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Abstract

Background: As mobile health (mHealth) studies become increasingly productive owing to the advancements in wearable and
mobile sensor technology, our ability to monitor and model human behavior will be constrained by participant receptivity. Many
health constructs are dependent on subjective responses, and without such responses, researchers are left with little to no ground
truth to accompany our ever-growing biobehavioral data. This issue can significantly impact the quality of a study, particularly
for populations known to exhibit lower compliance rates. To address this challenge, researchers have proposed innovative
approaches that use machine learning (ML) and sensor data to modify the timing and delivery of surveys. However, an overarching
concern is the potential introduction of biases or unintended influences on participants’ responses when implementing new survey
delivery methods.

Objective: This study aims to demonstrate the potential impact of an ML-based ecological momentary assessment (EMA)
delivery system (using receptivity as the predictor variable) on the participants’ reported emotional state. We examine the factors
that affect participants’ receptivity to EMAs in a 10-day wearable and EMA–based emotional state–sensing mHealth study. We
study the physiological relationships indicative of receptivity and affect while also analyzing the interaction between the 2
constructs.

Methods: We collected data from 45 healthy participants wearing 2 devices measuring electrodermal activity, accelerometer,
electrocardiography, and skin temperature while answering 10 EMAs daily, containing questions about perceived mood. Owing
to the nature of our constructs, we can only obtain ground truth measures for both affect and receptivity during responses.
Therefore, we used unsupervised and supervised ML methods to infer affect when a participant did not respond. Our unsupervised
method used k-means clustering to determine the relationship between physiology and receptivity and then inferred the emotional
state during nonresponses. For the supervised learning method, we primarily used random forest and neural networks to predict
the affect of unlabeled data points as well as receptivity.

Results: Our findings showed that using a receptivity model to trigger EMAs decreased the reported negative affect by >3 points
or 0.29 SDs in our self-reported affect measure, scored between 13 and 91. The findings also showed a bimodal distribution of
our predicted affect during nonresponses. This indicates that this system initiates EMAs more commonly during states of higher
positive emotions.

Conclusions: Our results showed a clear relationship between affect and receptivity. This relationship can affect the efficacy
of an mHealth study, particularly those that use an ML algorithm to trigger EMAs. Therefore, we propose that future work should
focus on a smart trigger that promotes EMA receptivity without influencing affect during sampled time points.

(JMIR Mhealth Uhealth 2024;12:e46347) doi: 10.2196/46347
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Introduction

User Engagement in Mobile Health Systems
Mobile health (mHealth) technologies continue to grow within
the health care sector and are imperative for precision medicine
initiatives. mHealth can provide beneficial interactions between
health care providers and patients outside clinical settings. An
engaged and responsive user base in any mHealth system is
vital for maximizing the knowledge that researchers and
providers acquire. Mental health research mainly depends on
active users because investigators rely on participant survey
responses to establish ground truth. Researchers can only
adequately interpret the relationships between physiology and
psychological state with a population that is compliant with
sensors and surveys. Evaluating a health construct is only
possible with highly receptive participants in mHealth studies.

Here, we discuss 2 forms of interaction between participants
and mHealth systems: ecological momentary assessments
(EMAs) and just-in-time interventions (JITIs). EMAs gather in
situ data from users in real time. EMAs are commonly used in
mHealth studies, as they allow researchers to prompt participants
regularly throughout the day [1]. In the case of mHealth studies
focusing on psychological states, EMAs enable users to report
their momentary symptoms or context in a natural environment,
often using smartphones, because of their accessibility. JITI is
a method that allows investigators to send interventions as
needed. The just-in-time adaptive intervention (JITAI) uses
incoming information (physiological, contextual, or
psychological markers) as context to determine when an
intervention is required [2]. Researchers have been working on
enhancing the efficiency of these interactions. As mentioned
previously, this effort is crucial because ineffective interactions
in an mHealth study can have significant effects on outcomes.
Failing to collect EMA responses may impede researchers’
ability to identify real-world measures of health behaviors, and
without participants receiving or engaging in JITIs, researchers
may find it challenging to measure the efficacy of the
intervention.

Improving EMA Receptivity
To enhance compliance with EMAs and JITIs, it is imperative
to gain a comprehensive understanding of the factors that
influence participant adherence. Ho and Intille [3] described 11
factors that influence a person’s interruptability (willingness to
follow through if notified or interrupted). These factors
encompass contextual aspects, such as social engagement,
ongoing activities, future schedule, and emotional state, as well
as message-related attributes, including frequency, complexity,
modality, and utility.

Currently, many researchers have reduced interruptability by
altering message-related attributes, often involving strategies
such as reducing the complexity or frequency of an EMA or
increasing the incentives for a response [4,5]. Reducing the size

of the instrument relieves some of the burden associated with
answering an EMA [6]. This is done by excluding redundant
questions or by choosing a less complex instrument. The
Perceived Stress Scale [7] was initially a 14-item question set.
However, after some statistical analysis, researchers found that
a 10-item instrument was sufficient for measuring stress.
Another factor affecting receptivity is the frequency at which
users are sampled. In 2 separate reviews, researchers
demonstrated conflicting findings regarding the effects of
frequency on EMA compliance [8,9]. These conflicting results
can be attributed to the author's focus on differing populations
and the many other factors that play a role in EMA compliance.
The third method for improving receptivity rates is to increase
the incentives based on EMA compliance. However, this method
can be costly and seen as exploitative, especially when dealing
with susceptible populations.

