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Abstract

Background: Motion tracking technologies serve as crucial links between physical activities and health care insights, facilitating
data acquisition essential for analyzing and intervening in physical activity. Yet, systematic methodologies for evaluating motion
tracking data, especially concerning user activity recognition in health care applications, remain underreported.

Objective: This study aims to systematically review motion tracking in daily living and physical activities, emphasizing the
critical interaction among devices, users, and environments from a design perspective, and to analyze the process involved in
health care application research. It intends to delineate the design and application intricacies in health care contexts, focusing on
enhancing motion tracking data’s accuracy and applicability for health monitoring and intervention strategies.

Methods: Using a systematic review, this research scrutinized motion tracking data and their application in health care and
wellness, examining studies from Scopus, Web of Science, EBSCO, and PubMed databases. The review used actor network
theory and data-enabled design to understand the complex interplay between humans, devices, and environments within these
applications.

Results: Out of 1501 initially identified studies, 54 (3.66%) were included for in-depth analysis. These articles predominantly
used accelerometer and gyroscope sensors (n=43, 80%) to monitor and analyze motion, demonstrating a strong preference for
these technologies in capturing both dynamic and static activities. While incorporating portable devices (n=11, 20%) and multisensor
configurations (n=16, 30%), the application of sensors across the body (n=15, 28%) and within physical spaces (n=17, 31%)
highlights the diverse applications of motion tracking technologies in health care research. This diversity reflects the application’s
alignment with activity types ranging from daily movements to specialized scenarios. The results also reveal a diverse participant
pool, including the general public, athletes, and specialized groups, with a focus on healthy individuals (n=31, 57%) and athletes
(n=14, 26%). Despite this extensive application range, the focus primarily on laboratory-based studies (n=39, 72%) aimed at
professional uses, such as precise activity identification and joint functionality assessment, emphasizes a significant challenge in
translating findings from controlled environments to the dynamic conditions of everyday physical activities.

Conclusions: This study’s comprehensive investigation of motion tracking technology in health care research reveals a significant
gap between the methods used for data collection and their practical application in real-world scenarios. It proposes an innovative
approach that includes designers in the research process, emphasizing the importance of incorporating data-enabled design
framework. This ensures that motion data collection is aligned with the dynamic and varied nature of daily living and physical
activities. Such integration is crucial for developing health applications that are accessible, intuitive, and tailored to meet diverse
user needs. By leveraging a multidisciplinary approach that combines design, engineering, and health sciences, the research opens
new pathways for enhancing the usability and effectiveness of health technologies.

(JMIR Mhealth Uhealth 2024;12:e46282) doi: 10.2196/46282
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Introduction

Daily Living and Physical Activity in Health Care
Motion tracking data are pivotal for understanding physical
activity in hospitalization and rehabilitation [1,2]. However, the
procedures for investigating motion tracking data have not yet
been systematically reported, especially in the context of user
activity recognition in health care application studies. Several
findings indicate that living patterns, such as daily activity
trajectories, physical activity, and dietary behaviors, are
associated with the initial stages of disease development [3-5].
Inadequate daily physical activity exacerbates symptoms of
mental distress and contributes to medical illnesses, including
cardiovascular and kidney diseases [6,7]. Conversely, regular
physical activity can enhance wellness by activating the immune
system and reducing inflammation [8,9]. Monitoring activities
of daily living (ADLs) [10] is vital for self-care and long-term
health [11,12], making the analysis of daily living and physical
activity data crucial for disease prevention and promoting a
healthy lifestyle.

A comprehensive analysis of motion tracking data in daily living
and physical activities scenarios is essential for delving into
human activity patterns and behavior intentions. Research shows
that activity patterns are linked to behavior intentions [13,14],
and motion data help uncover these patterns, improving
diagnostic efficiency [15]. The motion data of ADLs represent
activity patterns [16,17], while the formation of these patterns
is multifaceted [18], with external influences playing a role [19].
Accumulated movement behaviors, when stimulated by the
environment, become habitual actions [20,21]. By analyzing
the motion data of ADLs, researchers have found that the
formation of activity patterns is attributed to individuals’
cognitive representations [22] and environmental factors, such
as sedentary behaviors in working and learning spaces [10,23],
as well as daily routines at home [24]. Thus, motion tracking
data, enriched by environmental context, effectively represent
and interpret human behaviors across different settings.

When applied as representations of ADLs, motion data can
facilitate behavioral change through interventions. The analysis
and visualization of motion data concerning ADLs can
potentially enhance mutual understanding between physicians
and patients in medical education and remote clinical
consultations [25,26]. Patients’ trajectories of past daily activity
and medical histories are essential indicators for physicians to
understand symptoms [27]. Human physical activity patterns
can reflect the formation of disease and aid in the prevention
and management of illness conditions [28,29]. In addition, many
researchers have devised human activity interventions and
suggested that early care physical activity interventions are
feasible for promoting healthy lifestyles [30,31].

Motion Tracking Technology
The evolution of motion tracking technologies in health care
has transitioned from basic motion detection systems aimed at
rehabilitation to artificial intelligence (AI)–enhanced wearable
sensors for personalized care. Early systems focused on simple
motion detection, primarily for rehabilitation [1]. Advancements
led to the inclusion of wearable sensors and AI for personalized

health care [32]. Recent developments have embraced Internet
of Things (IoT) frameworks for more comprehensive health
monitoring [33]. In addition, the shift toward patient-centered
care has been facilitated by technologies that assess and support
daily activities and physical functions [11,34]. The integration
of machine learning and sensor data fusion has further enhanced
the ability to monitor and analyze patient movement in real
time, contributing to preventive health care and improved
treatment outcomes [12,35]. Researchers in health care and
computer science have discussed the possibility of using motion
tracking. Data classification, precision, validity, and diagnostic
prediction in activity recognition are popular areas of
investigation [36,37]. Several studies have also discussed how
collecting voluminous data might contribute to personalized
health surveillance systems [32,33]. Furthermore, scholars in
computing have claimed that high-quality data would enhance
data-driven AI processing [38,39]. IoT, with motion tracking
techniques (eg, inertial measurement unit, smartphone,
smartwatch, Mocap system, etc) [40,41] and AI processing (eg,
human activity recognition, positioning system, etc) [35,42],
have been widely used. It is anticipated that AI processing using
high-quality motion tracking data would provide accurate and
timely health information. For instance, smartphones with
built-in motion-tracking sensors can record activity trajectories
and routine data to identify activity types and patterns [43].
Studies have also found that motion data can be used to learn
about humans’ typical behaviors and identify any outlier
activities [44,45]. Moreover, it can boost individuals’ likelihood
of engaging in physical activity over the long term, which is
associated with habit formation [46,47].

