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Abstract
Mobile health (mHealth) with continuous real-time monitoring is leading the era of digital medical convergence. Wearable
devices and smartphones optimized as personalized health management platforms enable disease prediction, prevention,
diagnosis, and even treatment. Ubiquitous and accessible medical services offered through mHealth strengthen universal health
coverage to facilitate service use without discrimination. This viewpoint investigates the latest trends in mHealth technology,
which are comprehensive in terms of form factors and detection targets according to body attachment location and type.
Insights and breakthroughs from the perspective of mHealth sensing through a new form factor and sensor-integrated display
overcome the problems of existing mHealth by proposing a solution of smartphonization of wearable devices and the wearable
deviceization of smartphones. This approach maximizes the infinite potential of stagnant mHealth technology and will present
a new milestone leading to the popularization of mHealth. In the postpandemic era, innovative mHealth solutions through the
smartphonization of wearable devices and the wearable deviceization of smartphones could become the standard for a new
paradigm in the field of digital medicine.
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Background
In the postpandemic era, the significance of mobile health
(mHealth) has been highlighted, and explosive growth in
this area is expected to continue [1,2]. Cutting-edge technol-
ogies are converging with health care, and mHealth, based
on hyperconnected intelligence, is leading the paradigm shift
in medical care [3,4]. Many countries have already entered
a superaged society, and the proportion of gross domestic
product expenditures for medical care is increasing due to
an upsurge in the number of people with chronic diseases.
In addition, the excessive demand compared to the availa-
ble supply, the lack of health care infrastructure, and the
unbalanced distribution of medical staff are also problems.

Therefore, prediction, prevention, and management through
artificial intelligence (AI)–based medical big data analysis
are required, and for this purpose, ubiquitous and accessible
medical services using personalized devices must be provided
[5]. mHealth is a strong candidate to make this possible,
and the ultimate goal is to dramatically improve the standard
and satisfaction of living by providing quality services at
affordable prices [6,7].

Wearable electronics and smartphones are representative
types of mobile systems optimized for personalized health
care sensing. As shown in Figure 1 [8-19], wearable devices
that cover the human body and smartphones, a necessity for
modern people, enable comprehensive health management in
real time.
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Figure 1. Application and placement schematic illustration of wearable devices by body part and smartphone for mHealth management. The images
were reprinted from Shin et al [8,19], Kim et al [9,19], Escobedo et al [10,19], Hwang et al [11], Nakamura et al [12,19], Hua et al [13,19], Moon et
al [14,19], Zhao et al [15,19], Kim et al [16,19], Liu et al [17,19], and Chan et al [18,19]. e-Skin: electronic skin; mHealth: mobile health.

However, the pace of the development and popularization
of mHealth technology is progressing more slowly than
expected. From the perspective of a paradigm shift from
the smartphonization of wearable devices and the weara-
ble deviceization of smartphones, this viewpoint aimed to
propose ways to unleash the potentiality of mHealth in the
postpandemic era. The smartphonization of wearable devices
and the wearable deviceization of smartphones do not simply
mean that current smartphones become wearable devices
and that current wearable devices maintain the functions
of current smartphones. The smartphonization of wearable
devices is to completely replace the smartphone function with
a wearable device, while upgrading health care performance
by embedding the current smartphone’s computational power
and sensor-integrated display, including large-area panels and
user interaction, in the wearable system. In addition, the
wearable deviceization of smartphones refers to a change in
the form factor so that health care sensing can be performed
by switching from the current rigid form to a form that
can be attached to a curved skin surface. The new form
factor, which features both wearable computer and smart-
phone functions, will improve detection performance through
large-area sensing and increase the penetration rate.

This viewpoint investigated recent trends in health care
sensing methods using wearable devices and smartphones,

which are the central axis of mHealth. In the case of
wearable devices, the form factor for each detailed location
on the body and the corresponding detection target technol-
ogy was described. In the case of smartphones, it covered
the detection target and principles of health care according to
the application of internal and external sensors, materials, and
software. This viewpoint also analyzed the prospects of and
current challenges in existing mHealth systems and consid-
ered new health care solutions using flexible displays for
the convergence form factor of smartphones and wearables.
The differentiating point was to consider the direction of
mHealth from the perspective of a sensor-integrated and
new form factor display. Ultimately, from a display perspec-
tive, solutions for the smartphonization of wearable devices
and the wearable deviceization of smartphones will provide
insight into the health care paradigm shift.

Recent Progress in the Development
of Wearable Electronics for Health
Care
The primary classification of wearable electronics based on
the attachment position can be divided into the face, upper
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body, limbs, and whole body. Wearable clothes all over the
body can also be classified separately.
Face

Head
The face, which is closest to the brain, is significant from
a sensory point of view because it is where the 5 senses
are concentrated. Face-wearable devices with various form
factors, such as bands, caps, headsets, lenses, glasses, tattoos,
mouthguards, and masks, may be distributed at each part
of the head, eyes, nose, mouth, and ears to sense critical

biosignals. In the case of the head, a wearable system that
can analyze brain waves and psychological states can be
applied [8,20,21]. Figure 2A [8] shows a wireless wearable
electroencephalogram (EEG) measurement device based on
a tattoo. AI can enhance decision-making by deep learning
classification of received EEG data. Namely, it advances the
decision performance of AI by feedback through brain waves.
Additionally, it would be possible to grasp the degree of
brain activation and mental condition of the frontal lobe and
temporal lobe through the measurement of biosignals, such as
brain waves.