An emerging method for improving receptivity rates is the use
of machine learning (ML). This can be achieved by using
wearable data to predict the likelihood of a response, which can
help deliver EMAs that mitigate interruptability. Mishra et al
[10] used ML models built from previously collected data to
improve the receptivity of a JITAI by contacting users at points
where they are more likely to be receptive. The study showed
a difference of >38% in receptivity rates between an ML-based
static model (using previously collected data) and a control
model (using a set schedule) to distribute EMAs. Mishra et al
[11] built a model for predicting the optimal time to send an
EMA. Their results demonstrated that a model built from
contextual cues such as activity, audio, conversation, and
location could significantly outperform a baseline model
(prediction based on the proportion of responded EMAs).
Researchers have also shown that contextual cues, including
location [12,13], personality traits [14,15], physical activity
[14,16], and time of day [17], influence participants’willingness
to respond to regular surveys. Together, these methods can
predict and respond to the unobserved contextual aspects of an
interruption, thus offering a more holistic approach to addressing
participant engagement. However, a system that reacts to these
contextual aspects may have unintentional effects on the
response of the user. For instance, emotional state is an
underlying factor that affects receptivity. A model designed to
initiate EMAs when a participant is most likely to respond favors
prompting users when experiencing positive emotions.
Consequently, this approach could influence the reported
emotional state during each prompt, potentially making it
challenging to collect subjective responses during negative
emotions. Understanding the influence of ML-based EMA
triggers on these underlying receptivity factors allows us to
incorporate additional variables into an algorithm. Integrating
predicted affect into the decision-making of an ML-based EMA
trigger will ensure that participants receive prompts across a
broad spectrum of emotions.
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Relationship Between Affect and EMA Receptivity
Clark and Watson [18] described how positive and negative
affect (NA) can influence participation in activities of daily
living. Their results show differences in the expected mean
across many social activities, with reported positive affect (PA)
having more significance in differentiating the 2 groups.
Similarly, research has also demonstrated a negative relationship
between students’ emotional state and academic achievement
[19,20]. Although none of these studies demonstrate the
relationship between affect and EMA receptivity during mHealth
studies, they all demonstrate the effect of emotional state on a
participant’s general ability to engage in normal activities of
daily living.

Several authors have examined the effect of emotional state on
EMA adherence by using the preceding response as a gauge of
affect during instances of nonresponse. Murray et al [21]
conducted a study (N=261) demonstrating that NA and stress
reduce the chance of a response during the next prompt. Other
researchers have expanded on this by examining various
contextual cues within an EMA that precede instances of
nonresponse. The authors found that variables such as
medication use, activity, battery life, and being away from home
negatively impacted the compliance of the following EMA
[22,23]. This work contributes to understanding how affect can
influence participants’ response behavior but falls short of
providing real-time explanations for the absence of responses.
Alternatively, real-time explanations for receptivity can be
derived through passive sensing and ML. Leveraging these
explanations allows for delivering EMAs at moments of
heightened receptivity, guided by current contextual and
physiological factors.

Objectives and Hypothesis
This study aims to analyze the relationship between participant
EMA receptivity and affect in a 10-day wearable and
EMA–based affect-sensing study (N=45). We hypothesize that

a relationship exists between EMA receptivity and affect in
mental health–related mHealth studies. We can establish the
relationship between emotions when participants respond.
However, to investigate this connection during nonresponses,
we need to infer affect when a participant fails to provide a
response. Therefore, we implemented ML models for identifying
receptive time points and predicting emotional states. This
allowed us to determine whether there was a statistically
significant difference in emotions between responses and
nonresponses. If this relationship exists and the likelihood of a
response is dependent on emotional state, it would bias the
outcome of an ML-based EMA delivery mechanism.

Methods

Ethical Considerations
Ethics approval was granted by the Sociaal-Maatschappelijke
Etische Commissie of Katholieke Universitei Leuven (G-2018
09 1339) [24]. Informed consents were obtained from the
participants. All data was de-identified prior to analysis.

Data Collection
This study included 45 healthy adult participants from Leuven,
Belgium [24]. The average age of the participants was 24.5 (SD
3) years and ranged from 19 to 35 years. In total, 84% (38/45)
of the participants were female. The participants were recruited
via flyers distributed to areas around Leuven.

The study lasted for 10 days. The participants wore a sensor
suite (Figure 1), including a chest patch with 2 electrodes for
gathering electrocardiography (ECG) at 256 Hz and a wristband
for electrodermal activity (EDA) at 256 Hz, skin temperature
at 1 Hz, and accelerometer at 32 Hz. Participants were allowed
to remove the device while they slept and were asked to remove
the devices while bathing or participating in rigorous activities.
The sensors had a battery life that surpassed the duration of the
study, and the data were recorded on the device on an SD card.

Figure 1. (A) Chest patch for gathering electrocardiogram and accelerometer and (B) wristband for gathering electrodermal activity, skin temperature,
and accelerometer.
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Participants were given a research phone, and 10 EMAs were
sent to the participants daily at random time points between 15
and 90 minutes apart. EMAs were initiated via text messages,
and the participants had a specific amount of time to respond
to the survey attached to the text message before it closed. The
EMAs contained a question set to assess mood [25] in 3
languages: English, Belgian, and French. In total, there were
13 questions, including 9 negative (worried, stressed, anxious,
annoyed, down, restless, tense, under pressure, and ashamed)
and 4 positive (relaxed, cheerful, confident, and in control)
affect-related questions. The questions were prefaced with the
phrase “At the moment, I feel...,” followed by a rating scale for
each emotion, ranging from 1 (not at all) to 7 (very much). The
participants were given €0.5 (US $0.54) for each EMA they
responded to.

EMA Analysis
Our EMA question set was scored by adding the numerical
interpretation of the 9 negative responses to the inverse (1 is 7
and 7 is 1) of the positive questions. The range of possible scores

was between 13 and 91, with higher scores indicating more
negative emotions. Owing to the low variance in reported
positive and NA, we used a composite score of both positive
and NA.

We also analyzed the participants’ response time (time between
the notification and onset of EMA) and the response rate to
EMA. We then investigated the potential for loss of engagement
over time, which may lead to reduced participant receptivity.
The lack of engagement may impede our capacity to discern
the underlying causes of nonresponsiveness, particularly when
assessing the relationship between affect and receptivity.

EMA Receptivity and Affect Detection Models

Overview
In the following sections, we discuss the sequential
methodology, which encompasses the collection of raw signal
data, the subsequent data processing and feature extraction, and
the design of ML models for inferring 2 constructs—receptivity
and affect. This framework is shown in Figure 2.

Figure 2. Methodology used from the raw signals to our evaluation of the relationship between affect and receptivity. EMA: ecological momentary
assessment.