However, the data interpretation of human activity trajectories,
environment, and process has not been discussed as extensively
as technology. Conversely, several studies have reported that
learning from health information could promote health literacy
[48,49]. Yet, the public has a long-standing misunderstanding
of technology [50,51]. The technology-based health information
needs to be in readable language [52,53]. In the meantime, the
foundational criteria (ie, ease of use, usefulness, and enjoyment)
of the technology acceptance model (TAM) provide insights to
evaluate human-technology interaction [54,55]. TAM
exemplifies the 3 needs of humans in interpreting
technology-based health information.

The Usability of Motion Tracking Data
Designers play a key role in making data legible, efficiently
transmitted, and actively engaging for users [56-58]. To optimize
the utility and interpretability of motion tracking for both
professionals and users, designers should gather health
information needs from the user’s cognitive standpoint, thereby
refining the functionality and analytical clarity of
motion-tracking systems [59,60]. The adoption of data-enabled
design (DED) [61-63] in health care emphasizes continuous
data refinement and context-specific design. On the basis of
these, health care–related applications, as intelligent solutions
[62], should integrate data, users, and environments to optimize
the transmission of health information and the intelligent
ecosystems. Scholars asserted that design studies could
illuminate the nature of nonsocial entities, such as data, to create
durable systems [64,65]. This approach has been implemented
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in designing health interventions [66,67]. It overcomes the
barrier between people and technology, offering guidance for
enhancing the sustainable hybridization of the social and the
technical entities.

Motion tracking serves as a bridge, delivering activity data to
health care professionals and users. Understanding data
collection and analysis is vital, involving motion data (eg,
trajectories and durations) and environmental elements in
physical settings. Analysis entails identifying and classifying
activities. Yet, interactions among researchers, participants,
devices, and environments are seldom explored. Therefore, it
is critical to methodically study these interactions within health
care applications and their environments.

Integrating Actor Network Theory in Research
In health care application research on ADLs, interactions occur
between participants, sensors, cameras, and scenario objects.
The actor network theory (ANT) has been instrumental in
analyzing these interactions within a network [68,69], especially
in human-computer interaction and design studies [70]. ANT
outlines three critical aspects for network analysis: (1) actor-led
activities, where initiators, such as individuals or devices, lead
activities and interact with others; (2) purpose-oriented
interactions, which serve as the guiding principle for activities;
and (3) the dynamic interplay between devices, environmental
factors, and individuals, shaping the network. Integrating ANT
into motion tracking data analysis illuminates the movement
trajectories and environmental influences, clarifying
human-device-environment relationships.

Objectives
Prior research has thoroughly examined motion tracking in
health care, mainly focusing on algorithm validation and
technology deployment for rehabilitation and hospitalization
[42,71]. Meanwhile, several studies have reviewed the benefits
of physical activity for medical purposes [10,26]. However,
systematic reviews exploring the use of motion tracking
techniques in ADLs and their connection with humans for health
care and physical wellness research are scarce. Furthermore,
studies investigating the process of analyzing ADLs for health
care applications are even rarer. This study shifts focus to motion
data, participant engagement, and situational contexts as key
components in health care technology. It delves into how
participants interact with technology in physical environments,
technology adoption, and participant behavior. This systematic
review aimed to map and collate literature on the motion
tracking data of daily living and physical activities for health
care and physical wellness application research. It aimed to
evaluate the research landscape, identify literature gaps, and
endorse a designer-engaged approach to studying ADLs. The
overarching research questions are as follows:

1. How was the motion tracking technique used in ADLs for
health care–related studies and physical wellness
applications?

2. What are the environmental factors, interactions, and
processes of ADLs in health care and physical wellness
application research?

3. What is the design opportunity in health care and physical
wellness application research?

Methods

Overview
Our research focuses on investigating the motion tracking data,
interaction, and process of ADLs in health care and physical
wellness applications from the designers’ perspective. Owing
to the exploratory and descriptive nature of our research
question, we opted for a systematic review [72,73], with the
aim of compiling and comprehensively summarizing the relevant
research. To guarantee rigor and coherence with our research
objectives, 2 researchers meticulously screened the studies for
inclusion. These 2 researchers independently conducted
screening work on the same data set and met weekly for
discussions. Following 5 detailed discussions about the
screening methodology, centered on eligibility criteria and
research focus, we conducted 2 pilot searches to refine our
search strategy and ensure the accuracy of our results. In
addition, we discussed the framing of questions being addressed
with reference to participants, interventions, comparisons, and
outcomes (PICO) [74], ensuring a comprehensive and structured
approach to our review (Table 1). The overarching goal of the
systematic review is to identify and map the available evidence
investigating the technology use in everyday health care and
physical wellness apps and its relationship with humans and
environments. We then applied ANT [68,69] to analyze the
interaction in activity scenarios and used design narrative
through the lens of DED [62] to analyze the process of motion
tracking data in health care and physical wellness application
research scenarios.

Given the independent nature of technology, user behaviors,
and environments in our research, we developed bespoke criteria
for bias assessment. This approach enabled 2 independent
reviewers to identify potential biases in study design, execution,
and reporting accurately. Discrepancies between reviewers were
resolved through consensus, ensuring a balanced evaluation.
To further validate our review, we engaged relevant scholars
to critique the search strategies of both pilot and final searches
stages, substantially enhancing the review’s validity and
comprehensiveness. Our thorough assessments of potential
biases, both at the study and outcome levels, were integrated
into our data synthesis, paving the way for a credible
interpretation of the evidence (detailed in Multimedia Appendix
1 [75-128]).
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Table 1. Search term– and strategy-based participants, interventions, comparisons, and outcomes (PICO) framework and research questions.

Search strategiesSearch termsDetailsComponent

N/AN/AaPopulation • General public, including special populations
such as children, pregnant women, older
adults, people with disabilities, and athletes

TITLE-ABS-KEY (“motion capture” OR
“MoCap” OR “motion analysis” OR “mo-
tion tracking” OR “body positioning” OR
“human activity recognition” OR “IMU”
OR “dynamometry”)

Motion trackingIntervention • Use of motion tracking techniques in ADLsb

and physical activity scenarios

TITLE-ABS-KEY (“Internet-of-things” OR
“IoT” OR “wearable” OR “virtual reality”
OR “augmented reality” OR “mixed reality”
OR “machine learning” OR “deep learning”
OR “decision making” OR “artificial intel-
ligence” OR “AI”)

IoT, AI, VR, and AR• Application of AIc processing for activity
classification and analysis; or using devices
(including sensors, motion capture technology,

IoTd devices, VRe, ARf, and MRg)

N/AN/AComparator • Variation in technology use, sensor placement,
and participant interaction across different
studies

TITLE-ABS-KEY ([“sport” OR “kinemat-
ics” OR “sport analytics” OR “wellness”
OR “health”] AND [“smart health” OR
“healthcare” OR “health monitoring” OR
“health of things” OR “digital health” OR
“mobile health system” OR “behaviour
change” OR “decision making”])

Health and sport applicationOutcome • Identification and classification of daily living
and physical activities within health care and
physical wellness applications

• Understanding of environmental factors, inter-
actions, and processes in health care and
physical wellness applications

• Exploration of design opportunities in health
care and physical wellness applications

aN/A: not applicable.
bADL: activity of daily living.
cAI: artificial intelligence.
dIoT: Internet of Things.
eVR: virtual reality.
fAR: augmented reality.
gMR: mixed reality.