Figure 2. Wearable devices attached to the face for mHealth. (A) Wearable EEG analysis platform with tattoo electrodes for EEG measurement and
earbuds for wireless interaction. The images were reprinted from Shin et al [8,19]. (B) Stretchable corneal lenses for ocular electrodiagnosis. The
images were reprinted from Kim et al [19,22]. (C) Intraoral electronics for sodium intake analysis through wireless remote control. The images were
reprinted from Lee et al [23]. (D) Sensing platform for gaseous CO2 real-time determination inside filtering face piece 2 (FFP2) facemasks. The
images were reprinted from Escobedo et al [10,19]. EEG: electroencephalogram; mHealth: mobile health.

Eyes and Nose
System form factors worn on the eye may be divided
mainly into lenses and glasses. In the case of lenses, eye
health factors, such as glucose, intraocular pressure, and
electroretinographic measurements, can be determined using
noninvasive methods [9,22,24-26]. For example, a corneal
sensor embedded in a disposable soft contact lens can be
deployed for electroretinography based on electrochemical
anchoring, as shown in Figure 2B [22]. These corneal lenses
are functional sensors tailored for ophthalmic electroretino-
graphic testing in human eyes via a user-friendly interface
and a design that can be deployed noninvasively. Glasses for
health care are prescribed by doctors as an auxiliary tool for
surgery and can also analyze the electrolyte and metabolite

content of sweat flowing from the head [27-29]. In addition, a
wearable system placed on the nose in the form of a nose pad
on the glasses can sense the pulse wave, respiratory rate, and
electrooculographic measurements [30,31].

Mouth and Ears
Wearable electronics related to the mouth take the form of
mouth guards, tooth sensors, and masts and can analyze
saliva and nutrients and monitor air quality [10,23,32-35].
For example, a small stretchable circuit and sensor that
can be inserted into the human oral cavity may be inte-
grated into a breathable, flexible microporous membrane
for a tissue-friendly design, as shown in Figure 2C [23].
Such a device may be used in research to study the preven-
tion of hypertension by facilitating continuous quantification
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analysis of sodium intake. Figure 2D [10] shows a sensing
platform for detecting gaseous CO2 inside a face mask via
stable inorganic phosphors whose luminescence is controlled
by a pH indicator. A mask combining a battery-free prin-
ted near-field communication (NFC) tag and a photochemi-
cal sensor for noninvasive CO2 measurement was used to
achieve detection performance with a resolution of 103 ppm.
Practicality in physical activity has been increased through
the compensation of the temperature noise and characterized
analytical specifications of measurement systems. Moreover,
health care wearable systems attached to the ears use earbuds
to perform heart rate and sleep monitoring functions [36,37].
Upper Body
In addition to the face, wearable systems can be applied to
the neck, chest, abdomen, internal organs, back, and waist to
extract significant health values.

Neck
In the case of the neck, wearable devices with a necklace
and patch form factor can record an electrocardiogram (ECG)
and voice pressure and monitor the diet through an electro-
glottogram (EGG) using a neckband [38-40]. For example,
a neck-attached wearable device incorporating a cross-linked
polymer film and hole-patterned diaphragm structure detects
and quantifies voice with an excellent sensitivity of 5.5 V
Pa−1 over the voice frequency range, as shown in Figure
3A [39]. This device can be used for voice health manage-
ment and security authentication by eliminating vibration
distortions on the curved skin surface through excellent skin
compatibility via using ultrathin profiles of ≥5 µm.

Figure 3. Wearable electronics mounted onto the upper body. (A) Vibration-responsive patch for sensing voice pressure. The images were reprinted
from Lee et al [19,39]. (B) Epidermal cardiopulmonary patch based on laser fabrication. The images were reprinted from Rachim et al [41]. (C)
Air-silicon composite transducer (ASiT) for breathing pattern monitoring. The images were reprinted from Cotur et al [19,42]. (D) Spine tracker
sensor system. The image was reprinted from Stollenwerk et al [19,43]. (E) A belt for waistline measurement. The images were reprinted from
Nakamura et al [12,19]. EPE: electrophysiological electrode; MES: mechano-acoustic sensor; PCB: printed circuit board.

Thorax
Thorax-related wearable electronics, such as patches, chest
belts, and brassieres, enable ECG recording, temperature
measurement, sleep monitoring, posture analysis, and
galvanic skin response (GSR) assessment [11,41,44-48].
Figure 3B [41] shows a sensor designed for continuous
monitoring of the cardiopulmonary biosignal via a CO2
laser–based manufacturing process. The epidermal patch
consisting of a mechanoacoustic sensor and electrophysio-
logical electrodes provides advanced functionality through a
gas-permeable and biocompatible layer.

Abdomen
Abdomen-attached mHealth systems can sense glucose
and breathing patterns through patches and straps [42,49].