We began by processing our 4 sets of time series data: skin
temperature, ECG, EDA, and accelerometer. Once we processed
the data, we segmented them and attached labels to each segment
based on the conditions explained in the EMA Receptivity Labels
section. Next, we built and tested multiple ML algorithms to
infer EMA receptivity and affect and verified the results using
several statistical techniques.

Preprocessing

Time Series Processing

We began by extracting all the data from the 4 time series data
sets. Table 1 shows the features computed for the 4 sets of the
data. We used IQR to process skin temperature to remove
outliers. We used biosppy [26] for the ECG to process the data
and extract the R peaks. Biosppy uses a bandpass filter with
frequencies of 3 Hz and 45 Hz, a sampling rate of 256, and the
Hamilton segmentation algorithm to extract R peaks. We then

validated the R peaks using an algorithm by Hovsepian et al
[27]; this algorithm uses the criterion beat difference based on
the maximum expected difference for a beat and the minimal
artifact difference. We then used heart rate variability analysis
to extract heart rate and heart rate variability features such as
number of pairs of successive normal-to-normal intervals that
differ by more than 20 ms and root mean square of successive
differences between normal heartbeats [28]. We also obtained
some frequency- and geometric-based features. For EDA, we
used the method proposed by Taylor et al [29] to process and
extract the statistical and wavelet features. Finally, for
accelerometer, we smoothed the signal by using a fourth-order
10-Hz low-pass Butterworth filter and obtaining an average,
and then, we used a package from the study by Simon [30] to
extract step features. The features we extracted and the
information on how those features were calculated are shown
in Table 1.
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Table 1. Features from our 3 raw sources and definitions of the features that are less commonly used.

Prior workDescriptionFeaturesSignal

[31]Zero cross here is based on the number of times ST crosses over
the mean ST. Kurtosis measures the extremity of the data in the
segment, and skew is the measure of asymmetry.

Mean, median, mode, minimum, range, root mean
square, zero cross, kurtosis, skew, and IQR (25th
percentile and 75th percentile)

STa

[32-35]Normal to Normal or RRn interval indicates time between heart-
beats. NNI20 or NNI50 refers to the number of successive inter-
vals that differ by more than 20 or 50 ms. “P” indicates the pro-
portion of NNI20 or NNI50 in the segment. RMSSD is the root
mean square of successive differences between heartbeats.
CVNNI and CVSD are the coefficients of variation SDNN/mean
and RMSSD/mean, respectively. Our frequency domain features
are based on how much of the signal lies between 0.003 and 0.04
Hz (VLF), 0.04 and 0.15 Hz (LF), and 0.15 and 0.40 Hz (HF).

Mean, median, mode, minimum, range, root mean
square, zero cross, kurtosis, skew, IQR (25th per-

centile and 75th percentile), RMSSDc, CVSDd,

CVNNIe SDNNf, NNI50g, NNI20h, PNNI50i, PN-

NI20j, LFk, VLFl, HFm, high/low-frequency ratio

ECGb

[31,36-39]A 1-second and a half-second window were used for wavelet
features. Features were calculated for both the first and second
derivatives of each window size.

Wavelet: maximum, mean, SD, median, and above
zero (1-second and half-second wavelet); raw: am-
plitude, maximum, minimum, and mean; and fil-
tered: amplitude, maximum, minimum, and average

Electrodermal
activity

aST: skin temperature.
bECG: electrocardiography.
cRMSSD: root mean square of successive differences between normal heartbeats.
dCVSD: coefficient of variation of differences between adjacent normal-to-normal intervals.
eCVNNI: coefficient of variation of the normal-to-normal intervals.
fSDNN: SD of the normal-to-normal intervals.
gNNI50: number of pairs of adjacent normal-to-normal intervals differing by more than 50 ms.
hNNI20: number of pairs of adjacent normal-to-normal intervals differing by more than 20 ms.
iPNNI50: percentage of pairs of adjacent normal-to-normal intervals differing by more than 50 ms.
jPNNI20: percentage of pairs of adjacent normal-to-normal intervals differing by more than 20 ms.
kLF: low frequency.
lVLF: very low frequency.
mHF: high frequency.
nRR: R-peak to R-peak.

Segmentation

We segmented the data into 1-minute windows with a 30-second
overlap. We then calculated the statistical features for each of
the sensors, excluding steps. For each of these windows, we
calculated historic features. To do so, we elongated each of the
windows by 5, 30, and 60 minutes and then extracted the
features with the extended window size (ie, for each 1-min
window, we have not only the features from the 1 min but also
the features going back to these 4 time frames).

EMA Receptivity Labels

Labels for receptivity were based on whether the user responded
to the EMA and were assigned to segments based on whether

it was within a specified time of the scheduled notification. By
expanding the window of labeled data, we can increase the size
of the labeled data set (pseudolabeling). However, as this
window increases, so does the distance between some of our
time points and the corresponding label. We tested windows
that are 5, 30, 60, and 120 minutes long. For instance, for the
5-minute window, if an EMA was sent at midnight, the segments
that fell between 11:55 AM and midnight would be labeled
“responded” if they did respond and “no response” if they did
not. We applied the same method for the affect labels (Figure
3). We ultimately chose 30-minute windows owing to the
balance between the size of the training set and the labeled
points being relatively close in terms of time to the actual
response (or nonresponse).
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Figure 3. Representation of our labeled segments for the 5-minute window. It also demonstrates how we calculate response time (time between
notification [t1]) and the start of the ecological momentary assessment (EMA; tonset).

Affect Labels

Previous research on monitoring and tracking emotional states
using wearables has commonly used binary or categorical affect
measures to detect emotions [40]. These psychological
instruments often feature well-defined categorical score
representations, which make it easier to distinguish between
emotions. The distribution of the reported composite affect
scores made defining an adequate categorization of the labels
difficult. Most participants reported positive emotional states,
which complicated setting an appropriate cutoff. Setting the
cutoff at a high value would result in an imbalanced set of labels,
whereas selecting a lower value would create a balanced data
set but lack logical consistency. For instance, choosing a cutoff
of 26 to distinguish between positive and negative emotions
would lead to a balanced data set. However, the range of
possible responses was between 13 and 91, so a response would
be considered negative even if the participant indicated relatively
positive or neutral emotions.