Selection Criteria

Study Types
Original research articles published in scientific, technical, and
medical journals in English from January 2013 to December
2022 were considered. Reviews, conference abstracts,
magazines, and newspaper articles were excluded. We
concentrated exclusively on studies encompassing ADLs,
specifically within the realms of health care and physical
wellness application research, to ensure the relevance of motion
tracking technology to real-world health and wellness contexts.
Eligibility for inclusion was determined for studies using
motion-tracking sensors, motion capture technology, IoT
devices, multiple sensors capable of motion tracking, virtual
reality (VR) or augmented (mixed) reality, or AI, highlighting
our focus on advanced technologies that offer innovative
approaches to monitoring and enhancing health-related activities.
Eligible populations include the general public as well as
specific demographics including children, pregnant women,
older adults, individuals with disabilities, and athletes.

Exclusions were applied to studies that (1) focused on
technology or materials development (ie, technical validation),
as our interest was in direct applications of technology in health
and wellness, rather than preliminary stages of technological
development; for instance, one research focused on preliminary
technology validation without applying findings to enhance
health-related activities, missing our application-focused criteria,
although it mentioned motion tracking, smart systems, inertial
measurement unit, and ADLs [129]; (2) presented a data set
without further analysis, as our aim was to understand the
implications of data on ADLs, necessitating detailed data
interpretation; (3) investigated activities in clinical scenarios
such as injury, impairments, hospitalization, rehabilitation, etc,
because our focus was on everyday activities rather than those
strictly within clinical settings; (4) were applied to nonhuman
subjects to maintain the applicability of findings to human health
and wellness; or (5) did not include any user study results or
did not clearly explain their findings, as comprehensible and
applicable user data are crucial for informing practical health
care and wellness interventions (Textbox 1).
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Textbox 1. Eligibility criteria for considering the studies in the review.

Inclusion criteria

• Study types

• Original research articles published in scientific, technical, and medical journals in English from January 2013 to December 2022

• Studies that encompass activities of daily living (ADLs) or physical activity within the scope of health care and physical wellness application
research

• Studies using motion-tracking sensors, motion capture technology, internet of things (IoT) devices, multiple sensors capable of motion
tracking, virtual reality (VR) or augmented (mixed) reality (A[M]R), or artificial intelligence (AI)

• Population

• General public, including special populations such as children, pregnant women, older adults, people with disabilities, and athletes

• Materials

• Research investigating the use of motion tracking for ADLs analysis

• Studies using motion-tracking sensors, motion capture technology, or multiple sensors for motion monitoring, analysis, visualization, or
providing feedback

• Research integrating a combination of AI processing, IoT devices, or VR (A[M]R) technologies

• Studies integrating motion tracking data and AI technology for the classification of ADLs

• Comparison

• Variation in technology use, sensor placement, and participant interaction across different studies

• Research outcomes

• Measures or indexes describing the activity in health care or physical wellness application research (eg, daily human activities, physical
activities, or daily activities of special populations)

• Studies focusing on the use of motion tracking for monitoring, analyzing, visualizing, or providing feedback

• Research related to health care or physical wellness system design

Exclusion criteria

• Study types

• Reviews, conference abstracts, magazines, and newspaper articles

• Studies focused on technology or materials development (technical validation)

• Research presenting a data set without further analysis

• Investigations in clinical scenarios such as injury, impairments, hospitalization, rehabilitation, etc

• Studies applied to nonhuman subjects

• Studies that did not include any user study results or did not clearly explain their findings

• Population

• Investigations in clinical scenarios such as injury, impairments, hospitalization, rehabilitation, etc

• Studies applied to nonhuman subjects

• Materials

• Studies not using the described technologies or not focused on the specified applications within health care and physical wellness

• Research outcomes

• Outcomes not related to the activity in health care or physical wellness application research, or those not providing meaningful insights into
monitoring, analysis, visualization, or feedback within these contexts
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Materials
Health care or physical wellness application research
investigated the use of (1) motion tracking for the analysis of
ADLs; (2) motion-tracking sensors, motion capture technology,
or multiple sensors for motion monitoring, analysis,
visualization, or providing feedback in ADL scenarios; (3) a
combination of AI processing, IoT devices, or VR or augmented
(mixed) reality technologies; or (4) integrating motion tracking
data and AI technology for the classification of ADLs.

Research Outcomes
Any measure or index that described (1) the activity in health
care or physical wellness application research (eg, daily human
activities, physical activities, or daily activities of special
populations); (2) the use of motion tracking for monitoring,
analyzing, visualizing, or providing feedback; and (3) health
care– or physical wellness–related system design was included.

Search Strategy
Two pilot searches were conducted using the Scopus and Web
of Science electronic databases in August 2022, applying search
strategies detailed in Multimedia Appendix 2. The first search

yielded an exceedingly limited number of articles, while the
second search displayed a broader range. Upon reviewing the
titles and abstracts from the pilot search results, we observed
that the terms “physical activity” and “daily living activity”
might lead to irrelevant research fields, such as heart rate
monitoring and step count. In contrast, “motion tracking” and
“motion capture” more accurately capture the essence of
physical activity within our research context. These terms are
commonly used in the field of motion capture technology
research. Consequently, we gave these terms precedence in our
investigation, which assisted in the strategic identification of
pertinent keywords for inclusion. Moreover, from the results
of the initial 2 pilot searches, we identified additional keywords
related to health care applications, AI, and motion tracking,
such as “health of things” and “dynamometry.” Following
discussions, we selected these terms for use in our final search
queries (Table 1). The search strategy was subsequently refined
and executed in September 2022, covering the following 4
databases: Web of Science, Scopus, EBSCO, and PubMed
(Figure 1). The titles, abstracts, and index terms were screened
to identify the studies that met our stated eligibility criteria as
outlined in Textbox 1.