For instance, an air-silicon composite transducer monitors
respiratory activity by continuously measuring the force
applied to the air channel embedded in the silicon-based
elastomer, as shown in Figure 3C [42]. The system, which
uses a pressure sensor and mixed-signal radio electronics,
follows the principle of sensing the air pressure change
inside the channel when breathing force is applied to the
transducer surface. In particular, tactile sensing, including
pressure sensing, is critical in health care. This is because
tactile sensors attached to the skin detect physical stimuli,
such as breathing patterns, heart rate, pulse, muscle activity,
and body temperature, linked to biological signals. Skin, the
most widely distributed organ among the five sense organs in
the human body, is a tactile sensor with receptors that detect
pressure, delicate movements, and temperature and is also
an actuating organ that emits the same physical stimulation.
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Flexibility is a crucial element for the tactile sensor to be
conformally attached to the skin to detect minute physical
changes in detail and increase user convenience [50-52].

Furthermore, digestible pills check medication compli-
ance. Management of medication adherence can prevent
patients with severe mental illness from experiencing relapses
and hospitalizations [53]. In addition, capsule endoscopy can
monitor the colon health or bladder pressure state [54,55].

Back
A wearable system attached to the back can be used to
analyze changes in the spine’s shape during training. A spine
tracker device shown in Figure 3D consists of 5 sensors, with
each sensor attached to the lumbar spine, and can correct
posture by providing real-time feedback [43].

Waist
In addition, a waist belt can be useful for obesity management
[12,56]. The belt automatically measures waist circumference

with high accuracy, with an F1-score of 0.95, and monitors
the daily lifestyle using a magnetometer, an accelerometer,
and a gyroscope, as shown in Figure 3E [12].
Limbs
In the case of the limbs, the main categories include the
hands, arms, legs, and feet by attachment location.

Hands
The measurable health factors in a hand-related wearable
device, such as a patch, ring, or glove, include rehabilitation
evaluation analysis, ECG characteristics, oxygen saturation,
dietary monitoring, pulse wave, and temperature [13,57-61].
For instance, a multisensory electronic skin integrated into a
polyimide network simultaneously detects physical proper-
ties, such as temperature, strain, humidity, light, magnetic
field, pressure, and proximity, in real time, as shown in Figure
4A [13]. It can also be used for rehabilitation evaluation using
personalized intelligent prostheses.

Figure 4. Wearable devices attached to the hands and arms. (A) Stretchable and conformable electronic skin for multifunctional sensing. The images
were reprinted from Hua et al [13,19]. (B) Power generation textile for wearable health care. The images were reprinted from Zhao et al [15,19].
(C) Stand-alone patch for health monitoring based on a stretchable organic optoelectronic system. The images were reprinted from Lee et al [62].
(D) Thermal patch for self-care treatment through temperature distribution sensing and thermotherapy based on wireless graphene. The images were
reprinted from Kang et al [63]. (E) Sensor conformably attached to skin decoding epicentral human motions. The images were reprinted from Kim
et al [19,64]. (F) A single wearable biosensor platform that simultaneously monitors sweat and interstitial fluid (ISF). The images were reprinted
from Kim et al [16,19]. MEG: magnetoelastic generator; OLED: organic light-emitting diode; PDMS: polydimethylsiloxane; PI: polyimide; PPG:
photoplethysmogram; PVA: polyvinyl alcohol; Temp.: temperature.
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Arms
mHealth systems of various form factors related to the arm
can also be useful for health management. Among them,
wristwatches, bands, and bracelet devices can detect health
factors, such as the heart rate, oxygen saturation, number
of steps, blood pressure, ECG characteristics, glucose, blood
sugar, and sweat metabolites [14,15,65-75]. Figure 4B [15]
shows a magnetoelastic generator that provides the power
to drive a wearable biosensor system. This generator can
help measure cardiovascular parameters underwater without
encapsulation for telemedicine and has excellent water vapor
transmission characteristics.

A patch sensor attached to the arm can measure the
pH, sweat rate, lactate, heart rate, temperature, electromyo-
gram (EMG) and ECG characteristics, blood pressure, and
water content and can also be applied for wound treatment
and rehabilitation evaluation [62-64,76-85]. For instance,
a stand-alone organic skin patch for health care with an
organic light-emitting display with sufficient pixels reports
the heart rate via a stretchable photoplethysmogram (PPG)
sensor, as shown in Figure 4C [62]. An ultrathin patch
of 15 μm is configured on a soft elastomer substrate and
can operate stably at 30% strain using a combination of a
stress relief layer and deformable microcracks. Figure 4D
[63] shows a wireless graphene patch that simultaneously
provides thermal sensing and thermotherapy capabilities.
This thermal patch consists of a graphene-based capacitive
sensor, a graphene thermal pad, and a flexible wireless
communication module to continuously monitor temperature
changes with high resolution and sensitivity and perform
thermal treatment through a graphene-based heater. Beyond
the existing complex multisensor structure, skin patches alone
may decode movements of 5-finger gestures by detecting
microdeformation using the laser-induced crack structure,
as shown in Figure 4E [64]. Based on the same principle,
it can be attached to various body parts to track physical
movements.