In response to these challenges, we used recorded composite
affect values as our class labels and designed our ML algorithms
as a regression problem. Although this method of affect
inference is less commonly found in the literature, it prevents
the need for arbitrary data classification. Given that the data
exhibited an inherent imbalance, with less frequent occurrences
of negative emotional states, using regression may still affect
our ability to predict these less common negative emotions.

Analysis of the Relationship Between Features and
Receptivity and Affect
We examined the significance of each feature in terms of its
ability to predict affect and receptivity. To do so, we conducted
a repeated measures ANOVA test to assess how well each
feature is related to the response class labels. In addition, we
used a linear mixed model (LMM) to investigate the relationship
between features and affect scores. We used an LMM because
we worked with constant labels instead of converting the affect
score into binary or categorical values, as done for receptivity.
The dependent variable (affect score) was regressed on the fixed
effect variable (features), while accounting for random effects
(participant ID). These tests help identify any features or signals
that may have significance in determining receptivity or affect.

Receptivity and Affect Model Design and
Hyperparameter Tuning
We designed ML models to infer EMA receptivity and affect.
A wide variety of ML algorithms are used in affect and
receptivity prediction including random forest (RF) [31,32,39],
support vector machine [33,34,39], logistic regression, k-nearest
neighbors [30], neural network (NN; long short-term memory,
recurrent NN, convolutional NN, etc) [31,39], and naive Bayes
[39,41]. On the basis of our sensor data, initial tests, and drawing
inspiration from previous studies, especially those by Mishra
et al [10,11]. We selected (1) RF for predicting emotional state
and receptivity, (2) an NN for predicting emotional state, and
(3) a baseline model. This baseline model serves as a benchmark
for evaluating whether our models outperform random chance,
whereas the NN algorithm was introduced as a possible
improvement on existing model implementations. Unlike the
research mentioned previously, we used physiological data
rather than contextual data. These signals are sampled at higher
frequencies compared with contextual data and allow the
extraction of more fine-grained features, making NNs more
feasible. We designed personalized models to infer the
receptivity and effect of EMA.

To optimize our personalized model, we selected
hyperparameters using the grid search method for each
participant, explicitly using the GridSearchCV method defined
in scikit-learn. This method uses an exhaustive search method
(ie, testing each user-defined parameter permutation). The
hyperparameters tested included the number of estimators,
maximum depth of the estimator, minimum number of samples
per leaf, minimum number of samples for split, and maximum
number of features that can be used for the split. Using training
and validation sets, we selected the parameters and then applied
the optimal model to our test set. The optimal set of
hyperparameters differed for each participant, although the most
common optimal hyperparameters chosen included 60
estimators, maximum depth=3, minimum sample leaf=2,
minimum sample split=2, and maximum features=square root
of the number of features.

Our NN model was structured to use 3 densely connected layers
using a rectified linear unit activation function at each layer.
The output dimension of each layer was 256, 128, and 64, and
the output layer was a densely connected layer with 2 output
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dimensions. The reasoning for an output layer of 2 is to define
a CI for our regression model.

The baseline model was built by predicting random output based
on the distribution of the class labels in the training set (ie, if
10/100, 10% of the labels were nonresponses and 90/100, 90%
were responses, the model would predict nonresponses 10/100,
10% of the time). We can determine the expected outputs for
this model; our true positive rate should be equal to Pr(response
in the training set) × Pr(response in the test set). The more
evenly the class labels are distributed, the worse the performance
of the model. For the affect regression models, we used a normal
sampling method with the mean and SD based on the training
set class labels.

As there are more labeled responses compared with
nonresponses, we considered this imbalance in the receptivity
prediction model, weighting the classes based on the distribution
in our training set. All models were built using the Python
packages scikit-learn [42] or Tensorflow [43].

Model Uncertainty
To determine the relationship between affect and receptivity,
we must use predictions to infer the emotional state of our
participants during nonresponses. As affect is a complex and
difficult-to-predict construct, we need a method for filtering our
predictions based on some level of confidence. Therefore, we
introduced a method for calculating uncertainty for regression
using an NN.

Determining a confidence value for a regression model is
difficult compared with a binary or categorical model. We can
use a custom loss function in our NN to estimate epistemic and
aleatoric uncertainty for our regression model, where epistemic
uncertainty is based on our ability to predict our class labels
with the available data (affected by lack of knowledge or data),
and the aleatoric uncertainty is affected by randomness, which
is unknown or unmeasured in the model [44].

Our affect prediction model outputs are 2D rather than a single
predicted output. The first output is the predicted affect, µ(x),
and the second output, ln(σ(x)), is the predicted variance (the
log allows us to take the exponent to ensure a positive value for
σ). Both µ and σ are functions of our training set x.

The loss function L is shown in the equation (custom loss
function for measuring model uncertainty) and is derived from
the mean square error (MSE) calculation and the maximum
likelihood of a normal Gaussian distribution [45]. The numerator
of this equation is identical to the MSE loss function, where
µ(x) is the predicted output of our model. Unlike the MSE loss
function, we continuously update not only our predicted output
µ but also the predicted variance σ. The σ output of our model
is based on error; the sigma value increases to account for higher
error and decreases to account for lower error. This σ value can
be used as an uncertainty or error metric. Although it is still a
predicted value, it should align with how confident the model
is in the σ(x) output. The σ value plays a crucial role in assessing

the confidence of our affect predictions, given that we use
predicted affect to infer emotional states during nonresponses.

Consequently, to illustrate the relationship between the predicted
sigma value and model uncertainty, we performed a mixed effect
model analysis using affect scores and the predicted sigma
values and tested whether greater uncertainty will occur in
emotional states that are less frequently represented and when
the testing error is larger. As uncertainty is a measure of the
model’s confidence in its predictions, we can reasonably assume
that predictions associated with larger testing errors would
correspond to higher levels of uncertainty.

Model Evaluation
For cross-validation, we used a personalized random train-test
split cross-validation method. We randomly split the data into
training and testing sets using the response label (whether they
responded to the EMA or not) to stratify the split. Responses
and nonresponses can encompass multiple segments; by
grouping them together, we avoid splitting up segments from
a single response or nonresponse. As our response labels are
unbalanced, we want to ensure that our training, validation, and
test sets have a relatively even number of responses and
nonresponses. For the purpose of fairness, we excluded 3
participants who had a single nonresponse from our receptivity
results.

