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Abstract
Background: Gait speed is a valuable biomarker for mobility and overall health assessment. Existing methods to measure
gait speed require expensive equipment or personnel assistance, limiting their use in unsupervised, daily-life conditions. The
availability of smartphones equipped with a single inertial measurement unit (IMU) presents a viable and convenient method
for measuring gait speed outside of laboratory and clinical settings. Previous works have used the inverted pendulum model
to estimate gait speed using a non–smartphone-based IMU attached to the trunk. However, it is unclear whether and how
this approach can estimate gait speed using the IMU embedded in a smartphone while being carried in a pants pocket during
walking, especially under various walking conditions.
Objective: This study aimed to validate and test the reliability of a smartphone IMU–based gait speed measurement placed in
the user’s front pants pocket in both healthy young and older adults while walking quietly (ie, normal walking) and walking
while conducting a cognitive task (ie, dual-task walking).
Methods: A custom-developed smartphone application (app) was used to record gait data from 12 young adults and 12 older
adults during normal and dual-task walking. The validity and reliability of gait speed and step length estimations from the
smartphone were compared with the gold standard GAITRite mat. A coefficient-based adjustment based upon a coefficient
relative to the original estimation of step length was applied to improve the accuracy of gait speed estimation. The magnitude
of error (ie, bias and limits of agreement) between the gait data from the smartphone and the GAITRite mat was calculated
for each stride. The Passing-Bablok orthogonal regression model was used to provide agreement (ie, slopes and intercepts)
between the smartphone and the GAITRite mat.
Results: The gait speed measured by the smartphone was valid when compared to the GAITRite mat. The original limits of
agreement were 0.50 m/s (an ideal value of 0 m/s), and the orthogonal regression analysis indicated a slope of 1.68 (an ideal
value of 1) and an intercept of −0.70 (an ideal value of 0). After adjustment, the accuracy of the smartphone-derived gait speed
estimation improved, with limits of agreement reduced to 0.34 m/s. The adjusted slope improved to 1.00, with an intercept of
0.03. The test-retest reliability of smartphone-derived gait speed was good to excellent within supervised laboratory settings
and unsupervised home conditions. The adjustment coefficients were applicable to a wide range of step lengths and gait
speeds.
Conclusions: The inverted pendulum approach is a valid and reliable method for estimating gait speed from a smartphone
IMU placed in the pockets of younger and older adults. Adjusting step length by a coefficient derived from the original
estimation of step length successfully removed bias and improved the accuracy of gait speed estimation. This novel method has
potential applications in various settings and populations, though fine-tuning may be necessary for specific data sets.
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Introduction
Gait speed, often considered the sixth vital sign, is a
meaningful health indicator that is routinely assessed within
clinical and research settings [1-4]. As a biomarker, gait
speed is an integrated and reproducible measure of mobility
that helps to identify the risk of falls, disability, hospitali-
zation, and even mortality [5,6]. It is also responsive to
intervention and is often used to evaluate the effectiveness
and progression of rehabilitation programming [3,7]. Within
clinical settings, gait speed is most commonly measured by
using a stopwatch to record the time taken to walk a short
distance [8]. This approach, while validated, requires another
person’s assistance and is often inaccurate due to human
error or bias. Within the laboratory, gait speed is typically
measured using motion capture systems or instrumented
walkways. This approach increases measurement accuracy
yet requires trained personnel and expensive equipment,
limiting its accessibility and feasibility for frequent, lon-
gitudinal monitoring. Moreover, neither of these clinical
or laboratory-based approaches is well-suited for monitor-
ing changes over time via higher-frequency assessments,
and neither approach affords the assessment of gait speed
assessment under unsupervised conditions during daily life
activities. There is thus a need to develop new methods for
the low-cost, easy, and accurate measurement of gait speed
for use within both clinical and remote, unsupervised settings.