Furthermore, ECG, EMG, temperature, sweat, and
interstitial fluid analyses can be performed following health
care monitoring through arm tattoos [16,86]. For instance, a
noninvasive epidermal biosensing system includes physically
separated electrochemical biosensors for the extraction of
interstitial fluid at the cathode and sweat stimulus extraction
at the anode, as shown in Figure 4F [16]. Namely, this
biomarker monitoring system is a single wearable epidermal
platform that simultaneously samples and analyses different
biofluids.

Legs and Feet
Figure 5 describes a wearable health care device that may
be applied to the legs, feet, or whole body. The mobile
form factors applicable to the legs include patches, wear-
able robots, and straps, which perform moisture analysis
at the wound area, gait analysis, ECG measurement, and
rehabilitation evaluation [17,87-92]. For instance, appropri-
ate dressing changes for exudative wounds are essential.
Using a moisture sensor mounted on the bandage, as shown
in Figure 5A [89], the change in the amount of dressing
on the wound can be detected and the replacement time
determined, increasing patient convenience. A motion capture
device can accurately measure the movement of limbs during
daily activities, strenuous exercise, and long-term exercise,
as shown in Figure 5B [17]. Existing drift and instability
problems are solved by integrating microtriaxis inertial and
microtriaxis flow sensors. Additionally, it is possible to
evaluate gait performance on irregular and uneven surfaces
using a wearable sensor in the form of a strap with 6
inertial measurement units (IMUs) and an analysis algorithm,
as shown in Figure 5C [92]. It is possible to implement
edema measurement, gait analysis, and ulcer detection via
plantar pressure analysis using wearable sensors attached to
the shoes, socks, or soles of the feet [93-97].
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Figure 5. mHealth apps for the legs and the whole body. (A) Moisture sensor for exudative wounds. The image was reprinted from Henricson et al
[19,89]. (B) A motion capture device capable of detecting limb movements with high accuracy. The images were reprinted from Liu et al [17,19].
(C) Wearable strap sensor for gait analysis. The image was reprinted from Luo et al [19,92]. (D) An electronic textile conformable suit for distributed
sensing wirelessly. The images were reprinted from Wicaksono et al [19,98]. mHealth: mobile health.

Whole Body
Furthermore, clothes worn on the whole body are also a
type of wearable device. Figure 5D [98] shows a person-
alized and conformable suit of an electronics-based textile
for multimodal health care sensing. The platform’s elasticity
ensures intimate contact between the electronic device and
the skin, and it can detect the skin temperature, heart rate,

and respiration with high accuracy and precision. The suit
with electronic textiles can measure the body temperature,
respiratory rate, heart rate, oxygen saturation, and EMG
and ECG characteristics and can also perform phototherapy
[98-103]. As described before, form factor and detection
targets by body part on wearable devices are summarized in
Tables 1-4.

Table 1. Summary of form factor and detection targets on wearable devices for the face.
Body position and form factor Target(s) of detection Reference(s)
Head
  Tattoo EEGa [8]
  Band, cap, headset Mental stress through EEG [20]
  Band, cap, headset EEG [21]
Eyes
  Lenses Glucose [24,25]
  Lenses Intraocular pressure [9,26]
  Lenses Electroretinogram [22]
  Glasses Auxiliary surgical tool [27,28]

JMIR MHEALTH AND UHEALTH Hong

https://mhealth.jmir.org/2024/1/e48803 JMIR Mhealth Uhealth 2024 | vol. 12 | e48803 | p. 7
(page number not for citation purposes)

https://mhealth.jmir.org/2024/1/e48803


Body position and form factor Target(s) of detection Reference(s)
  Glasses Sweat electrolytes, metabolites [29]
Nose
  Nose pad Pulse wave, respiration rate [30]
  Nose pad Electrooculogram [31]
Mouth
  Mouthguard Saliva monitoring [32-34]
  Mouthguard Nutrition analysis [23]
  Tooth sensor Nutrition analysis [35]
  Mask Air quality monitoring [10]
Ears
  Earbuds Heart rate [36]
  Earbuds Sleep monitoring using EEG [37]

aEEG: electroencephalogram.

Table 2. Summary of form factor and detection targets on wearable devices for the upper body.
Body position and form factor Target(s) of detection Reference(s)
Neck
  Necklace ECGa [38]
  Patch Voice pressure [39]
  Band EGGb [40]
Thorax
  Patch ECG [11,41,44]
  Patch ECG, temperature [45]
  Patch Sleep monitoring [46]
  Chest belt Trunk posture [47]
  Brassiere Galvanic skin response [48]
Abdomen
  Patch Glucose [49]
  Strap Respiratory patterns [42,50-52]
Internal organs
  Ingestible pill/capsule Medication compliance [53]
  Ingestible pill/capsule Intravesical pressure and colon monitoring [54,55]
Back
  Strap Spine monitoring [43]
Waist
  Belt Obesity management [12,56]

aECG: electrocardiogram.
bEGG: electroglottogram.