We first normalized the training and test sets independently of
one another based on the participant. In total, we obtained
approximately 230 features from the sensor signals. We reduced
our feature set using principal component analysis. Our
implemented principal component analysis was set such that
the number of produced components explained 99% of the
variance (48 features). This method was used for each model,
excluding the RF model, in which the original normalized data
were used as the input.

Analysis of the Relationship Between Affect and
Receptivity

Overview
We conducted two different analyses to understand the
relationship between affect and receptivity better:

1. To infer emotional state during nonresponses, we clustered
the physiological data and then examined the makeup of
the clusters. By doing so, we can assume the emotional
state of different clusters and unlabeled data points.

2. For EMAs the participants did not respond to, we used the
affect prediction model described in the previous section
to infer the emotional state at the time of a nonresponse.
With these newly predicted affect scores, we can analyze
the differences in the emotional state during a response and
nonresponse.

Cluster Evaluation
We used the most significant features (based on correlation)
when predicting receptivity for our clustering analysis. To
determine the optimal clustering method, we tested several
clustering methods, including hierarchical and k-means
clustering, with a maximum number of iterations of 300. We

JMIR Mhealth Uhealth 2024 | vol. 12 | e46347 | p. 7https://mhealth.jmir.org/2024/1/e46347
(page number not for citation purposes)

King et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


then calculated the silhouette score across all clusters using
receptivity as our ground truth and selected our best-performing
set of hyperparameters. On the basis of the cluster distribution,
we analyzed the difference in the perceived emotional state of
the participants. We calculated the average NA, PA, and
receptivity rates in the clusters for each participant and then
characterized the clusters based on receptivity rates (high
receptive and low receptive clusters). Next, using repeated
measure ANOVA, we demonstrated the statistical difference
between affect and the clusters. Given that the clusters were
created from physiological data, we know that the data points
within each cluster are physiologically similar; therefore, we
inferred that they would also exhibit similar psychological states.
This allowed us to assign affect scores to nonresponsive data
points within each cluster based on the labeled data points within
that cluster. Unlike affect prediction, we used the raw NA and
PA values in our evaluation as the clustering was performed
independently of affect scores; therefore, the lack of variance
in responses did not affect the output of the clustering. These
results gave us a sense of participants’perceived emotional state
during nonresponses. We also investigated differences in
receptivity in 2 clusters using the chi-square test.

Analysis of the Receptivity and Affect Relationship
Ideally, we would show the interaction between affect and
receptivity using the data collected. However, because
nonresponses do not have a corresponding affect score, we
designed and implemented our models for receptivity and
emotional state.

After generating predictions for our test data set, we assessed
the agreement (using Cohen κ) and correlation (using the point
biserial method) between receptivity and predicted affect,
leveraging true labels at time points when affect measures were
reported. A high level of agreement or correlation would suggest
a strong relationship between these 2 constructs, thereby
highlighting the potential influence each construct would have
on an ML algorithm to predict the other construct. We then
examined the disparities between the predicted affect during
nonresponses and the reported affect during responses. By doing
so, we can establish the extent to which emotional state
influences receptivity. Substantial disparities in affect between
responses and nonresponses suggest that participants’ emotional
states impact their receptivity. Consequently, a model designed
to predict receptivity would indirectly include emotional state
as a determinant of a participant’s receptiveness. However, it
is essential to acknowledge that some of these variations could
be attributed to model error. As a result, we also compared the
predicted and reported affects during responses to investigate
the significance of the model error. We then calculated and
visualized the cumulative distribution of these 3 sets of values
to illustrate the influence of affect on receptivity and the
associated model error.

Finally, we investigated the potential effects that an ML-based
receptivity algorithm would have on reported affect, influencing
the outcome of the study. On the basis of our receptivity model,

we can estimate the difference in the reported perceived
emotional state between our true findings and predicted affect
during time points that would initiate an EMA.

Results

In the following sections, we discuss the results of our study,
particularly the methods of evaluation that were discussed in
the previous section.

EMA Analysis: Affect and Receptivity
The distribution of EMA responses is shown in Figure 4.
Although participants rarely indicated high negative emotions,
this trend is evident in Figure 5, illustrating a box plot of
composite scores for each participant. Participants’average and
median reported affect were <26, meaning that, on average, the
participant responded to each question with a relatively low
score of 2 (on a scale between 1 and 7, where 1 indicates high
positive emotion and 7 shows high negative emotion). We also
investigated participants’emotional states as the study advanced
and observed minimal to no variations based on their duration
of enrollment or time of day.

On average, participants responded with a 4.5 for PA questions
and a 1.8 for NA questions. This disparity in affect intensity
was consistent with previous research [23]. There was a slight
difference in the reported affect between male and female
participants. On average, female participants responded with a
1.9 (SD 1.08) for the NA questions and 4.5 (SD 1.3) for the PA
questions, whereas male participants responded with a 1.8 (SD
0.9) for the NA questions and 4.7 (SD 1.0) for the PA questions.

Of the 3885 notifications sent to the 45 participants, there were
3066 (78.92%) responses. As the study persisted, there was
little to no drop-off in receptivity rates over time. This finding
helped confirm that loss of engagement was not a contributing
factor to receptivity. Most studies have stated that the quality
receptivity rate is at 80%. The range of response time (time
between notification and initiation of the EMA; Figure 3) was
between 0.5 seconds and 306 seconds. Participants responded
to the notification on average in 20.9 seconds and had a median
response time of 8.7 seconds. There were no responses after
306 seconds of a notification. The reason for this fast response
time is that participants were allowed 90 seconds to begin the
survey, after which the survey would no longer be accessible
(we had a few responses after the 90-second restriction owing
to software or design issues). This restriction makes it
challenging to relate response times to participant affect, as has
been done by other researchers.