Smartphones, now widely used by younger and older
adults and equipped with a high-quality inertial measurement
unit (IMU), present a viable and convenient opportunity to
objectively measure gait speed outside of laboratory and
clinical settings. Previous studies have demonstrated that
gait speed can be accurately estimated using multiple IMUs
attached to various parts of the body (eg, the trunk and
ankles) [9-11]. However, this approach requires specialized
equipment that may be difficult to don and doff. Alterna-
tively, studies have attempted to estimate gait speed using
a single, research-grade IMU attached to the trunk of the
body. In this case, the inverted pendulum model was used
to determine gait speed by estimating stride distance and
dividing it by stride time, determined by acceleration peaks
induced by consecutive heel strikes [12-15]. This approach,
while promising, still requires trained personnel for equip-
ment setup and may introduce bias in gait speed estimation,
especially at a faster or slower gait speed [13-15]. In this
study, we examined the validity and reliability of deriving
gait speed from a smartphone IMU with the phone being
carried in the individual’s front pants pocket when walking.

This study aimed to validate and test the reliability of a
smartphone IMU–based gait speed measurement placed in the
user’s pants pocket in both healthy young and older adults
during normal and dual-task walking. The validity of the
smartphone-based approach was determined by comparing
the estimated step length and gait speed to measurements

taken by gold standard instrumentation. Based on initial
results, we further examined the use of improving gait speed
estimations using a coefficient relative to the estimation
of step length as determined by the smartphone. The test-
retest reliability of adjusted and unadjusted estimations was
examined within both laboratory and unsupervised, real-life
home settings. This study is expected to provide valuable
insights applicable to a wide range of clinical and everyday
gait monitoring scenarios.

Methods
Study Participants
We conducted a design control verification and validation
study enrolling younger (aged 20‐50 years) and older (aged
65‐90 years) adults between 2016 and 2018. As part of
our comprehensive assessment at baseline, we measured key
demographic characteristics of the participants, including sex,
age (in years), height (in meters), body weight (in kilograms),
and ethnicity. We included those who had active Wi-Fi
service in their homes and who were able to use the smart-
phone app by themselves after training. Assistive devices
were allowed if participants normally used them when
walking. Individuals were excluded if they were hospital-
ized within the last 6 months; were unable to walk without
assistance; self-reported major neuromuscular, cardiovascu-
lar, or metabolic disease; had lower-extremity ulcers or
amputations; or self-reported pain significantly affecting their
gait.

Ethics Approval
This study was approved by the Hebrew SeniorLife Institu-
tional Review Board (approval IRB-2015‐40).
Smartphone App
Our team previously created an iOS smartphone–based
application (app) that uses the phone’s IMU sensor to record
movements while walking freely at a self-selected speed (ie,
normal walking condition) and while walking and concur-
rently performing a serial-subtraction task (ie, dual-task
walking condition) with the phone placed in the user’s pants
pocket [16]. The app was designed to recreate a commonly
used dual-task gait assessment that is typically performed in
a laboratory setting. The initial development process involved
a detailed analysis of requirements, followed by iterative
design and user feedback–driven enhancements, ensuring
both user-friendliness and adherence to clinical standards.
The app includes a series of instructions for the participants
to help ensure assessment reliability. Once the participant
presses the “Start” button and places the phone in their
preferred front pocket, the app provides auditory instructions
for each walking trial via the iPhone speaker, including a
randomly generated starting number for the serial-subtraction
task for dual-task trials, and cues for the start and end of the
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trial. These cues trigger the acquisition of 3-axis accelerome-
ter, gyroscope, and magnetometer data at a 100-Hz sampling
rate. The data sets are saved on the phone’s internal stor-
age and automatically transmitted via Wi-Fi to a remote,
cloud-based data server for offline analysis. The validity
and reliability of the smartphone app, especially in temporal
information (ie, stride time), have been established [16-18].
Additionally, its applicability extends to various populations,
including individuals with Parkinson disease and older adults
diagnosed with blood cancer [18-21].
Study Procedures