Figure 1. The flowchart of the selection process of articles. AI: artificial intelligence; IoT: Internet of Things.
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Data Extraction
Drawing from previous research in health care and motion
tracking, our study builds upon the insights provided by
Straczkiewicz et al [42], who illustrated the relationships among
different human activity recognition processing phases through
data visualizations. Their approach to data visualization reveals
the connections among co-occurring factors identified across
the reviewed articles over time. In addition, we also considered
the work of van Kollenburg et al [62], who explored design
narratives for situated design exploration, thereby enriching our
understanding of the data analysis process and its application
in health care scenarios [62].

Through the data extraction process from the selected articles,
we organized the data into 11 categories: (1) study outcome
(subcategories encompassing providing feedback, visualization,
real-time monitoring, and data analysis); (2) sensor types
(subcategories include multiple sensors, other sensors,
motion-tracking sensors, and smartphone or smartwatch); (3)

motion capture using cameras; (4) position of sensors (eg,
physical space, on object, full body, upper limbs, or lower
limbs); (5) participant types (individuals on whom sensors were
placed or who were being monitored, including athletes, people
with disabilities, older adults, children, pregnant women, people
in scenarios, general public, or nonhuman subjects); (6) number
of participants (categorized as >101, 51-100, 10-50, or <10);
(7) activity types (covering interactions in physical spaces,
sports, activities related to upper or lower limbs, and general
daily activities); (8) monitoring types (differentiated by event
or time-based monitoring); (9) environment types (distinguished
as in the wild or controlled); (10) data types (differentiating
between data collected independently or from external data
sets); and (11) Al involvement. Then, using the timeline and
the categories of the included studies, we provided a publication
year–based summary that illustrates the Network of Daily Living
and Physical Activity (NDLPA) among included studies, as
depicted in Figure 2.

Figure 2. The Network of Daily Living and Physical Activity (NDLPA) among included studies. AI: artificial intelligence. For a higher-resolution
version of this figure, see Multimedia Appendix 3.

Results

Identification of the Studies
The electronic search yielded 1501 studies. After removing
internal duplicates, 956 studies remained. On the basis of the
eligibility criteria, 258 articles were chosen through title
screening (Figure 1). A total of 54 articles were included for
full-text appraisal after the abstract screening process [75-128].
The results from database search indicated that the relevant
research from 2013 to 2018 grew steadily, while research articles
published from 2019 to 2022, aligning with our interests,
experienced a significant uptick and consistently maintained a
high volume (Figure 3; Table 2). The findings (Figure 2)
revealed that 54 articles used motion tracking data in health
care and physical wellness applications, of which 42 (78%)

articles used motion-tracking sensors [75-81,84-86,88-97,101,
103-116,119,121-123,125,126]. Overall, 70% (38/54) of the
articles used AI technology combined with motion tracking data
[75,77,79,82-85,87,89-91,93,94,97,99-101,103,105,106,108,109,111-113,117-128].
The role of AI mainly functions for data classification,
monitoring, and visualization among the included studies.
Furthermore, 80% (43/54) of the studies recruited participants
for user study [75,76,78-81,83-88,90,92,93,95-105,107-110,
113-116,118-124,127,128]. Twelve articles used public data
set [78,82,89,91,94,106,111,112,117,125-127]. Most of the
public data set that were used are University of California, Irvine
human activity recognition, center of advanced studies in
adaptive system, mobile health, University of Milano Bicocca
smartphone-based human activity recognition, mobile sensor
data anonymization, a large multipurpose human motion and
video data set, and wireless sensor data mining data sets.
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Figure 3. The distribution of total selection, abstract screening, and included articles based on publication year.

Table 2. The distribution of total selection, abstract screening, and included articles.

Included articles (n=54), n (%)Abstract screening (n=207), n (%)Total (n=956), n (%)Publication year

1 (1.8)4 (1.9)18 (1.9)2013

1 (1.8)4 (1.9)18 (1.9)2014

2 (3.6)10 (4.8)26 (2.7)2015

4 (7.3)12 (5.8)44 (4.6)2016

4 (7.3)17 (8.2)52 (5.4)2017

6 (10.9)20 (9.7)72 (7.5)2018

9 (16.4)33 (15.9)145 (15.2)2019

11 (20)47 (22.7)216 (22.6)2020

9 (16.4)25 (12.1)192 (20.1)2021

7 (13)35 (16.9)173 (18.1)2022

Descriptions of Technology Use, Participants, Activity,
and Outcomes

Overview
The contributing studies displayed a broad spectrum of
methodologies, participant types, and technology uses.
Characteristics of activity varied from studies focusing on lower
limb activities to those analyzing full-body movements, using
a range of sensors and AI technologies. Most studies used a
combination of accelerometers, gyroscopes, and sometimes
cameras across diverse settings from controlled environments
to in-the-wild scenarios. Participant types ranged from the
general public, including specific groups such as athletes and
older adults, to nonhuman participants in a few instances.

Technology Use
Most of the included publications (42/54, 78%) used technology
based on AI combined with motion tracking techniques or
multiple sensors. Among those using sensors, studies
incorporating accelerometer and gyroscope sensors formed the
core of the investigations (42/54, 78%), including those using
a smartphone or smartwatch (11/54, 20%) and those using
multiple sensors capable of motion tracking (16/54, 30%). Fewer
studies used other types of sensors (eg, temperature sensors,
light sensors, etc; 6/54, 11%) or combined them with motion
capture using cameras (10/54, 19%). Moreover, 17% (9/54) of
the studies exclusively used cameras for motion capture. Details
are provided in Figure 2. A combination of accelerometer and
gyroscope sensors has been deemed essential for tracking
everyday human activity over the past decade. They were used
to collect data on typical ADLs, such as standing, walking,
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sitting, and jumping, while ambient sensors were used less
frequently. Physical activities such as jumping [75,78,98],
playing basketball [96,116], soccer [83], baseball [115], running
[105], ballet dance [103] skiing [127], karate [84], and Taijiquan
[123] were studied. Meanwhile, AI processing in the included
articles functions for data extraction and classification to achieve
daily living and physical activities recognition.

According to the studies using motion tracking data and
classifiers, using a minimal pair of accelerometer and gyroscope
sensors to acquire motion tracking data can achieve activity
recognition with high precision [75,77,78,81,85,97,107,108,
113,121]. Several scholars have suggested that the human
activity recognition system has the potential to enhance the
efficiency of health care applications using multiple pairs of
accelerometer and gyroscope sensors [94,101]. Most studies
obtained original motion tracking data of ADLs for evaluating
health care systems, whereas fewer studies adopted public data
sets for activity recognition applications.

