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Abstract
Background: Understanding the causes and mechanisms underlying musculoskeletal pain is crucial for developing effective
treatments and improving patient outcomes. Self-report measures, such as the Pain Drawing Scale, involve individuals rating
their level of pain on a scale. In this technique, individuals color the area where they experience pain, and the resulting picture
is rated based on the depicted pain intensity. Analyzing pain drawings (PDs) typically involves measuring the size of the pain
region. There are several studies focusing on assessing the clinical use of PDs, and now, with the introduction of digital PDs,
the usability and reliability of these platforms need validation. Comparative studies between traditional and digital PDs have
shown good agreement and reliability. The evolution of PD acquisition over the last 2 decades mirrors the commercialization
of digital technologies. However, the pen-on-paper approach seems to be more accepted by patients, but there is currently no
standardized method for scanning PDs.
Objective: The objective of this study was to evaluate the accuracy of PD analysis performed by a web platform using various
digital scanners. The primary goal was to demonstrate that simple and affordable mobile devices can be used to acquire PDs
without losing important information.
Methods: Two sets of PDs were generated: one with the addition of 216 colored circles and another composed of various
red shapes distributed randomly on a frontal view body chart of an adult male. These drawings were then printed in color on
A4 sheets, including QR codes at the corners in order to allow automatic alignment, and subsequently scanned using different
devices and apps. The scanners used were flatbed scanners of different sizes and prices (professional, portable flatbed, and
home printer or scanner), smartphones with varying price ranges, and 6 virtual scanner apps. The acquisitions were made under
normal light conditions by the same operator.
Results: High-saturation colors, such as red, cyan, magenta, and yellow, were accurately identified by all devices. The
percentage error for small, medium, and large pain spots was consistently below 20% for all devices, with smaller values
associated with larger areas. In addition, a significant negative correlation was observed between the percentage of error and
spot size (R=−0.237; P=.04). The proposed platform proved to be robust and reliable for acquiring paper PDs via a wide range
of scanning devices.
Conclusions: This study demonstrates that a web platform can accurately analyze PDs acquired through various digital
scanners. The findings support the use of simple and cost-effective mobile devices for PD acquisition without compromising
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the quality of data. Standardizing the scanning process using the proposed platform can contribute to more efficient and
consistent PD analysis in clinical and research settings.
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Introduction
Musculoskeletal pain is a frequent problem that affects a
significant portion of the population and can have a major
impact on quality of life [1]. Understanding the causes and
mechanisms underlying musculoskeletal pain is crucial for
the development of effective treatments and enhancement
of patient outcomes. Moreover, investigating musculoskeletal
pain contributes to the advancement of our understanding of
anatomy, physiology, and pain mechanisms, with potential
implications for comprehending and managing pain [2,3].

There are several methods for measuring muscle pain,
including self-report measures, behavioral measures, and
physiological measures [4]. Self-report measures involve
asking the person to rate his or her level of pain on a scale,
such as the Visual Analog Scale or the Numeric Rating Scale
[5]. A promising way of evaluating pain using drawings is
known as the Pain Drawing Scale [6-10].

Digital technologies have had a significant influence
on the evolution of pain drawings (PDs), with different
applications in the field of medical apps [11].

The fields of application of PDs include diagnosis of
low back pain disorders; paresthesias evoked by implanted
neurological stimulators; depiction of orofacial pain, such as
headaches and toothaches; and evaluation of users of electric
wheelchairs with pain located in the back, buttocks region,
and so forth.

Body charts can also illustrate other types of sensory
experiences such as numbness, tingling, hypoesthesia, or
allodynia [12].

While digitally acquired PDs offer advantages, many
studies demonstrate sophisticated analyses of scanned or
digitized pen-and-paper PDs, showcasing the versatility
of digital image processing. This capability enables the
digitization and analysis of extensive collections of pen-and-
paper pain diagrams, making it adaptable to various settings
and needs.

