with

increased depressive symptoms [47,48,50,58-60], increased
mood instability [27,42], increased stress [36] and decreased
subjective well-being [49]. Exercise duration was positively
correlated with changes in anxiety [36] and depressive
symptoms [48]. The study by Mirjafari et al [56] found that the
amount of movement and physical activity was related to
employee’s stress level and highlighted that if the activity is
regular, it should reduce stress. Different occupations require
different levels of physical activity, social interactions, and
mobility. For instance, developers spend most of their time at
their desks, and their tasks might require less social interaction
and mobility at work, but this does not mean they are more
stressed. Project managers have more mobility during the day,
and this may be because they need to move around to meet with
the stakeholders [56]. Several studies have observed variations
in mobility and gait consistency. The study by Boukhechba et
al [44] reported that individuals with high social anxiety
exhibited a narrower range of activities, whereas the study by
Xu et al [60] revealed that students experiencing depression
demonstrated more consistent mobility patterns. Additionally,
accelerometer data indicated that individuals with low social
anxiety maintained a steady walking pace, whereas those with
high social anxiety tended to walk more rapidly and with greater
irregularity [33].

Muscle Activity: Keyboard
Stress can cause muscle tension [70,71]. One of the studies [29]
collected the data of users with stress via a keyboard in a
laboratory environment and found that typing pressure
significantly increased under stressful conditions.

Challenges
Digital phenotyping for mild mental health symptoms in
nonclinical participants can present ethical challenges,
limitations to the research, and technical challenges. We review
the challenges that were stated in the literature.

Ethical Challenges
Among the 40 included studies, 7 (18%) specifically mentioned
privacy-related ethical concerns [28,31,35,36,40,41,43]. A major
concern for participants across several studies was whether
authorities, such as employers or teachers, will have access to
their data. One of the studies [28] conducted in-depth interviews
with 15 students to understand their perspectives on digital
phenotyping through app prototypes. They found that the
students’ core concerns were whether the acquainted university
staff had access to the data. They also found that students’
acceptability of such apps depends on the perceived relevancy
of the data collected and the effects on students’ devices. The
study by Nepal et al [40] with employees reported a similar
privacy concern of whether the employees’data would be leaked
to their boss; if the boss is aware of a potential mental health
issue, it may impact their work performance ratings.

The methods of collecting and storing passive sensing data also
present privacy concerns [28,70,72], particularly when the
tracked data involve sensitive topics, such as mental health [72].
Sensors that infer individuals’ social interactions provide
insights into their mental health status [26,36,53]. However,
these types of data were less likely to be shared by participants
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because of privacy concerns. In the study by Rooksby et al [28],
students identified camera, microphone, call log, and keyboard
data as highly unacceptable types of data to capture.

Location data were associated with privacy and security
concerns. In the study by Wen et al [34], participants felt
uncomfortable with location tracking because it might breach
their privacy and were hesitant to log their location when they
moved from one place to another. Some studies excluded
specific sensors to protect the participant’s privacy. Location
data were not recorded owing to security concerns, even though
they could provide valuable insights into the mental state
[36,38]. In the study by Adams et al [26], the microphone was
disabled to capture calls and conversations while individuals
were talking to their family members. Another ethical concern
was regarding the misuse of data. The main focus in studies of
digital phenotyping using smartphones was on tracking
participants’ usual behavioral patterns and identifying whether
they behaved unusually. There were concerns regarding
secondary uses. For example, participants’ leaked data can be
used for advertising purposes or to create content [34,41].

Limitations to the Research
Coping mechanisms related to stress and anxiety vary among
individuals [22]. Individual differences can make it challenging
to label individuals as stressed, anxious, or depressed,
particularly nonclinical participants. Certain behavioral patterns
can be generally expected; however, not all individuals will
follow the same pattern. To make generalizable and powerful
analyses and understand behavioral patterns associated with
mild mental health concerns, it is recommended to study diverse
groups for longer than a 2-week period. Of the 40 included
studies, 2 (5%) [33,39] focused on a particular demographic
subset, namely, undergraduate students. Therefore, the
generalizability of the studies is limited. In the studies by
Rooksby et al [28], Exposito et al [29], and Wang et al [50],
limited variation in representation was seen as a major
limitation. The studies by Rhim et al [49], DaSilva et al [39],
and Fukazawa et al [36] stressed the importance of selecting a
wider age group, as younger people use their smartphones
proactively, whereas older people’s behavioral patterns might
show differences when they are experiencing mild mental health
symptoms. The study by Nepal et al [40] suggested that diverse
population testing is required for more reliable results,
considering interindividual differences. Furthermore, the
accuracy and effectiveness of machine learning models are
highly affected by data set quality. We noticed that over the last
4 years [38,46,57,60], there has been increased focus on the
generalizability of machine learning models, with the goal of
assessing generalizability across students from various years,
classes, and institutions.