Position of Sensors
The method of sensor placement among the included 54 studies
was distributed relatively evenly (Figure 2). The sensor
placements in most of the included articles were implemented
on the full body (n=16, 30%) and in physical spaces (n=17,
31%), with relatively fewer studies focusing on the upper limb
(n=11, 20%) and the lower limb (n=9, 17%). However, 1 (2%)
article reported that the sensors were placed on an object. The
findings suggest that the placement of sensors is inherently
determined by the nature of the activities. ADLs were
categorized into lower limb–based activities (eg, walking,
standing, sitting, etc); upper limb activities (eg, eating, talking
on the phone, washing dishes, cooking, etc); and full-body
activities (eg, playing basketball, dancing, skiing, etc).
Therefore, sensor placements are specifically tailored to match
the inherent types of activities being tracked.

The studies that involved placing sensors on the full body and
in environments were widely reported [84,94,96,103,109-112,
115,116,119,122,123], and the purposes of using full-body
motion tracking are commonly argued for analyzing specific
movements or securing the credibility of system evaluations
[94,106,110,112,115,116,123]. The investigations involving
the placement of sensors in physical spaces mostly use motion
capture and image processing techniques [117,119]. Researchers
have placed high-speed cameras to capture movements during
sports activities [75,82-84,88,98,101,105,115,120,127] and in
specialized work situations, such as maritime occupations [104].
One study [93] placed accelerometer and gyroscope sensors on
an object, specifically a water container, to determine the
frequency and amount of use from the container’s motion
tracking data. The positioning of sensors has become
increasingly precise and intricate over time. Research has
primarily targeted the upper limb, full body, or physical spaces.

Participants
The research exploring motion tracking of daily living and
physical activities for health care applications has studied a
variety of participant types (Figure 2), including the general
public (healthy individuals; 31/54, 57%), people in specialized

scenarios (4/54, 7%), children and pregnant women (1/54, 2%),
older adults (2/54, 4%), people with disabilities (1/54, 2%), and
athletes (14/54, 26%) over the past decade. One exception
involved using a male cadaver for the analysis of
vehicle-cadaver tests. From the results, researchers primarily
applied motion capture technology to healthy individuals aged
between 18 and 60 years and to athletes. Activities involving
healthy individuals can provide representative activity
characteristics for training activity recognition models and
identifying outliers in activities through activity classification.
In the last 3 years, researchers have increasingly prioritized the
use of data collected from the public and youths for sports
education–related research.

The number of participants recruited varied significantly across
the included studies. Approximately half of the selected studies
collected data from <10 participants (26/54, 48%), and a smaller
number gathered data from 10 to 50 participants (19/54, 35%).
Moreover, 13% (7/54) of the studies collected data from 50 to
100 individuals. Half (27/54, 50%) of the studies used 10 to
1 0 0  s a m p l e s  f r o m  p u b l i c  d a t a b a s e s
[77,89,94,106,111,112,117,125-127]. Only one study [107]
amassed gait data from >1000 healthy individuals. The quantity
of the sample size correlates with the types of participants and
activities. In sports-related activities, the sample size ranged
from 1 to 50 individuals, predominantly involving athletes. For
studies on daily living activities, the sample size varied from
10 to 1000s of individuals, primarily focusing on the healthy
general public.

Activity
Prior studies have classified activities according to the intensity
of exercise [130]. In this study, the activity classification extends
the previous categorization and is divided into general daily
activity (21/54, 39%; eg, walking, standing, sitting, etc);
activities related to the lower limb (6/54, 11%; eg, running,
jumping, etc); activities related to the upper limb (7/54, 13%;
eg, drinking, writing, cutting, etc); sports (16/54, 30%; eg,
playing basketball or baseball, dancing, Taijiquan, etc); and
interaction in a physical space (4/54, 7%; eg, living in a
laboratory setting house, farming, etc) based on the sensor
placements and the purposes of the activities (Figure 2). Most
studies (39/54, 72%) specified that they were conducted in
laboratory experiment settings and aimed to minimize the
intervention of irrelevant environmental factors
[75-78,82,84,86,87,90,94,96-116,119-123,125,128]. Each data
collection session involved 1 participant, who was pretrained
for a few minutes before their data were collected for
experimental purposes. Researchers aimed to focus participants’
attention on specific movements and perform standardized
activities. The results suggest that collecting pretrained ADLs
data provides standardized motion data for training ADLs
recognition, but this approach might not capture the variety of
behaviors necessary to accurately judge specific motion data.
Meanwhile, the results also indicate that researchers
concentrated on laboratory-based activities for professional use,
such as the classification and identification of ADLs and the
functionality of joints.
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Study Outcome
The included studies (n=54) were all aimed at the identification
and classification of activity trajectories (Figure 2). The findings
indicate that most included research (n=39, 72%) focused on
data analysis. Overall, 2 (4%) studies provided real-time
monitoring; 3 (6%) studies offered feedback; and 10 (19%)
studies were dedicated to visualization, including 6 studies that
visualized original data without AI processing. The purpose of
visualization is to provide professionals [88,114] or users
[104,118] with the ability to view motion statuses. The
visualization of motion data without classification is used in
medical research [79,80,88,102,104,114], and the data are
intended for use by health care professionals. Excluding the
studies using animation and VR techniques, such as the one by
Zelck et al [104], who proposed the animation of digital
maritime workers’ working processes, and another study by
Ahmed and Demirel [102], who demonstrated human
performance in normal situations and aircraft accidents using
VR, and the data from the latter are accessible to the public.
Generally, studies focusing on ADLs primarily used data from
the healthy public for professional use.

Risk of Bias and Quality Assessment
In conducting a thorough risk of bias and quality assessment of
the selected studies, our scrutiny was directed toward several
critical dimensions: participant selection transparency, the
accuracy and completeness of data acquisition methodologies,
the analytical rigor, and the integrity in reporting outcomes.
Notably, prevalent biases included selection bias, rooted in
participant recruitment strategies; measurement bias, owing to
sensor placement inconsistencies or activity categorization; and
reporting bias. Studies using public data sets or conducted within
laboratory confines typically showed reduced bias risks. In
contrast, studies with constrained participant demographics or
undertaken in less regulated environments faced heightened
bias risks, primarily affecting data representativeness and the
influence of external variables on activity assessments.