Overview
Each participant completed 2 laboratory visits separated by at
least 1 week. Between these visits, participants were asked to
complete the walking assessment using the app at home once
a day on 3 separate days. Participants were instructed to wear
comfortable pants or shorts with front pockets for each visit.
Our previous work indicated that stride time estimations were
unaffected by pocket tightness [16].
Laboratory Assessments
The same procedures were used on both laboratory vis-
its. Within each visit, participants completed the walking
assessment using the app 3 times, that is, 3 pairs of normal
and dual-task walking trials. For each walking trial, partici-
pants walked around an oval-shaped, 24-m indoor track. The
GAITRite mat (CIR Systems, Inc) was placed along one long
side of the track. Each trial began with participants standing
just behind the beginning of the mat to ensure that the first
footfall of each trial was captured by the mat. Participants
were instructed to use the app to start and finish each trial.
Stride time, step length, and gait speed obtained from the
first pass over the GAITRite mat were considered the gold
standard and aligned the data sets to enable direct comparison
of GAITRite and smartphone app data for each identified
step.
Home Assessments
At home, participants were instructed to use the app to
complete 1 normal walking and 1 dual-task walking on 3
separate days in between the 2 laboratory visits. The app
provided the same instructions as given during the laboratory
visit. The participants were instructed to walk continuously
along the longest hallway or unobstructed path in their home,
making 180-degree turns at each end, throughout the trial. We
believe this setup can be effective in remote settings, provided
that a flat and consistent walking surface is available, external
interference is minimal, and stable Wi-Fi is present.
Data Analysis

Gait Speed Estimation
All data analyses, graphics generation, and statistical analyses
were performed using programs developed in-house within
MATLAB (R2022b, MathWorks) and SPSS (version 20;
SPSS Inc).

For the data obtained from the smartphone, the raw
time series 3-axis accelerometer and gyroscope data were
transformed from the smartphone local coordinate system to
an earth global coordinate system using a quaternion rotation
matrix. This transformation ensured that the z-axis of the data
aligned with the vertical line of gravity. After the transforma-
tion, each z-axis time series was filtered using a Butterworth
filter [16,22], chosen for its smooth frequency response and
minimal signal distortion, which worked well in our previous
published study [16]. The time series data obtained from the
accelerometer and gyroscope sensors contained alternating
peaks of high and low amplitude that corresponded to the
heel-strike and toe-off events [16]. Stride time was defined
as the time between 2 consecutive heel strikes of the same
foot, which was calculated by determining the number of
data points between 2 heel strikes and dividing by 100-Hz
sampling frequency. The step length was estimated using a
simple inverted pendulum model, which uses the participant’s
leg length (l) and the change in height of the smartphone’s
vertical position over each step (h) as the following equation:

(1)Step length = 2 ∗ 2 ∗ ℎ ∗ l − ℎ2
In particular, the vertical position was derived by doubly
integrating the vertical acceleration data (z-axis) and high-
pass filtering the outcome using a fourth-order zero-lag
Butterworth filter with a 0.11-Hz cutoff frequency to remove
any integration drift [12,23]. The fourth order of the filter
ensures effective attenuation of frequencies below 0.11 Hz,
substantially reducing low-frequency drift caused by noise
in the acceleration data. Additionally, the zero-lag design
of the Butterworth filter preserves the temporal accuracy of
the signal, ensuring precise alignment of the filtered output
with the real-time events being measured. Gait speed for each
stride was then calculated by dividing stride length (ie, step
length multiplied by 2) by the corresponding stride time. Gait
variables thus included step length and gait speed from both
GAITRite mat and smartphone app data were used for the
statistical analyses.