Table 3. Summary of form factor and detection targets on wearable devices for the limbs.
Body position and form factor Target(s) of detection Reference(s)
Hands
  Patch Rehabilitation [13]
  Ring ECGa [57]
  Ring SpO2b [58]
  Ring Dietary management [59]
  Ring Pulse wave, temperature [60]
  Glove Rehabilitation [61]
Wrist
  Watch/band/bracelet Heart rate, step number [65]
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Body position and form factor Target(s) of detection Reference(s)
  Watch/band/bracelet SpO2 [66]
  Watch/band/bracelet SpO2, heart rate, energy expenditure [67,68]
  Watch/band/bracelet Blood pressure [14,69]
  Watch/band/bracelet Pulse management [15]
  Watch/band/bracelet ECG [70,71]
  Watch/band/bracelet Diagnosis of Parkinson disease [72]
  Watch/band/bracelet Glucose [73,74]
  Watch/band/bracelet Sweat metabolites (glucose, lactate) [75]
  Patch Sweat rate, pH, lactate, glucose, chloride [76]
  Patch Heart rate [62]
  Patch Wound management [77,78]
  Patch Temperature, thermotherapy [63]
  Patch ECG, EMGc [79-81]
  Patch EMG [82,83]
  Patch Blood pressure, skin hydration, temperature [84]
  Patch Biometrics [85]
  Patch Rehabilitation [64]
  Tattoo ECG, EMG, temperature [86]
  Tattoo Sweat and Interstitial fluid analysis [16]
Legs
  Patch ECG [87]
  Patch Moisture analysis at the wound area [88,89]
  Wearable robot Rehabilitation [17,90,91]
  Strap Gait analysis [92]
Feet
  Patch Edema [93]
  Shoes Gait analysis [94-96]
  Socks Foot pressure ulcer [97]

aECG: electrocardiogram.
bSpO2:oxygen saturation.
cEMG: electromyogram.

Table 4. Summary of form factor and detection targets on wearable devices for the whole body (clothes using electronic textiles).
Target(s) of detection Reference(s)
Temperature, respiration, heart rate [98]
SpO2a, heart rate, temperature [99]
Phototherapy, temperature, heart rate [100,101]
EMGb [102]
ECGc [103]

aSpO2:oxygen saturation.
bEMG: electromyogram.
cECG: electrocardiogram.

Recent Progress in the Development
of Smartphone-Based Health Care
Apps
In addition to wearable devices, health care delivery is
also possible using smartphones through built-in sensors,
smartphone-interlocked gadgets, display-related materials,
and apps.

CMOS Only
Smartphones have built-in 20-30 sensors; in particular,
complementary metal-oxide-semiconductor (CMOS) image
sensors may be used to monitor heart, eye, and skin-related
diseases [18,104-109]. As shown in Figure 6A [18], the atrial
fibrillation screening ability using PPG pulse analysis based
on a smartphone camera and a commercialized app showed a
similar performance level to that of patches used for single-
lead ECG monitoring. It has been proven that prodromal
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stroke symptoms can be detected using only a smartphone
in a primary care setting. In addition, the fingertip motion
signal and color intensity signal, both heterogeneous signals,
are acquired and analyzed using a camera to remove finger

movement and optical noise, as shown in Figure 6B [104]. In
this way, a clean heart rhythm signal with high accuracy can
be extracted via smartphone monitoring, while minimizing
noise artifacts.

Figure 6. Health care apps using built-in smartphone sensors. (A) Smartphone built-in camera and app-based atrial fibrillation diagnosis. The
images were reprinted from Chan et al [18,19]. (B) Heart rhythm analysis using CMOS image sensor. The images were reprinted from Tabei et
al [19,104]. (C) Smartphone-based blood pressure measurement through the oscillometric finger-pressing method. The images were reprinted from
Chandrasekhar et al [19,110]. (D) Set and acquisition graph of smartphone and 3D-printed mouthpiece adapter for spirometry. The images were
reprinted from Thap et al [19,111]. CMOS: complementary metal-oxide-semiconductor; PPG: photoplethysmogram.

Hybrid Including CMOS
New functions, such as blood pressure measurement and
temperature and dietary monitoring, can be established by
combining pressure sensors, temperature sensors, and the
phone microphone instead of CMOS alone [110,112-115].
For instance, as shown in Figure 6C [110], absolute blood
pressure is measured via a blood flow oscillometric signal
through finger pressure using a strain gauge on the front
of the smartphone, in addition to CMOS. A light-emitting
display may also be added to this, so it is possible to measure
blood pressure ultimately with pure smartphone components.
IMU/Microphone/Ultrasonic Sensor
In addition, sleep position monitoring and treatment can be
performed by detecting body movements through an IMU
of the smartphone, and the gait of patients with Parkinson
disease can also be analyzed [116-118]. The smartphone’s
built-in microphone sensor can also assess lung capacity and
breathing sounds and monitor sleep [111,119-121]. Figure
6D [111] reports lung capacity and function parameter