The included articles variably reported on participants’ gender
and age specifics—57% (31/54) of the articles provided detailed
demographic data [77-79,82,86,89-91,93,94,97-99,101,103,
105-107,109-113,115,116,119,122,124-127], while others
( 2 2 / 5 4 ,  4 1 % )  o m i t t e d  s u c h  s p e c i f i c s
[75,76,80,81,83-85,87,88,92,95,96,100,102,104,108,
114,117,118,120,121,123,128]. The sensor models used across
studies are meticulously documented within the articles and are
detailed in the Multimedia Appendix 1. It was observed that
the spectrum of daily living activities discussed was somewhat
narrow, seldom addressing activities that entail object
interaction. The theoretical underpinning, such as that provided
by ANT [68,69] and activity classification [130], lends robust
support to the motion data analysis, facilitating a nuanced
understanding of the data. The selected articles did not address
the incorporation of verbal language or cultural customs in the
context of data collection or the execution of physical activities.
Thus, we consider that the concentration on physical movement
to the exclusion of linguistic or cultural contexts likely accounts
for the omission of cultural background in the analysis. Data
collection in laboratory settings is controlled, thereby

eliminating interference from factors such as socioeconomic
elements. The physical tasks assigned to participants encompass
routine daily movements or activities well-acquainted with
athletes, effectively eliminating potential interferences from
policy-related factors.

Discussion

Interaction Between Devices, Users, and
Environmental Factors
The features of the selected studies were systematically
categorized into study outcome, sensor configuration, participant
types, activity types, monitoring, environment types, and AI
involvement, as illustrated in NDLPA among included studies
(Figure 2). This organization was informed by the visualization
of Straczkiewicz et al [42], who elucidated the complex
interrelations among diverse human activity recognition process
phases. Drawing upon the theoretical foundation provided by
ANT [64,68,69], our analysis delved into the NDLPA by
investigating the dynamics of actor-led activity;
purpose-oriented interaction; and interaction among devices,
individuals, and environmental factors.

Actor-Led Activity

Overview
Among the 54 articles selected for review, 3 main categories
of initiators in health and physical wellness application research
were identified: participants (including health information
beneficiaries, professionals, caregivers, and interactional
factors), researchers in health care, and researchers in
computing. According to ANT [68,69], the interaction within
the activity network is governed by those who lead the activity.
As researchers are the initiators for implementing ADL research,
we classified environment types by the extent of the researchers’
intervention, namely, controlled and in the wild.

Controlled
In controlled settings, researchers initiated the activity.
Participants conducted time- and environment-restricted daily
activities following the researchers’ activity assignments. Most
articles mentioned that participants undergo pretraining before
starting data collection to ensure that the data are typical [90,96].
Most athlete participants are in controlled environments.
Researchers stated that motion data collection was controlled
in specific movements, times, and spaces to guarantee optimal
exercise time [81,121]. There is no other human-athlete
interaction, except for 1 article using a virtual athlete [96]. This
approach ensures the typicality of the data and the precision of
the movement trajectories, which are essential for analyzing
physical activity.

In the Wild
In uncontrolled or in-the-wild settings, participants are inclined
to initiate activities, with interaction between participants and
ambiance minimally restricted by researchers. Researchers
configure sensors within the range of participants’ activities
(cameras, smart water meters, pressure mats, etc), allowing
participants to produce movement trajectories relating to their
intents. Findings include 2 types of in-the-wild activities: one
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is video data sets captured in real-world situations, and the other
is based chiefly on motion and multiple sensor data (eg,
temperature and light use) to infer work and daily routines in
living scenarios. The included studies in this review used data
from in-the-wild activities, with 11 papers using data from the
general population [79,80,85,88,89,91-93,95,118,126] and 1
article using data from older adults [124]. One study mentioned
data collected from interactional factors, a water container [93]
as the interactional initiator. Placing a motion-tracking device
on the container that passively triggers humans’ drinking
movements may accurately detect the trajectory of upper limb
movements.

Generally, most included investigations on everyday living and
physical activities have been conducted in controlled settings,
where researchers aim to capture accurate and standardized
movements for health professionals and activity recognition
processing. Although participants receive activity guidance and
practice movements before the experiment, inconsistencies in
activity objectives among them may arise. Alternatively,
research using activity data from in-the-wild settings could
provide a more intimate and real-life interaction but generate
excess data. Moreover, it can achieve data controllability when
the initiators are passive objects.

Purpose-Orientated Network

Overview
The activity initiator guides the purpose. As the research and
the content of the activity were led by the researchers, the
purpose of the research becomes the purpose of the activity in
the network. We consider study outcomes, activity types, and
monitoring types as elements forming the purpose of the activity
networks.

Study Outcomes
The fields of human activity recognition and motion analysis
have consistently been focal points of research, with an
increasing volume of publications annually, particularly
maintaining a stable high volume over the past 3 years (Figure
3). Studies have primarily focused on data visualization and
monitoring, targeting daily activities and local body movements.
Studies providing data feedback have addressed movement
correction [123], outlier indication [113], and body posture
correction [108]. It is noteworthy that outcomes related to
feedback provision and data visualization have chiefly used
in-the-wild data during the initial 6 years, shifting toward
controlled data in the subsequent years, a transition likely
influenced by advancements in research methodologies and
technological evolution.

Activity Types
Most studies on activity trajectory recognition have focused on
whole body movements, with local movements and movements
related to environments being rare. Over the past 3 years,
researchers have started to shift the target beneficiaries of their
sports research to the general public, with physical activity
education gradually overtaking professional sports. The
dominant type of activities remains predominantly oriented

toward daily living, with sports-related activities progressively
shifted to ordinary activity.

Monitoring Types
Researchers described the nodes of data acquisition in terms of
activity content and duration, and these nodes serve in
subsequent data computation and analytical processes. They
directed participants to undertake activities conforming to the
predetermined criteria associated with these nodes. Moreover,
research using in-the-wild data adapt their methodologies to the
unpredictable nature of activity content and duration, ensuring
a structured approach to capturing motion data despite the
inherent variability. This nuanced guidance ensures that even
in uncontrolled environments, the collection and analysis of
data remain methodically aligned with the research objectives.

Interaction Among Devices, Individuals, and
Environmental Factors
Activity trajectory is demonstrated through the interaction
between humans, sensors, and environments. Motion-tracking
devices, sensor positions, and environments factors are the main
features to be evaluated.