The Step Length Adjustment Process
After calculating the validity of the gait speed and step
length derived from the smartphone app and GAITRite (see
Statistical Analysis section), we observed a bias between
smartphone app and GAITRite measurements for both
gait speed and step length across all participants, walking
conditions, and laboratory trials. That is, as the step length
(average of the smartphone app and GAITRite mat meas-
urement) increased, the step length derived from the app
became increasingly greater than the corresponding values
derived from the GAITRite mat. This trend was independent
of the walking condition and study visit order (Figures 1A
and 2A). To address this, we systematically tested various
intervals, starting from 0.1, 0.15, 0.2 m, and all the way
up to 0.5 m, with a 0.05-m increment, for adjusting the
step length. Our analysis revealed that an interval of 0.3
m consistently produced the best validity, evidenced by a
slope of 1 and an intercept close to 0 m in the relation-
ship between our adjusting measurements and those from
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the GAITRite mat. These findings indicate a robust linear
correlation and minimal systematic bias. This method was
designed for its ability to adjust the step length estimation,
aiming to align more closely with the gold standard GAITRite
measurements, particularly addressing the identified bias
across different step lengths. The intervals were chosen based
on a detailed stepwise iterative approach, where each interval
was evaluated for accuracy and precision. This approach
allowed us to capture the nonlinear relationship between the

app-derived and GAITRite-derived step lengths across the
range of observed values (Table 1).

(2)Adjusted step length = coefficients ∗ step length

Figure 1. Bland-Altman plot for gait speed when using the smartphone app–based assessment compared to GAITRite mat before (A) and after
(B) adjusting by coefficients relative to the original estimation of step length. The solid lines are the average difference, and the dashed lines are the
limit of agreements (SD 1.96).
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Figure 2. Bland-Altman plot for step length when using the smartphone app–based assessment compared to GAITRite mat before (A) and after
(B) adjusting by coefficients relative to the original estimation of step length. The solid lines are the average difference, and the dashed lines are the
limit of agreements (SD 1.96).

Table 1. Coefficients that were used to adjust step length and gait speed.
Step length 0.2‐0.5 m Step length 0.5‐0.8 m Step length 0.8‐1.1 m

Coefficients
All data points 1.37 1.02 0.74
Only normal walking data points 1.40 1.04 0.74
Only dual-task walking data points 1.36 1.01 0.73

Statistical Analysis
The validity of app-derived gait speed and step length was
examined by estimating their agreement with corresponding
gait data derived from the gold standard GAITRite mat
using a Passing-Bablok orthogonal regression model, which

is suitable for comparing different measurement methods
while acknowledging measurement error [24]. This statistical
method was chosen for its robustness in comparing methods
with measurement error, providing a more accurate assess-
ment of agreement between different measurement systems.
Initial sources and seminal works on the Passing-Bablok
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regression model highlight its suitability for medical and
biomechanical research applications [24]. The magnitude of
error between the gait data from the app and the GAITRite
mat was calculated for each stride, and a Bland-Altman plot
was produced to visualize this error as a function of gait
data, which was the average of the gait speed calculated
by the app and the GAITRite mat. Test-retest reliability
was assessed for all derived gait parameters from both the
smartphone app and GAITRite mat using several intraclass
correlation coefficients (ICCs). For each of the following
two conditions, we computed ICC separately for normal
and dual-task walking trials: (1) across trials within each
laboratory assessment, and (2) across trials over the 3 home
assessments. The unit of interest was the average gait speed
in strides derived from each trial of the same condition (ie,
normal or dual-task walking; ICC (1, 1)). We considered ICC
values greater than 0.75 as excellent reliability, 0.6‐0.75 as
good reliability, 0.4‐0.6 as fair reliability, and less than 0.4 as
poor reliability [25].

Results
Overview
In total, 12 healthy young adults (6 female adults and 6 male
adults; age: mean 29.1, SD 4.4 years; height: mean 168.7,
SD 13.1 cm; and body mass: mean 74.0, SD 13.9 kg) and 12
healthy older adults (8 female adults and 4 male adults; age:
mean 72.0, SD 6.4 years; height: mean 165.6, SD 9.0 cm; and
body mass: mean 71.6, SD 16.3 kg) participated in the study.