measurements following smartphone microphone–based,
high-resolution time-frequency spectral analysis. A moisture-
resistant ultrasonic sensor using polyvinylidene fluoride can
be used for biometric authentication through fingerprinting
[122].
Touch Sensor/Digitizer
Moreover, general user interfaces, such as a touch sensor
and digitizer, can also be used for health care purposes. For
example, the heart rate can be checked by assessing capaci-
tance changes according to the heartbeat with a capacitive
touch sensor. The touch sensor is also helpful in diagnosing
Parkinson disease through touch accuracy analysis [123,124].
In addition, a digitizer for writing can be applied to biomet-
ric authentication through handwritten signature recognition
[125,126].
Interlocked Gadgets
There is a case of combining various mHealth sensing
techniques, such as pesticide analysis, otitis media diagnosis,
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malaria infection detection, and ECG measurement, by
adding a separate gadget rather than using just the smart-
phone itself [127-133]. The platform shown in Figure 7A
[128] performs a visual, quantitative analysis of pesticides
using an optical system that combines a dark cavity and
an ultraviolet lamp with a smartphone. In other words,
integrating a smartphone and a gadget-based paper strip
enables real-time and on-site food evaluation. Additionally,
it was confirmed that the diagnosis of acute otitis media is

possible with the same level of accuracy as that attained with
existing otoscopes through the combination of a commer-
cialized optical system and a camera in a smartphone,
as shown in Figure 7B [130]. Figure 7C [132] shows a
smartphone-based immunodiagnostic platform that performs
a chemiluminescence-based enzyme-linked immunosorbent
assay using a lyophilized chemiluminescence reagent. This
hand-held point-of-care-testing analyzer can detect active
malaria infections with a sensitivity of 8 ng/mL.

Figure 7. Health care apps using gadgets mounted on smartphones. (A) Smartphone platform for pesticide evaluation of food, integrated with an
ultraviolet lamp and a dark cavity by 3D printing. The images were reprinted from Chu et al [128]. (B) Smartphone otoscope for diagnosis of acute
otitis media. The images were reprinted from Mousseau et al [130]. (C) Smartphone-based immunodiagnosis using microfluidic assays. The images
were reprinted from Ghosh et al [19,132]. (D) Antibacterial touchscreen for preventing contamination. The images were reprinted from Ippili et al
[134]. (E) Digital biomarkers that reflect users’ moods, behaviors, and cognitions using text logs, browser history, human-computer interactions, and
various sensors. The images were reprinted from Chen et al [19,135].

Display Materials
Health care delivery can also be achieved through materials
used in manufacturing smartphones, such as window coatings
for antireflection and display processes. An ecofriendly
antibacterial coating with Zn-doped silicon oxide thin films
can prevent infectious diseases caused by microbial contam-
ination of touch events, as shown in Figure 7D [134]. In
addition, it is possible to reduce the deformation of retinal
cells by decreasing the blue light of the display through the
material development of organic light-emitting or color filters
[136].

Apps
Furthermore, health care sensing is possible through apps
incorporating digital phenotypes and digital therapeutics

[135,137-140]. A digital phenotype refers to a disease or
health condition that is unintentionally reflected in patterns
of use of digital devices. Mobile apps can collect human-
smartphone interaction data to monitor smartphone usage and
construct long-term patterns and trend changes. As shown in
Figure 7E [135], analyzing a digital biomarker that reflects
human effects, moods, behaviors, and cognition can predict
psychiatric conditions, such as depression and smartphone
addiction. In addition, digital therapeutics delivered through
games, education, coaching, and counselling are based on
cognitive behavioral therapy and can treat insomnia, alcohol
addiction, drug addiction, panic disorder, and attention deficit
hyperactivity disorder. Additionally, it effectively improves
physical diseases, such as obesity and high blood glucose.
Table 5 summarizes the sensing methods and targets using
smartphones.
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Table 5. Summary of sensing methods and targets using smartphones.
Type and sensing methods Target(s) of detection Reference(s)
Built-in sensors
  CMOSa Atrial fibrillation [18]
  CMOS Heart rate [104,105]
  CMOS Diabetic retinopathy [106]
  CMOS Skin cancer [107-109]
  CMOS + microphone Heart rate, SpO2b, blood pressure [112]
  CMOS + microphone + speaker Diet management [113]
  CMOS + strain gauge + display Blood pressure [110,114]
  CMOS + temperature sensor Temperature, heart rate [115]
  IMUc Sleep monitoring [116,117]
  IMU Gait analysis [118]
  Microphone Spirometry [111,119]
  Microphone Breathing sound analysis [120]
  Microphone Sleep monitoring [121]
  Ultrasonic sensor Biometric using fingerprint [122]
  Touch sensor Heart rate [123]
  Touch sensor Parkinson disease [124]
  Digitizer Biometrics using signature [125,126]
Gadgets interlocked with smartphones
  Optical platform Pesticide evaluation in food [127-129]
  Smartphone CMOS + lens Otoscopy [130,131]
  Microfluidic platform Malaria infection [132]
  Patch electrode ECGd [133]
Materials
  Window coating Antibacterial [134]
  Light emitting Blocking of blue light [136]
Apps
  Digital phenotyping Addiction, attention deficit hyperactivity disorder [135,137,138]
  Digital therapeutics Mental health [139,140]

aCMOS: complementary metal-oxide-semiconductor.
bSpO2:oxygen saturation.
cIMU: inertial measurement unit.
dECG: electrocardiogram.