Motion-Tracking Devices
Given this study’s basis on motion tracking technology and the
categorization of sensor types, we divided device types into
complex devices (multiple sensors, eg, temperature, lighting,
pressure accelerometer, and gyroscope sensors, VR, AR, etc)
[91,92,101,113]; portable devices (smartphone or smartwatch)
[77,79,81,92]; basic devices (motion-tracking sensors, eg,
accelerometer and gyroscope sensors) [78,79,84,90,93]; and
environmental devices (other sensors, eg, cameras,
radiofrequency ID tags, etc) [100,102,117,124,128]. The
configuration of complex devices aims at research related to
local motions, complex motions, and environmental interactions.
In conditions using complex devices, participants wore portable
devices such as smartwatches to record motion data
simultaneously with built-in multiple sensors (eg, ambient light
sensor, UV light exposure sensor, and skin temperature sensor)
[81]. A portable device with built-in accelerometer and
gyroscope sensors performed a similar motion tracking task as
a basic device. Most of them were used to determine everyday
activities’ trajectories as they are easy to perform. In conditions
using portable and environmental devices, the portable device
was placed on the body, and the participant activated sensors
placed in the environment. The active and passive motion data
form an activity network [92]. Accelerometer and gyroscope
sensors were placed on multiple areas of participants’ bodies
to monitor their full-body motions. However, using cameras to
capture athletes’ movements and environmental devices (eg,
pressure mats, mercury contacts, and float sensors) [91] to record
living routine is favored by researchers.

Positions of Sensors
Our study categorizes device placements by areas of the human
body and their relative distance from the human body, namely,
in physical spaces, on objects, on the full body, on the upper
limb, and on the lower limb. The results indicate that sensor
placement is related to the study’s purpose and the intensity of
the activity. Sensors used in physical spaces or on the full body
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examined high-intensity activities (eg, professional sports),
correlating with accurate data acquisition. High-intensity
activities, such as running [105] and throwing darts [110], were
primarily studied using devices on local body areas. Devices
placed on specific objects received limited daily exercise data
but were consistent with the study’s objectives. Sensors attached
to different areas of the participants’ bodies collected data from
those areas and integrated with participants’movements. Sensors
placed in the environment passively received signals, yet timing
and activity patterns could be detected.

Environmental Factors
The environments for study implementation were mainly
controlled by researchers. The movement trajectory of
participants’ performance aligned with the research objectives.
The content and duration of activities were fixed, and devices
were placed according to the research purposes. Participants
passively interacted with their surroundings. Performing daily
living or physical activities in an experimental setting might
influence the participants’ intent of the action. In these settings,
participants’movements were unrelated to habitual actions. The
environment and devices reflected interactions with researchers
but did not interact with the participants, leading to a severed
connection between the activity network and the participant
involved. However, in video recording scenarios, participants
performed activities in real-life settings, potentially providing
purposeful and personalized movement data for research.

Investigation Process
Activity identification and recognition have been the primary
focus of research on ADLs and physical activities in health and
wellness applications over the past decade. The fundamental
objectives are to enhance the accuracy of motion tracking data
recognition and its practical use for health professionals. From
the perspective of NDLPA, researchers acted as initiators of
activity networks, leading the content and environments of
activities in most activity recognition studies. Participants
provided standard movement data within a restricted time and
environment, lacking personal purpose and awareness of real-life

activity. Participants did not fully become the initiators of the
activity networks, but real-life activity data could be more
complex. The variety of activity scenarios, user-friendly sensor
design, data collection at specific time points, and data variances
produced by complex activities and various real-life purposes
could present research opportunities for studying daily living
and physical activities for health and physical wellness
applications. Meanwhile, designers have the opportunity to
engage in designing user-initiated activities and collect
technology-based motion data for health and physical wellness
application research.

According to the descriptions in the included articles, the
investigation of ADLs and physical activities in health care
applications covers 4 phases: data acquisition, data classification,
data analysis, and data interpretation, as shown in Figure 4A.
In the process of motion tracking data acquisition, researchers
recruited participants and conducted data collection. Participants
performed assigned activities under full or partial surveillance
by researchers. The data were supervised and categorized into
standardized movements corresponding to specific activities.
At this stage, the activities varied by different engaged areas on
participants’ bodies but not by the content of daily living
activities. Researchers trained various algorithm models for
data classification to achieve high activity recognition accuracy
and used different data sets to test the system’s validity. In the
data analysis stage, researchers identified standardized activities
and examined the difference values through motion tracking
parameters. Using these parameters, researchers analyzed
activity norms and behaviors. This stage is also associated with
data monitoring. Data classification and analysis can be
combined or conducted independently for different research
evaluation purposes. Data interpretation, such as data
visualization and feedback provision, was created by researchers
from the health, engineering, and computing domains. It
interacted with health information beneficiaries (eg,
professionals, users, and caregivers). The health information
was presented in either video or image forms for visualization
or in text forms for feedback to users.
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Figure 4. (A) The investigation process of motion data on daily living and physical activity for health care application and (B) a designer-involved
investigation process of motion data on daily living and physical activity for health care application based on data-enabled design.

On the basis of the investigation process of ADLs and physical
activities in health care applications, participants’ involvement
occurs at an early stage. However, participants are situated in
a controlled environment for experimental purposes, with
devices attached to their bodies without active interaction.
Although the data are clear for classification and analysis, they
rarely explain the diversity of ADLs. In the data interpretation
stage, there is a weak connection between the data and the
general public owing to the dominant purpose of activity
identification research aimed at professional use. Designers can
aid in bridging communication between information and the
public. As described in the literature in previous sections, human
motion data are essential components of activity recognition
and analysis [1,2], with the public being the beneficiary of
physical activity intervention research [11,12]. We propose that
designers, coupled with researchers’ guidelines, participate in
the investigation and application process, which promises to
facilitate data collection and interpretation.

Designer-Involved Investigation Process
The research of health care and physical wellness applications
is directed toward professional deployment and public health
enhancement. However, it has been observed that there exists
a gap between the motion data collected from participants and
their applicability to real-life situations. In addition, research
in health care applications often fails to encompass the breadth
of data diversity; there is a noticeable lack of meaningful
engagement between devices and participants, and the process
of making data understandable for the public is fraught with

difficulties. To address these issues, we advocate for a research
methodology that integrates DED framework [61-63], a
designer-involved research process of motion data on ADLs
and physical activity for health care application research, as
illustrated in Figure 4B.