A total of 24 participants completed 96 passes over
the GAITRite mat with the phone placed in their pocket
during the laboratory visits. Each session comprised 2 normal
walking trials and 2 dual-task walking trials, yielding 4‐5
strides per trial for each participant. This resulted in a data
set comprising a total of 442 strides for direct comparison of
gait speed, step length, and stride time estimations between
the GAITRite mat and smartphone app approaches. Average
normal and dual-task gait speeds for the younger and older
groups are presented in Table 2.

Table 2. Means (SDs) and minimum (min)-maximum (max) of the spatiotemporal parameters during normal and dual-task walking in the younger
and older groups.
Tests Normal walking Dual-task walking

Gait speed (m/s) Step length (m) Stride time (s) Gait speed (m/s) Step length (m) Stride time (s)
Mean
(SD)

Min-max Mean
(SD)

Min-max Mean
(SD)

Min-max Mean
(SD)

Min-max Mean
(SD)

Min-max Mean
(SD)

Min-max

GAITRite
Younger 1.16

(0.08)
1.06‐1.35 0.65

(0.04)
0.57‐0.70 1.15

(0.08)
1.01‐1.24 1.02

(0.09)
0.94‐1.23 0.62

(0.03)
0.56‐0.66 1.23

(0.12)
0.96‐1.34

Older 1.00
(0.06)

0.94‐1.18 0.57
(0.02)

0.54‐0.62 1.18
(0.05)

1.04‐1.22 0.95
(0.07)

0.81‐1.12 0.56
(0.02)

0.50‐0.60 1.22
(0.05)

1.07‐1.27

Smartphone app: before adjusting
Younger 1.11

(0.25)
0.90‐1.77 0.61

(0.11)
0.53‐0.92 1.12

(0.10)
0.93‐1.22 0.96

(0.24)
0.82‐1.66 0.57

(0.12)
0.47‐0.93 1.22

(0.14)
0.91‐1.34

Older 0.97
(0.18)

0.58‐1.24 0.54
(0.10)

0.33‐0.66 1.15
(0.04)

1.06‐1.20 0.90
(0.18)

0.54‐1.18 0.52
(0.09)

0.34‐0.63 1.18
(0.05)

1.08‐1.27

Smartphone app: after adjusting
Younger 1.13

(0.12)
1.01‐1.36 0.63

(0.02)
0.60‐0.67 —a — 1.01

(0.14)
0.91‐1.25 0.60

(0.03)
0.55‐0.69 — —

Older 1.04
(0.11)

0.80‐1.27 0.59
(0.06)

0.45‐0.67 — — 1.01
(0.11)

0.75‐1.20 0.59
(0.05)

0.47‐0.65 — —

aNot applicable.

Validity and Reliability of the Original
Estimated Gait Speed and Step Length
Average normal and dual-task gait speeds within each group,
as estimated from the smartphone app, were largely similar to
those derived from the GAITRite mat (Table 2). Smartphone-
derived gait speed and step length demonstrated good validity
as compared with the GAITRite mat. The close-to-zero

average magnitude of biases for gait speed and step length
was −0.03 m/s and −0.04 m, and the limits of agreement
were 0.5 m/s and 0.28 m, respectively (Figures 1A and 2A).
Orthogonal regression analysis revealed that the slope and
intercept of the gait speed and step length derived from the
app were 1.68 (intercept=−0.70) and 2.37 (intercept=−0.86),
respectively (Figures 3A and 4A).
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Figure 3. Relationship between gait speed as derived from a smartphone app–based assessment and from a GAITRite mat before (A) and after
(B) adjusting by coefficients relative to the original estimation of step length. The Passing-Bablok orthogonal best-fit line of these data had a slope of
approximately 1 and an intercept of 0 after adjusting.

Figure 4. Relationship between step length as derived from a smartphone app–based assessment and from a GAITRite mat before (A) and after
(B) adjusting by coefficients relative to the original estimation of step length. The Passing-Bablok orthogonal best-fit line of these data had a slope of
approximately 1 and an intercept of 0 after adjusting.

Good to excellent test-retest reliabilities (0.64‐0.86) were
demonstrated for the average app-derived gait speed across
trials within each laboratory assessment, as well as over the 3

home assessments, for both normal and dual-task walking in
young and older adults (Table 3).