Prospects for mHealth
The industry of mHealth is expected to grow explosively in
the future. In particular, the third generation of medicine and
therapies that rely on novel solutions are emerging beyond
the existing state of mHealth. Among them, bioelectronic
medicine is a nonpharmacological treatment category that
stimulates nerve functions with energy, such as electricity,
light, and ultrasonic waves. This approach uses an electronic
device that controls metabolic function to maintain homeo-
stasis by regulating hormones [141]. To date, electroceuti-
cals have been used for obesity, asthma, sleep apnea, brain
tumors, epilepsy, and Parkinson disease and have shown
substantial and significant therapeutic effects [142-144]. It is
also one of the most innovative fields in medicine because it
has significant advantages when considering the development
time and cost of existing drugs.

Using digital therapeutics, also referred to as “software
as a medical device,” it is possible to manage and treat not
only physical diseases but also psychiatric conditions, such
as posttraumatic stress disorder and schizophrenia [145,146].
It is of great significance in terms of patient convenience
that personal and sensitive mental health conditions can
be diagnosed in real life, not in hospitals, through digital
phenotypic analysis, such as smartphone usage patterns and
uploaded social networking service (SNS) content.

From the point of view of the wearable form factor, since
much of health care sensing is possible on the wrist, the
smartwatch is currently playing a pivotal role in health care.
The finger (as well as the wrist) is a body part to focus on
as it can be used to assess health factors, such as the heart
rate, oxygen saturation, ECG characteristics, blood pressure,
blood sugar, biometric authentication, body temperature, and
dietary monitoring. Therefore, it is expected that in the future,
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the ring type of device for health care will pair with the
smartwatch as the 2 main pillars.

Challenges for mHealth
This viewpoint investigated comprehensive health care
sensing technology using wearable electronics and smart-
phones. However, mHealth is less widely used than expec-
ted, unfortunately. Wearable devices are relatively more
optimized for continuous and real-time health care sensing
compared to smartphones [147,148]. However, the penetra-
tion rate compared to smartphones worldwide is sluggish
[149-151]. A smartwatch, a representative wearable device,
needs to be connected to a smartphone to operate, so users
do not recognize the wearable device as an independent
entity. Independent use is required to be fully positioned as
a separate device. These devices lack effectiveness due to
reduced user convenience because of their small screens, poor
battery performance, low usage rate, clunky design, and high
price. Wearable devices are recognized as a kind of subdevice
rather than an essential and leading product because they do
not have as much impact as smartphones. Therefore, in the
case of wearable devices, innovative solutions are required to
make them universal necessities for human beings, such as
smartphones.

However, in the case of smartphones, the penetration
rate is high worldwide, including low- and middle-income
countries [152]. In the case of current smartphones, the
fundamental value in terms of user experience as well as
utility is high. However, it is not such a great solution from
the perspective of health care. It is challenging to conduct
biosignal sensing using a smartphone while being in close
contact with human skin all day long, so it is challenging
to implement continuous real-time big data–based predictive
and preventive medical care using smartphones from the
health care perspective. Smartphones desperately require a
breakthrough that can allow them to monitor health in real
time continuously, 24 hours a day, through a form more
closely adherent to the skin, while maintaining the current
phone function.

Breakthroughs for mHealth
The display is a crucial component of a health care sys-
tem. In other words, smartphones and wearable devices, as
central axes of the mHealth system, are inseparable from
their displays. In addition, displays and sensors in mobile
devices are closely related. To improve the convenience of
user interaction, the proportion of the active area of mobile
displays is increasing. However, the increase in the active
area has a limitation that reduces the sensing performance,
including sensitivity. To overcome this, the upper part of
the sensor covers the display by lowering the resolution
of the display to prevent the deterioration of the sensing
transmittance. A typical example is under-panel camera

(UPC) technology that covers the camera with the display
by reducing the display resolution on the top of the CMOS
image sensor to increase light transmittance.
Sensor-Integrated Display Solution
However, the ultimate and ideal method is a sensor-integra-
ted display solution. A sensor-integrated display has many
advantages from a health care sensing point of view. This is
because (1) many mHealth sensors use an optical approach,
(2) it is relatively easy to manufacture large-area sensors, and
(3) the application of a new form factor display can lead to an
increase in the body contact area.

First, the majority of mHealth sensing approaches are
optical methods. Various health care parameters, such as
the heart rate, oxygen saturation, blood pressure, blood
sugar, body temperature, environmental monitoring, and ECH
characteristics, can be measured optically. A display is an
optical system that already has the means to transmit light.
Therefore, a sensor-integrated display could be an optimized
health care solution. To implement health care devices using
optical systems, in addition to optical transmitters, receiver
systems must also be equipped. For advanced performance,
the light-emitting wavelength band needs to be expanded
and supplemented, including infrared as well as visible light,
through the development of materials for the light-emitting
layer.