We found that none of the mood responses were strongly
correlated with the time to respond. Across each question, we
did not obtain a correlation coefficient >0.03 (all correlations
indicated significant confidence; P<.05). This low correlation
coefficient indicates that the participant’s mood had little to do
with how long it took the participant to initiate the EMA.
Although considering the limit we put on the response time,
this relationship might be difficult to assume.
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Figure 4. Question set: includes the 13 questions used to measure affect with their mean, SD, and correlation to the final affect score. For each question,
participants were asked to rate the degree they were experiencing each emotion. These 13 questions can be split into positive affect (orange) and negative
affect (blue).

Analysis of Features
The features that we found to be the most significantly related
to receptivity were ECG low frequency (1 min, momentary:
F2,54=6.7; P<.001) and very low–frequency features (1 min,
momentary: F2,54=4.7; P=.02 and 60 min: F2,54=4.1; P<.001);
EDA mean (F2,54=10.2; P<.001) and median (F2,54=15.4;
P<.001); number of pairs of adjacent NN intervals differing by
more than 20 ms in the 5 and 60 minute windows; percentage
of pairs of adjacent NN intervals differing by more than 50 ms
in the 30 minute window (F2,54=11.2; P<.001); and maximum
(F2,54=6.3; P<.001), minimum (F2,54=3.6; P=.009), and absolute
maximum (F2,54=6.6; P=.002) of the first and second derivatives
for EDA. These results show that ECG and EDA-related features
were best at differentiating between responses and nonresponses
compared with features derived from accelerometer and skin
temperature.

When running the LMMs to determine the relationship between
features and emotional state, we found a nonsignificant
relationship between affect scores and steps or sleep features.

However, heart rate was significant when predicting emotional
state, particularly negative emotion. This LMM showed a
significant positive relationship between heart rate and affect
(β=.007; P<.04). This underscores the significance of heart rate
as a predictor of emotional state, although it does not necessarily
imply that steps and sleep features lack importance in this
context.

Receptivity and Affect Models
After processing, cleaning, and filtering out segments with
confounding values, we obtained 1368 responses with usable
physiological data. As our class labels were expanded to include
segments 30 minutes before the point of response (pseudo
labeling), we ended up with 13,477 data points for determining
affect and 17,254 data points for predicting response.

Model Performance
Table 2 shows the results of our receptivity (binary) and affect
(regression) models. On the basis of these results, there was
little difference between the RF and NN models, although we
used the NN models to demonstrate the relationship between
affect and receptivity in the following section.

Table 2. Model results for predicting receptivity (binary) and affect (regression).

Root mean square error
(SD)

F1-score, mean (SD)Recall, mean (SD)Precision, mean (SD)Accuracy, mean (SD)Model

11.1 (4.3)0.83 (0.002)0.84 (0.002)0.83 (0.002)0.73 (0.001)Baseline

7.3 (2.7)0.86 (0.20)0.85 (0.10)0.82 (0.006)0.84 (0.19)Neural network

7.5 (3.1)0.87 (0.12)0.94 (0.10)0.82 (0.15)0.83 (0.11)Random forest

Analyzing Uncertainty in the Affect Model
Figure 6A shows the relationship between the calculated sigma
value (uncertainty) and the reported affect scores. Uncertainty
should follow a pattern where class labels that are more
represented in the training set should have lower uncertainty.
Conversely, values that are less represented in the data set should

have larger uncertainty. As can be seen, Figure 6A σ values are
smaller when the reported emotional state is more positive. As
shown in Figure 5, most respondents indicated relatively low
composite scores, with a few participants reporting an affect
score >40. We also observed a statistically significant
relationship between sigma and affect scores, as shown in Figure
6A, using a mixed effect model. In this model, we accounted
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for the random effect associated with participants, as indicated
by the mixed linear model results (intercept: 7.090; P<.001 and
affect score: 0.002; P=.046).

Figure 6B shows the relationship between σ and the testing
error; in particular, σ values were larger when the model was
further from the ground truth. This relationship shows that our
σ value is an accurate representation of model uncertainty. On

the basis of Figure 6, we can say that the σ value we calculated
is related in some way to uncertainty. Figure 6B shows that
most responses indicating an affect score of <39 had a σ of <6.
Therefore, we chose 6 as the cutoff for uncertainty. This cutoff
filters out many of the predictions that are more likely to have
higher errors because we cannot look at errors during
nonresponses, as we have no affect label.

Figure 5. Box plot of perceived emotional state, minimum is 13 (negative) and maximum is 91 (positive). The average perceived emotional state is
26.42, denoted by the blue horizontal line.

Figure 6. Box plot showing the σ value for (A) true labels and (B) predicted error.

Receptivity and Affect Analyses

Cluster Analysis
On the basis of the “elbow rule” of silhouette scores, we chose
k-means as our clustering method with 2 clusters. We found
that the distribution of receptivity was somewhat different
between clusters. Cluster 0 contained a higher density of
responses, with just <15% nonresponses, whereas cluster 1 had
a higher density of nonresponses of just >21%. We first analyzed
the overall affect scores in the 2 clusters, where we found the
average reported affect score in cluster 1 to be >3 points higher
than the average reported affect in cluster 0 (repeated measure
ANOVA, F2=23.16; P<.001). The receptivity rates and average
reported affect scores for the 2 clusters are shown in Table 3.
We also found that the distribution of receptivity was different
between the 2 clusters using the chi-square test of independence

(χ2
2=898.8; P<.001). These results indicate distinctions between

response and affect across the cluster labels. Considering that
the cluster with a higher density of nonresponses (cluster 1)
also had a higher average affect score (higher scores indicate
more intense negative emotions or lower positive emotions),

we can assume that there was a relationship between EMA
receptivity and reported affect.

Figure 7 shows a scatter plot of the difference in perceived PA
between the 2 clusters and the difference in perceived NA
between the 2 clusters for each participant. The results show
that participants’ perceived emotion was more negative
regarding lower PA and higher NA in cluster 1 compared with
their perceived emotional state in cluster 0. As stated earlier,
cluster 1 contains a higher percentage of nonresponses compared
with cluster 0, indicating that cluster 1 is a better representation
of a nonresponse. Therefore, it appears that there is a
relationship between negative perceived emotional state and
receptivity. Using the cluster labels as groups, we calculated
the F test statistic using an ANOVA test for each feature. The
features that separated the 2 clusters were mostly calculated
from the ECG signal, including the minimum heart rate, low or
very low frequency, mean heart rate, coefficient of variation of
the NN intervals, coefficient of variation of differences between
adjacent NN intervals, high frequency, and maximum heart rate
(in order of F1-score). Features obtained from the EDA,
accelerometer, and body temperature did not return significant
P values when calculating the F test statistic.
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Table 3. Receptivity rates and average reported affect scores in each cluster.