Table 3. Test-retest reliability of the laboratory- and home-based assessments of average gait speed in strides.
Tests Normal walking Dual-task walking

ICCa P value 95% CI ICC P value 95% CI
GAITRite mat

Laboratory assessment within visit 0.94 <.001 0.88-0.97 0.90 <.001 0.81-0.95
Before adjusting: smartphone app

Laboratory assessment within visit 0.86 <.001 0.73-0.93 0.77 <.001 0.58-0.88
Home assessment 0.64 <.001 0.41-0.81 0.71 <.001 0.49-0.86

After adjusting: smartphone app
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Tests Normal walking Dual-task walking

ICCa P value 95% CI ICC P value 95% CI
Laboratory assessment within visit 0.72 <.001 0.52-0.85 0.75 <.001 0.56-0.87
Home assessment 0.62 <.001 0.38-0.80 0.76 <.001 0.57-0.89

aICC: intraclass correlation coefficient.

Validity and Reliability of Smartphone-
Derived Gait Speed After Adjusting Step
Length by a Coefficient Relative to the
Original Estimation of Step Length
After iteratively calculating the validities and reliabilities of
the different step length zone thresholds as intervals, results
indicated that 0.3 as an interval appeared to produce the
best validity (Table 4). After adjusting step length with this
coefficient relative to the original estimation of step length,
the average gait speed in the younger group during normal
and dual-task walking was 1.13 (SD 0.12) and 1.01 (SD 0.14)
m/s, respectively; and the average gait speed in older group

during the 2 conditions was 1.04 (SD 0.11) and 1.01 (SD
0.11) m/s, respectively (Table 2). These adjusted estimations
of gait speed and step length derived from the smartphone
app demonstrated a considerably smaller bias trend compared
to the original estimated data (Figures 1 and 2). For gait
speed and step length, mean differences were 0.03 m/s and
0.01 m, and limits of agreement were 0.34 m/s and 0.19
m, respectively (Figures 1B and 2B). Orthogonal regression
analysis revealed that the validity of gait speed and step
length derived from the app were higher with those measured
by the GAITRite mat after adjusting, as indicated by one and
close-to-one slopes, which were 1.00 (intercept=0.03) and
0.97 (intercept=0.02), respectively (Figures 3B and 4B).

Table 4. The slope and intercept for the Passing-Bablok orthogonal best-fit line after adjusting using stepwise iterative approach to define different
step length zones by dividing the original estimation of step length using multiple zone thresholds as intervals from 0.1 to 0.5.
Intervals Slope Intercept
0.10 0.97 0.23
0.15 0.86 0.16
0.20 0.91 0.12
0.25 1.00 0.04
0.30 1.00 0.03
0.35 1.13 −0.09
0.40 1.23 −0.18
0.45 1.35 −0.28
0.50 1.40 −0.34

In general, the test-retest reliability of adjusted estimations
of gait speed was good to excellent (0.62‐0.76) between
laboratory assessments, and between home assessments, for
both normal and dual-task walking in the younger and older
groups (Table 3).

Discussion
This study indicated that using a smartphone app placed
in the front pocket of an individual’s pants or shorts can
produce valid estimates of gait speed under both normal
and dual-task walking conditions in healthy younger and
older adults. Moreover, we demonstrated that the accuracy
of gait speed estimation using the inverted pendulum model
approach can be improved by adjusting the estimated values
with coefficients determined by the gold standard meas-
urement of step length. This improved smartphone app–
based approach provided high test-retest reliability within a
supervised laboratory environment and within the unsuper-
vised home setting.

The current results revealed that the pendulum model
approach to calculating gait speed from a single IMU placed
in the pocket overestimated step length and therefore gait
speed if the step length derived from the GAITRite mat
was greater than 0.8 m, yet underestimated both values if
the step length was less than 0.5 m. Through visual inspec-
tion of published work, it appears that this observed bias
in step length estimation is common, even when the IMU
is secured to the participant’s trunk [13,15]. To our knowl-
edge, however, no one has reported this observation, and no
adjustment has been made to correct the bias.