Second, since the sensing area and detection performance
are proportional, health care ability can be improved through
a sensor embedded in a wide display area. It enables health
care sensing in a large area over the entire display area when
the built-in optical system is applied, considering design
rules. In addition, it is more advantageous for wearability
because of a reduction in volume due to the implementa-
tion of microlevel thickness because of the sensor-integrated
display. Additionally, compared to the number of photomasks
needed to manufacture a conventional display, the number
of additional photomasks required to implement a display
health care system with built-in sensors is far less. It can
contribute to popularization due to the low manufacturing
price according to the integral type. Ultrathin, low-cost health
care devices with relatively simple processes have significant
benefits over conventional, bulky, and expensive wearable
computers.

Finally, the new form factor device, such as a stretchable
sensor-integrated display, increases the area of contact with
the body and improves detection capability through health
care sensing in close contact with the skin. Flexible panels
with user convenience could be applied to the human skin,
considering ergonomic factors [153-159]. The flexibility of
not only the active matrix backplane and core of the panel
but also the touch sensor, fingerprint sensor, and pressure
sensor must be ensured, as shown in Figure 8A [153]. In
a complete sensor-integrated display, the flexibility of the
backplane allows the sensor part to gain flexibility naturally.
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Figure 8. New form factor display and principle. (A) Wearable display with flexible and ultrathin active matrix backplane, touch screen panel,
and fingerprint sensor components. The image was reprinted from Park et al [19,153]. (B) A flexible active matrix organic light-emitting diode
(AMOLED) with large-area MoS2-based backplane for human skin display. The images were reprinted from Choi et al [154]. (C) A graph of
compressive and tensile strength as the thickness increases in a single-layer structure (solid blue line) and laminated structure (dotted red line).

Furthermore, Figure 8B [154] shows a wearable full-color
organic light-emitting diode (OLED) display using a 2D
material–based backplane transistor suitable for complex skin
shapes. The 18×18 thin-film transistor array was fabricated
on ultrathin MoS2 film and then transferred to Al2O3 (30
nm)/polyethene terephthalate (6 μm), providing mechanical
flexibility beyond conventional OLED technology.
New Form Factor Display
The left picture of Figure 8C simulates a multilayered display,
and when this display is bent, tensile strength is applied at
the top and compressive strength is applied at the bottom.
Assuming that it is formed with only a single layer of the
same thickness rather than a laminated structure, extreme
tensile and compressive forces occur on the upper and lower
surfaces, resulting in cracks in the display, as shown by the
solid blue line in the right graph. However, in the stacked
structure, a pressure-sensitive adhesive (PSA) between the
display layers continues to create new neutral planes, as
shown by the dotted red line. In response, the magnitude
of the tension and compression force at the top and bottom
surfaces does not increase, even if the thickness of the display

increases. In other words, using the PSA, it is possible to
implement a flexible display without cracks.

No part of the human body is flat. When the health care
system and the skin conformally adhere, sensing perform-
ance improves. Display technology based on PSA with the
harmony of creep and recovery characteristics induces form
changes in wearable devices and smartphones. A new form
factor with flexibility based on PSA technology that creates
a new neutral plane will facilitate a critical conversion of the
mHealth system.

Standard of the Medical Paradigm in
the Postpandemic Era
A new form factor display for health care with flexibility
and display convergence technology using an optical method
attaches a large-area health care system to the human skin
conformally and continuously detects health care factors in
real time, thereby providing a framework for collecting big
data. As a result, the existing smartphone becomes a wearable
device attached to the body, and the existing wearable device
is equipped with smartphone functions suitable for user
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convenience. Namely, convergence health care technology
with the sensor-integrated and new form factor display is
an indispensable element that enables the smartphonization
of a wearable device and the wearable deviceization of
the smartphone. Of course, health care systems with new
form factors and sensor-integrated displays do not solve all
mHealth problems. In other words, advances in big data AI
software analysis and medical security should go hand in
hand with the smartphonization of wearable devices and the
wearable deviceization of smartphones. Furthermore, it will
be necessary to supplement the medical system policy so
that these benefits do not become the exclusive property of
the upper class of the economy and so that people from
lower social classes can also benefit. Advanced and popu-
larized mHealth system technology could ensure universal
health coverage so that everyone can use essential, high-qual-
ity medical services without discrimination. In other words,
the authentic democratization of health care could become a
reality, and a standard for a future health care paradigm in the
post-pandemic era could arise.

Conclusion
Personalized platforms, such as wearable devices and
smartphones, can be applied to AI-based disease prediction,
prevention, and treatment. This viewpoint researched the
latest technology trends in mHealth regarding form factors
and detection targets according to body attachment location
and type. In particular, the sensor convergence technology
of the new form factor display provides a framework to
analyze health factors in real time by conformally adhering
a large-area system to the skin. Innovation in form factors
in sensor-integrated displays and convergence health care
solutions enable the smartphonization of wearable devices
and the wearable deviceization of smartphones. In addition,
the strategy for the smartphonization of wearable devices
and the wearable deviceization of smartphones can accelerate
the development of mHealth, realizing the democratization of
medical care so that anyone can use essential services of high
quality. Furthermore, it is expected to create a new milestone
for the medical paradigm shift in the postpandemic era.
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