In this technique, the individuals are instructed to color the
area where they are experiencing pain, and the picture is then
rated on a scale based on the amount of pain depicted [13].
This can be a useful tool for measuring pain in individuals
who have difficulty verbalizing their pain experience, such
as young children or nonverbal individuals [14]. However, it
is important to keep in mind that PDs can be subjective and
may be influenced by factors such as the person’s cultural
background or level of education [15]. PDs typically consist
of body charts with different views of the human body

(dorsal, ventral, and side) or subportions (head, hand, etc),
and patients are instructed to color with a marker the area
where they experience pain. The body charts can be divided
into regions such as the Margolis regions [16]. This technique
is used to describe and categorize the location of musculoske-
letal pain in the body. The regions are based on anatomical
divisions of the body, including the neck, upper extremities,
low back, and lower extremities [17].

The purpose of the Margolis regions is to provide a
standardized and easily understood way to describe the
location of musculoskeletal pain, which can help with
diagnosis and treatment planning [18,19].

PDs can be analyzed in a variety of ways, depending on
the purpose of the analysis and the method used to create the
drawings. The most common method of analyzing PDs is the
measurement of the size of the pain region. This can be done
using computer software or manual measurement techniques
[20].

There are different software programs available for
analyzing PDs [21-25]. These programs can be used to
perform both qualitative and quantitative analyses of PDs,
depending on the specific software and the features it offers
[26]. Some researchers also introduced sex-specific body
charts in order to facilitate the communication of pain for
women [17,27,28].

Some of the features offered by pain analysis software
may include image digitization (allowing the conversion of
traditional paper drawings into digital format for analysis),
image scaling (allowing the adjustment of the size of the PDs
to match a reference scale), image analysis (using algorithms
to automatically identify and quantify features of the PD, such
as the size and shape of the pain region), and data visuali-
zation (displaying the results of the analysis in a clear and
easy-to-understand format, such as graphs or heat maps).

Submitting paper PDs to patients is simpler than using
drawing applications running on tablets. Anyway, the use of
PDs is not indicated in patients with vision impairment or
in preschool children, although some studies investigated the
application in teenagers. Being a self-assessed measure the
patients should not have cognitive impairments, or diseases
including misperception of their body.

While digital drawings can be easily edited and manipu-
lated, and the tools available on a tablet can offer a wider
range of color options and effects, paper PDs are largely used
in clinical settings. This preference stems from the fact that
many patients feel more comfortable using the pen-on-paper
approach rather than digital devices [29-31].
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There are different methods for scanning PDs, includ-
ing using a flatbed scanner, a device that scans flat, thin
documents placed on a glass window; a handheld scanner,
a portable device that can scan images while being moved
over them; a drum scanner, a high-end scanner that uses
a rotating cylinder to capture the image; a multifunctional
printer scanner, a printer that also includes a scanner function;
and a virtual scanner, a software that can use a camera to scan
images.

To date, there is no standardization in scanning PDs. The
existing softwares for PD acquisition work with specific body
charts and do not allow a direct comparison between using
the same drawing. The aim of this study was to evaluate the
accuracy of PD analysis performed by a web platform using
different digital scanners. The objective of this study was to
demonstrate that simple and relatively cheap mobile devices
can be used to acquire PDs without loss of information.

Methods
Ethical Considerations
We did not involve patients, subjects, or animals. The data set
was generated through a computer simulation; thus, there was
no need to have ethical approval.
Sketch Your Pain Platform
The proposed analysis was performed using a web plat-
form. The main features of this distributed web application
(currently available on a local server [32]) are as follows:

1. Knowledge-base management: the platform allows the
collection of patient’s data (biometric, pain history,
applied therapies, diagnoses, etc).