Reported affect score, mean (SD)Receptivity rateCluster number

24.3 (4.7)0.85Cluster 0

27.3 (4.9)0.78Cluster 1

Figure 7. Each point represents a participant, where the x-axis denotes the difference between average negative affect (NA) of cluster 0 and 1, whereas
the y-axis represents the difference between average positive affect (PA) of clusters 0 and 1.

Relationship and Analysis Between Receptivity and
Affect
Figure 8 shows the cumulative distribution of reported affect
scores for responses and predicted affect scores for responses
and nonresponses. On the basis of this figure, there is a clear
difference between the predicted affect during nonresponses
and our true affect scores. Although this could be a model error,
we also predicted affect scores during these responses and found
that our model consistently predicted lower affect values (higher
PA).

There was a fair amount of agreement between our affect and
our binary response model, with a Cohen κ score of 0.33 and a
correlation of 0.44. When our model predicted a response,
77.42% (22,761/29,399) of the segments were during times
when the affect model predicted PA. Only 69.72%
(7760/11,131) of the predicted nonresponses reported PA. This
indicates that the predicted response is negatively related to
affect (ie, responses are associated with PA, whereas
nonresponses are associated with NA). The reason determining
the relationship between our constructs is important is because
this bias can, and as we show, affect the overall outcome of a
study. For instance, the average predicted affect score for times
that we predicted as low likelihood for a response was a full 1.5
(SD 1.35) or 2.01 points higher than the average predicted affect

for points predicted to be of high likelihood for a response.
When observing only the segments where we misclassified a
response (ie, we had a true affect, but the response was
misclassified as a nonresponse), we found that the average affect
score dipped slightly from 26.1 (predicted nonresponse) to 25
(predicted response). This difference in affect between responses
and nonresponses is evidence that our receptivity model is
indirectly based on affect. The SD of the affect score also
decreased from 11.1 (true labels) to 9.8 (true affect and predicted
response) during responses.

The average predicted affect score for a nonresponse was 30.9
(SD 11.2), and the average affect score for a response was 29.3
(SD 10.7; true) and 27.7 (SD 8.9; predicted). The predicted
affect scores during nonresponses were higher than the reported
and predicted affect scores during responses. Given that our
average testing error was −1.6, we could also assume that the
predicted affect during these nonresponses could be more
negative than the true predictions. The distribution of these
scores is shown in Figure 9. In Figure 9, all 3 groups’ affect
scores peaked at around 20 to 25; this is probably owing to the
large number of reported affect scores in this range. However,
nonresponses had a second peak at an affect score of 40. This
bimodal distribution could indicate that our affect distribution
during nonresponse was affected by ≥2 factors. Some
nonresponses may not be affected by their affect but perhaps
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by their daily life activities (seeing a movie, spending time with
family, showering, etc). In contrast, the second peak indicates

that NA is related to nonresponses.

Figure 8. Cumulative distribution of predicted and actual affect scores for responses and nonresponses.

Figure 9. Distribution of predicted and true affect scores for responses and nonresponses. Density is specific to the response and nonresponse.

Discussion

In this section, we discuss the outcome of our study, particularly
the relationship between emotional state and receptivity, what
that means, how it affects our results, and how we might
implement a receptivity model that removes this bias. We also
mention the limitations of this study.

Principal Findings
This study aimed to understand how ML models used to improve
participant receptivity can affect the outcome of a study.
Although we focus on emotional state in this study, we feel as
if there are many health constructs and outcomes that can be
affected by these receptivity models. Improving receptivity is
not a new concept, but in the realm of mHealth, it is an emerging
problem. The factors influencing study adherence have been
analyzed and discussed in depth in previous research. One such
scope is in medication adherence. Researchers have found many
factors that influence medication adherence, from social,
therapeutic, patient-related, and disease-related factors [46].
However, few have examined the momentary factors that affect
adherence to medication or a health construct, and few have

had the ability to do so without wearable sensors and momentary
assessments.

Our findings using supervised learning and clustering indicate
a clear relationship between emotional state and user receptivity.
The clustering method demonstrated clear differences in affect
between a highly receptive cluster and a less receptive cluster.
The results of supervised learning demonstrate that users
experience more negative emotions during nonreceptive time
points. Although our results showed promise for a model
dedicated to predicting response, we also showed the biases
inherent in such a model. Ideally, we would want a receptivity
model that is completely independent of emotion. Otherwise,
we are influencing the participant’s responses.

Our results demonstrate that an mHealth study implementing a
receptivity trigger based purely on the likelihood of responding
(a model that triggers EMAs and JITIs using predicted
receptivity) will bias the participant’s response. In this case, the
model would initiate an EMA or JITI during times of more
positive emotions, thereby decreasing the overall affect score
for the EMA and possibly sending the JITI during times when
the intended construct was not being met. As our ability to
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predict binary affect is limited with this data set, we believe
that using the affect regression and ground truth labels for
responses will return the most realistic representation of affect
during nonresponses.

Comparison With Prior Work
Our findings are consistent with those of the previous studies.
Many prompt-level studies [21-23] found a relationship between
nonresponses and higher levels of NA in previous prompts.
Although these results can provide insight into what makes a
participant less compliant with EMAs, they do not offer a
reasonable method for using this information in real-time
decision-making. Using ML, wearable sensors, and contextual
cues allows researchers to predict noncompliance components
and distribute EMAs accordingly.

Consistently, our models either surpassed or achieved equivalent
performance compared with previous research efforts. We
achieved F1-scores ranging from 0.83 to 0.87 when predicting
receptivity. In contrast, Künzler et al [14] reported F1-scores of
approximately 0.4 while relying solely on contextual features.
It is important to note that these results are not directly
comparable, as contextual data lack the granularity of the data
collected in our study.