Our work suggests that a simple adjustment of step length
for those steps that are relatively short, or relatively long,
removes the observed bias and improves the accuracy of
gait speed estimation. The current results suggested that
the original estimated step length from the smartphone app
between 0.5 and 0.8 m may not need to be adjusted as
its coefficient was close to 1. Comparing our smartphone
app with gold standard measurements, it is evident that in
scenarios involving normal or dual-task walking, the app
maintains robust performance with small bias across younger
and older groups, different walking conditions, and different
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testing settings (laboratory and home). This implies that the
described method can be used accurately within numerous
applications. The simple inverted pendulum model requires
only 2 pieces of information, namely, the participant’s leg
length and the change in height of the smartphone’s vertical
position during each step (from heel strike to contralateral
heel strike). We suspect that several factors may contribute
to the observed bias. There may be nonlinear relationships
between step length and the combinations of changes in
the height of the smartphone’s vertical position and leg
length. This could indicate inherent limitations in the inverted
pendulum model. Exploring these factors further may thus
offer insights into optimizing the model for different IMU
locations and gait patterns, enhancing the applicability of our
method across diverse populations and conditions.

The results from this study not only reinforce the
reliability of the approach to estimate gait speed under
different walking conditions in ambulatory older adults
without overt disease but also suggest its applicability to
all IMU data. Good to excellent test-retest reliability of
results was observed across younger and older groups,
different walking conditions (normal walking and dual-task
walking), and different testing settings (laboratory and home).
This implies that the described method can be used effec-
tively within numerous applications. Moreover, the test-retest
reliability observed in this study was noticeably higher than
a previous report that used the pendulum model without
adjustment [15]. Incorporating a wide range of ages from
young to old in this study allowed us to encompass a broader
spectrum of gait speeds and step lengths, which enhanced the
generalizability of our findings. The observed consistency in
the adjustment coefficients across these age groups suggests
that the pendulum model approach we used is robust and
applicable across a diverse age demographic. This inclusivity
in our research approach enriches its relevance and widens its
potential impact, thus making our findings more applicable in
real-world scenarios where age-related variations in gait are
common.

The coefficients established from our cohort may be
applicable to other data sets where the populations and the

settings of the devices (smartphone), including sampling
rate, are similar; yet, the coefficients may need to be fine-
tuned for different populations and devices, especially when
a gold standard measurement is available. Our coefficients
performed well in our data set, which involved a wide range
of step length and gait speed in both healthy young and older
populations. In terms of future application to other data sets,
this method holds significant potential for various areas. For
data sets where a gold standard method is unavailable, our
coefficients are worth trying to adjust the original estimated
value. If the population (ie, healthy young and healthy older
adults) and tool (ie, a smartphone app in the pants pocket) are
similar to that tested and used in this study, implementing
this type of adjustment is expected to improve the accu-
racy and reliability of the estimates. For data sets where a
gold standard is available, researchers are recommended to
develop their own coefficients based on the unique charac-
teristics of each data set, thereby improving the method’s
precision and applicability to specific contexts.

Further research is required to determine the generaliza-
bility of our method to broader populations, especially in
cases where a gold standard method is not available. The
original step length estimations in this study were classi-
fied into 3 categories, which may decrease the test-retest
reliability of those step length data close to the margin of
categories. To address this, larger data sets are needed to
establish a continuous adjustment approach without the need
to classify the data into categories. Additionally, refining
the inverted pendulum model to better accommodate the
nonlinear relationship between step length and smartphone
vertical displacement could enhance accuracy. The applicabil-
ity of the method to individuals with abnormal gait patterns
should also be explored. Despite these limitations, this study
provided evidence that gait speed can be accurately and
reliably estimated with minimum information (leg length) in
young and older adults during normal and dual-task walking
based upon a single IMU-embedded smartphone placed in the
pocket.
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