In this proposed methodology, designers collaborate with health
care researchers to understand the specific information required
for participant recruitment in a given project. They assist health
care researchers in designing data collection strategies while
considering the daily behavior patterns of the target population,
thereby refining the data collection plan. Researchers from
computing and engineering fields undertake the collection and
categorization of data. These data span various demographics,
purposes, devices, and scenarios from designers and are tailored
for a multitude of applications. Such research process
encompasses a cycle of prototype iterations. Researchers from
the health field analyze classified data, identify abnormal motion
data, and then provide guidelines for designers. Designers,
positioned as intermediaries between users and researchers,
leverage these guidelines and their nuanced understanding of
human daily experiences including participant involvement and
activity motivation [131] to reinterpret professional data into
user-friendly formats. Furthermore, designers play a pivotal
role in collecting motion data that reflect a diverse array of
demographics, intentions, devices, and scenarios. They are able
to simplify the data and assist with data interpretation for the
recipients of health information.
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The integration of design principles into the development of
health care applications is key to enhancing user engagement,
offering more intuitive interfaces that potentially increase
adherence to health interventions through user-friendly designs.
Our findings indicate that in intricate settings, standardizing
data to mitigate external variables might lead to binary
misjudgments. Given that daily activities are influenced by
individual attributes, environments, and habits, the role of
designers becomes critical in tailoring solutions to meet the
varied needs of distinct user groups. They fine-tune the
implementation methods and locations for motion-tracking
devices, such as using cameras or accelerometer and gyroscope
sensors and determining specific areas for deployment, such as
full-body tracking or environmental interaction. They also
specify the nature of the data to be collected, differentiating
between event-driven data, which capture specific actions such
as walking across varied material surfaces, and time-sequential
data, which records information over continuous periods such
as walking at night. This process enhances the accuracy and
applicability of collected information, facilitating the
development of data-driven products that reflect real user
experiences. During the experiment, the dialogue between users
and designers’ aids in identifying actual and hidden needs, thus
refining information precision and application. Upon analyzing
the data, health care researchers collaborate with designers to
reformat health information into accessible, engaging formats
on digital interfaces, using techniques such as digital twins,
animations, visualizations, and gamification. This method
enhances user engagement, elicits valuable feedback, and fosters
ongoing improvement in data accuracy, thus promoting a cycle
of continuous information enhancement.

In addition, designers can assist engineers in designing
user-friendly devices and facilitate actuator developments to
provide users with timely feedback. The iterative refinement of
technology that monitors ADLs and physical activity motion
data in health application research is driven by the diversity of
the population, necessitating continuous optimization. Design’s
contribution is pivotal in promoting effective communication,
nurturing relationships, and pursuing sustainable innovation.
By involving designers in the process, the development of
activities initiated by users and the creation of user-friendly
motion-tracking sensors are significantly improved. This, in
turn, supports the cyclical development of health and physical
wellness applications [64,65], ensuring that they are more
aligned with real-world needs and contexts. Thus, in the sphere
of health care and physical wellness application research, the
involvement of designers is crucial for the effective acquisition
and interpretation of data, ensuring that the data are relevant
and beneficial in everyday scenarios.

Designers’ involvement is essential in shaping design and
implementation strategies, ensuring that technology solutions
are tailored to meet the inherent human needs for interpreting
health-related information. This approach is instrumental in
improving the monitoring and management of health conditions,
thereby improving patient outcomes. This not only improves
usability but also ensures that technologies are perceived as
useful and enjoyable, mirroring the foundational criteria of the
TAM [54,55]. However, potential challenges include ensuring

effective communication and collaboration across
multidisciplinary teams, aligning different objectives and
methodologies, and the complexity of translating complex health
data into accessible and actionable information for users.

Limitations and Future Directions
This review process identified key limitations and future
research directions in the use of motion tracking technologies
for health care. It pinpointed risks of selection and measurement
biases due to participant recruitment strategies and
inconsistencies in sensor placement or activity categorization.
Highlighting the inadequate exploration of feedback
mechanisms, this review emphasized the necessity for future
studies to optimize user communication. The use of sensors for
motion data collection offers a method to preserve privacy,
contrasting with cameras or recorded videos, which might
inadvertently compromise it. One included study introduced a
Kinect and smartwatch system, focusing on health care
professionals’ privacy and showcasing a strong commitment to
privacy and ethical considerations in system design [79]. The
minimal focus on privacy protection in other included studies
indicates a potential research gap. Furthermore, this review
underscored the unexplored potential of integrating geolocation
data into physical activity interventions, proposing future
research to delve into scenario-based health care applications.
The investigation did not fully address the influences of cultural,
socioeconomic, and policy-related factors on physical activity,
or the budget constraints that may have curtailed the exploration
of these dimensions. Moreover, it acknowledged the potential
publication bias and the influence of study quality on the
findings, especially given researchers’ inclination to report
positive outcomes of health care application development.
Although the search included major databases, there is a
possibility that relevant studies in other databases were
overlooked. In addition, database search confined to English
language might have excluded pertinent non-English studies.
These areas present fertile ground for future research to ensure
a more holistic understanding and application of motion tracking
technologies in diverse settings.

Implications
This study significantly contributes to future research by
demonstrating the importance of a multidisciplinary approach
in health care application development, particularly in the
integration of design principles with engineering and health
sciences. It lays a foundation for further exploration into how
designers can enhance the usability and effectiveness of health
applications through user-centric design and data interpretation.
Future studies can build on this framework to investigate specific
design strategies and their impact on user engagement,
adherence, and overall health outcomes, potentially leading to
more personalized and effective health interventions. For
real-world applications, this approach could fundamentally
transform the development of health care apps, making them
more accessible, intuitive, and tailored to individual needs,
ultimately leading to improved health outcomes and patient
engagement.
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Conclusions
The study systematically reviewed the implementation of motion
tracking in health care application research, revealing a
discrepancy between the data collection and its effective
application in real-world scenarios. Informed by ANT, we
explore the dynamics of actor-led activities and purpose-oriented
interactions, focusing on participants, sensors, cameras, and
environmental factors in health care research concerning ADLs.
The guiding roles of activity initiators significantly influence
the phases of data acquisition, classification, analysis, and
interpretation, underscoring the potential to enhance the
accuracy of motion tracking and activity recognition when
considering contextual factors. By advocating a
designer-involved research process of motion data on ADLs
and physical activity for health care application research, this
study emphasizes the essential role of incorporating design
principles via a DED framework in developing health care
applications. This integration is crucial for aligning motion data
collection with practical, real-life applications. By adopting a

multidisciplinary approach and combining insights from design,
engineering, and health sciences, the research demonstrates
potential pathways for making health applications more
user-friendly and effective. It underscores the necessity of
engaging designers in the research process to ensure that health
technologies are accessible, intuitive, and tailored to meet the
diverse needs of users. Designers play a key role in customizing
the deployment and data collection methods of motion-tracking
devices, which improves the relevance and accuracy of collected
data, leading to better-informed health applications. The iterative
dialogue between users and designers during development
refines the precision of information and its application, fostering
a cycle of continuous improvement. By transforming complex
health data into engaging, understandable formats, designers
help translate user needs into actionable health solutions,
promoting better monitoring and management of health
conditions. The study advocates for further research to explore
and refine these integrations, offering a direction that promises
to transform health care monitoring and interventions, ultimately
enhancing patient outcomes and engagement.
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