Technical Challenges
Digital phenotyping studies on mild symptoms related to mental
health with nonclinical participants presented technical
challenges. A main concern was the accuracy of the sensor data
collected from smartphones. The study by Fukazawa et al [36]
sought to understand the time spent in darkness and its effects
on the relationship between stress and anxiety patterns and sleep.
However, when individuals carried their smartphone in their

pockets or bags, the smartphone could not detect the darkness
of the environment. This presented a challenge because
illuminance data were captured even when the phone was not
used actively. Similar concerns were raised in the study by Di
Matteo et al [52]. The time spent in darkness feature did not
distinguish whether the device was in a dark room or a dark
location (ie, in the pocket). The study by Melcher et al [35]
stated that the captured accelerometer data may not accurately
represent daily activity, as not all participants constantly carried
their phones throughout the day. In the study by Di Matteo et
al [32], environmental audio did not produce clear transcripts
in louder environments. This study mentioned that transcripts
were produced based on dictionaries, so language analysis of
complex speech, such as metaphors and sarcasm, was ignored.
Therefore, the entire content of the conversation might not be
correctly interpreted. In the study by Di Matteo et al [52], similar
challenges were identified, as the speech data produced from
smartphones were not clear. The recorded voices of the
participants were masked by those of the people around them
or even sound from other sources such as television or radio.
Moreover, it was not possible to identify whether the
death-related words came from the participants or from the
people they interacted with.

Another technical challenge identified was battery life [47]. As
expected, moment-by-moment data collection requires high
power use, which might shorten the battery life. Participants
had to charge their phones more often, which was inconvenient,
and altered their usual behavior because they could not carry
their phones as usual when the phones were charging. The study
by Chikersal et al [47] mentioned another technical limitation:
the transfer rate was affected if the app stopped working
randomly. During these times, data were not transferred or
collected. With the increase in the use of 5G technology, Wi-Fi
data for indoor locations may cease to be relevant. In the study
by Zakaria et al [38], some users were on their 5G indoors rather
than their Wi-Fi, and this may point to a future trend of the use
of 5G. We now turn to the discussion.

Discussion

Principal Findings
This literature review examined digital phenotyping studies that
detected and predicted stress, anxiety, and depression in their
mild states in nonclinical populations using data collected from
smartphones. The primary objective of digital phenotyping in
the context of mild mental health was similar among the 3
participant cohorts: students, adults, and employees. However,
notable distinctions emerged among these groups. Among
university students, the geographical proximity and relevance
of the university campus were discerned as influential factors.
Moreover, academic pursuits, particularly coursework and
study-related activities, assumed significance within this
demographic. Conversely, among employees, work aspects held
salience, accompanied by the workplace environment. The
remaining studies encompassed a general population cohort,
delineated by undisclosed characteristics. Overall, we found
that identifying behavioral abnormalities related to stress and
anxiety was possible but raised certain challenges. Generalized
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stress and anxiety symptoms vary largely among individuals,
whereas serious diagnoses, such as bipolar disorder or
schizophrenia, have well-documented behavioral changes. Sleep
was a strong predictor variable, yet some individuals tended to
sleep more while they were stressed, whereas others lacked
sleep under stress. This may be one of the reasons why there
are fewer studies and reviews completed on stress and anxiety
compared with studies on serious conditions such as bipolar
disorder, severe depression, and schizophrenia. Another reason
is that clinical psychologists and psychiatrists who are familiar
with clinical populations are leading the digital phenotyping
research.

Studies tended to use self-report to categorize nonclinical
populations as stressed, depressed, or anxious. It was not always
clear whether the identified patterns of the passive sensor data
would effectively discriminate among groups. Most studies
used prestudy and poststudy surveys to identify participants’
mental state. There were concerns raised regarding the accuracy
of the categorization of self-report surveys. For instance, the
study by Sefidgar et al [53] stated that students with stress may
not report themselves as very stressed. Melcher et al [70]
conducted a review and found that students were concerned
regarding their professors learning about their data [71]. Thus,
the accuracy of self-report remains an issue for passive sensing
studies that use self-report labels, especially when there are
privacy concerns. This may be related to the high dropout rates
in the studies.