Regarding affect prediction, our results present a unique
challenge for comparison because we used regression in our
predictions, unlike most researchers who typically use binary
or categorical labels for emotion recognition. We chose not to
convert our ground truth data into binary or categorical labels
because of the inherent ambiguity in setting the thresholds and
the limited variance in user responses. The effectiveness of
affect prediction can vary significantly depending on the specific
construct of interest and the sensors and signals available.
Schmidt et al [40] conducted a review and reported an emotion
recognition accuracy ranging from 40% to 95% using wearable
sensors and signals. In terms of regression analysis, Tuarob et
al [47] achieved nearly identical root MSE scores (PA=7.37;
NA=7.40) when forecasting positive and NA scores from
Positive and Negative Affect Scale using RF regression and
previously collected questionnaire data.

Limitations
In this section, we address the limitations of our study, which
can be categorized as limitations in our population, study design,
data collection, and affect prediction models.

The major concern of our study population is that our results
may be specific to this cohort. The study population was very
receptive, even with 10 EMAs sent daily. This could be difficult
for other researchers to implement, as the frequency and
complexity of the EMA are fairly burdensome. Although we
believe that the relationship between affect and receptivity
would extend to other studies, it is important to note that our
population was relatively small (N=45), predominately young
(age 24.5 y), and had a higher representation of female
participants (38/45, 84%). Consequently, our results may be
specific to our cohort and EMA question set, but previous
studies analyzing medication adherence and prompt-level
relationships between EMAs and nonresponses indicate that
the effect of emotional state on receptivity is common across

multiple populations [21-23]. Further research is needed to
explore the extent of this relationship between different
emotional states and receptivity across multiple populations.

One limitation of the study design is that we cannot examine
how loss of engagement over time affects the relationship
between emotional state and receptivity. There was little to no
drop-off in receptivity rates as our study progressed. This may
have been because of the relatively short time frame in which
the participants were enrolled. As a result, it is difficult to
explore the effect emotional state would have on EMAs in the
latter part of a study when participants can be more fatigued
and less engaged. In future work, we intend to study a population
for an extended period to analyze how emotional state affects
participant response rates later in the study. Ideally, this will
allow us to see the rate at which responses decay, the causes,
and how we might combat it. Furthermore, we believe that a
measure of this decay in engagement could be included in our
ML-based decision-making for delivering EMAs that mitigate
study fatigue, similar to how we would use model uncertainty
to diversify emotional response.

Another potential study design limitation is that the app and
research phone were shared with participants. Carrying 2
phones, especially one dedicated solely to responding to EMAs,
can be burdensome for participants. In addition, the app designed
for EMA distribution requires further usability evaluation. In
future work, we aim to develop an app that can seamlessly
integrate into users’ devices and assess its ease of use.

The data gathered in this study were limited to physiological
features and user-defined responses. Although the physiological
features make up a large portion of what researchers consider
important for predicting psychological constructs, the data set
lacks sampling contextual data. Certain contextual information
is imperative for recognizing emotions and improving EMA
response rates that cannot be obtained using physiology, such
as social context. The social context can help infer the
participant’s emotional state and willingness to respond to an
EMA or JITAI.

Similarly, by incorporating more psychological and
environmental cues (personality traits, working hours, etc), we
can better understand what to expect from our participants
regarding receptivity and affect before the start of the study.
Using these prestudy measurements, we could assess the type
of participants enrolled. Specifically, what will be their needs
regarding receiving and responding to EMAs. This will help us
develop and personalize our ML models for affect and
receptivity.

The last significant limitation of our study is the use of predicted
affect labels in determining the relationship between emotional
state and receptivity. We can never collect reported affect during
nonresponses for this or any data set. We attempt to reduce this
limitation by using uncertainty to filter out less-confident
predictions. Nevertheless, the predicted affect is only as good
as our models. The only way to overcome this limitation is to
improve the affect models. Although some may argue that the
quality of our models needs to be more robust to claim a
relationship between affect and receptivity, the effects of
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emotional state on engagement in social and daily life activities
are well documented and consistent with our conclusion.

Conclusions
This paper presents the possibilities for bias in ML models to
trigger surveys and interventions for participants in mHealth
studies. Our results show a clear relationship between emotional
state and user EMA receptivity. By designing an mHealth study
using a “trigger” to improve participant response, it is imperative
to consider some biases that may arise, in this case, affect.
Participants were more likely to respond to an EMA during
positive emotional states. If we distribute those EMAs to times
when they are more likely to respond, we would further be
biasing our participants’ recorded emotional state. Although
this may not be a significant problem for less responsive
populations, for the general population, this could change
researchers’perception of the participant’s perceived emotional
state. In this study, we did not examine other constructs that
might be a factor of receptivity because affect is the focal point
of this study. For this objective, we are collecting both subjective
and physiological data. Although this may be broad, it can be
applied to any construct, particularly the intended construct of
an mHealth study.

The pitfall of any mHealth study, particularly those involving
psychological concepts, is the dependency on subjective user

responses. The sampling rate of subjective responses will always
be less than that of the physiological sensors and even some
contextual cues. As our feature set became increasingly
comprehensive, our labeled data remained relatively sparse.
Considering that our proposed trigger considers factors beyond
receptivity, it would likely have lower receptivity rates compared
with triggers solely based on receptivity. However, the
importance of even a minimal increase in a user’s adherence or
engagement in a study can drastically improve researchers’
understanding of the health construct.

The models discussed in this paper have mostly proposed
single-objective optimization functions that try to optimize
based on whether the model considers that a user will respond
to an EMA. In future work, we will propose a multiobjective
optimization function for triggering EMAs and JITAIs based
on the likelihood of responding and an active-learning
measurement of the health construct. This multiobjective
function would base the timing of the EMAs on 2 separate
objectives: receptivity and model uncertainty. By initiating
EMAs or JITAIs based on these 2 objectives, we can obtain an
expected response that is more diverse in terms of affect. We
hope that the work presented in this paper can be used to further
enhance communication and the ability to gain knowledge from
participants.
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ML: machine learning
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