Many types of data sensors were used in the reviewed studies.
Few articles related sensor patterns to specific symptoms
validated by relevant psychological evidence. One of the studies
[46] extracted interpretable rules (such as intermittent sleep
episodes or number of bouts of being asleep or number of
outgoing calls during weekends) through association rule mining
to distinguish the behavioral patterns between students who
were depressed and students who were not. However, although
the behavioral patterns were identified, they were not validated
to be exclusive to the addressed mental health issue; for
example, high mobility and physical activity do not necessarily
mean that the person is not stressed. In the study by Tseng et
al [45], students were more mobile during the examination week,
despite being under high pressure and stress. In the same study,
some students were less mobile when studying for their
examinations, which we cannot necessarily be interpreted as
being under stress. Of the 40 included studies, 4 (10%)
[35,58,59,61] explored the effects of the COVID-19 pandemic
on behavioral and mental health. Additional recent
investigations, which independently gathered their own data
sets during the COVID-19 pandemic, have shown that
quarantine measures have influenced individual behavioral
patterns. For the purpose of making precise predictions in digital
phenotyping, it is imperative to consider contextual and
environmental factors.

Privacy and secondary data uses were the main concerns
identified for digital phenotyping. Individuals using digital
phenotyping systems have the right to provide informed consent.
This means that they should be made aware of how all their
data will be used, who will have access to their data, where their
data will be stored, and for how long their data will be stored,

and they have the right to decline to participate. We urge
researchers and medical practitioners to carefully consider the
system design and requirements because data transferred to the
cloud and other services may fall under various service
agreements. To empower end users and improve the quality of
digital phenotyping systems, we recommend that transparent
algorithms and explainable artificial intelligence be combined
with user-accessible and understandable displays so that adults
can engage in the process of identifying and categorizing
patterns related to mild mental health symptoms.

The digital phenotyping research focused on in this review may
enable the design of tailored intervention programs for
nonclinical participants who are showing symptoms of stress,
anxiety, and mild depression. Most of the studies included in
this review were conducted within a restricted timeline and
limited scope of detection and prediction. Only 4 (10%) of the
40 studies mentioned potential intervention programs upon
predicting stress, anxiety, and mild depression [31,38,47,53].

Our review has some limitations. We excluded studies conducted
with teenagers, children, and adults who were clinically
diagnosed. Thus, we missed studies that focused on the detection
and prediction of stress, anxiety, and mild depression in these
populations. These populations are likely to show different
patterns than those in adults who are not clinically diagnosed.
Further, we excluded studies conducted using technologies other
than smartphones. We chose this more limited subset of
technologies to scope findings related to widely available
technologies. The availability of technologies is changing
rapidly, and wearables such as smartwatches are becoming more
common. As wearable technologies become ubiquitous, we
recommend including them in future systematic reviews.

This literature review is unique in that it examines studies
focused on the behavioral patterns of nonclinical populations,
namely students, employees, and adults who are stressed,
anxious, or mildly depressed. We examined each type of sensor
and indicated when it was significantly associated with mild
mental health symptoms. We identified commonalities in the
studies in terms of ethical challenges, limitations to the research,
and technical challenges.

Conclusions
This systematic literature review found that digital phenotyping
can be an effective way of identifying certain behavioral patterns
related to stress, anxiety, and mild depression. A range of
passive sensors was used in the studies, such as GPS, Bluetooth,
ambient audio, light sensors, accelerometers, microphones,
illuminance, and Wi-Fi. We found that location, physical
activity, and social interaction data were highly related to
participants’ mental health and well-being. The surveyed
literature discussed the ethical and technical challenges that
limit the accuracy and generalizability of results. One of the
greatest challenges was privacy concerns, and these were
primarily related to camera, location, SMS text message, and
call log data. Another challenge was the significant variation
among individuals and their unique behaviors related to mental
health. Finally, technical limitations have not been fully
resolved, with issues such as the sensor for illuminance still
capturing data while not in use reducing the accuracy of the
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collected data. It is hoped that this overview of digital
phenotyping and mental health studies conducted in the last
decade, including the common privacy and technical concerns,
can help move this area of research forward, ultimately

improving the quality of passive sensing, and provide benefits
in terms of the early detection of relevant mild mental health
phenomena.
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