2. PD acquisition: PDs can be uploaded both digitally and
from paper (see details in the following section).

3. Basic PD analysis: each pain spot is analyzed individu-
ally (ie, number of pixels, barycenter, etc).

4. Smart analysis services: the platform provides a
plug-in–based mechanism that allows the implementa-
tion of additional analysis within the platform. In this
way, researchers can apply specific innovative tools to
the PDs stored in the database [33].

A paper PD can be imported in two ways: (1) it can be
digitally imported by using the specific acquisition tool that
allows for drawing directly on a tablet, using a digital pen on
the touch screen (available on a local server [34]), or (2) it

can be manually imported as a PDF file (the platform allows
one to download a PDF file including empty body charts
with a unique QR code, which can be printed, filled manually
using a color marker, and scanned as a PDF file).

When a PD is generated digitally, it is already aligned with
the body charts, while for the paper drawings, the process is
more complex and can be summarized as follows. The body
chart and all related information are identified thanks to the
QR code, including the information of the protocol, subject
ID, gender, and view of the body chart, and are stored in a
database. The platform code and data are stored on a local
server. The patient names and sensitive data are anonymized
using codes that are available only to the operators.

The scanned image is aligned and cropped using the 4
markers at the corners as pivots (Figure 1A).

The image is resized in order to have the same number
of pixels of the body charts stored in the platform (ie,
2048×1536 pixels; Figure 1B). The areas outside the body
chart are removed using a mask image. This step also allows
for the removal of all possible out-of-body staining errors
(Figure 1C). The pain spots (that should be drawn in color
and not in any shade of gray) are identified and isolated from
the body chart by computing the SD of each pixel (in this
way, the SD of black pixels [0, 0, 0] and white pixels [255,
255, 255] is equal to 0, while a red pixel [255, 0, 0] has an
SD of 147.2). The optimal threshold for the minimum SD
(based on preliminary tests) that works best in extracting pain
spots from the body chart with different conditions of light
and colors is 25. In this way, the color image is converted
into a Boolean matrix where ones correspond to pixels with
pain. An algorithm for extrusion and subsequent erosion is
applied to the Boolean image in order to fill possible gaps
that can happen when the user is using a sharp marker (Figure
1D). All contours of the pain spots and the potential holes
in them are identified by means of the Canny edge detection
algorithm [35]. The pain spots whose contours contain fewer
than 20 points/pixels are removed. Likewise, the holes present
in the spots, whose contours contain less than 15 points/
pixels, are removed. Further, the pain spots smaller than 100
pixels are removed. Likewise, the holes smaller than 150
pixels are removed (Figure 1E). The individual pain spots are
identified by an image segmentation algorithm, and for each
spot, the area in pixels and the coordinates of the centroid are
computed. The final result of the process is shown in Figure
1F.
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Figure 1. Pain spot detection process. (A) The 4 markers at the corners and the QR code are identified. (B) The pain drawing is aligned and
scaled. (C) The areas outside the body chart are removed. (D) Pain drawings are separated from the background and eroded in order to correct the
imperfections due to pen drawing. (E) Pain spot contours are identified and small holes are removed. (F) Each pain spot is analyzed to extract area
and position. PS: pain spot.

Generation of Artificial PDs
For the present protocol, 2 sets of PDs were generated with a
homemade MATLAB (MathWorks) code. We decided to test
the platform by using artificial PDs in order to have complete
control of the process and of the analysis. For each of the
pain spots generated randomly, we had information on pain
location (barycenter of the pain spot), area in square pixels,
and shade of color in the red, green, and blue (RGB) scale,
and with these data, we could assess the performance of each
of the scanning devices. A preliminary study was conducted
on the platform using different scanning devices on PDs of
real patients with similar results [36].

The body chart selected was a male frontal body chart,
representing the contours of a full male body in frontal view
(dimensions: 1536×2048 pixels).

Color Analysis
The first artificial PD was generated, adding 216 colored
circles, which were 33 pixels in diameter, within the body
chart map. The circles were randomly positioned within the
body chart in order to be nonoverlapping and not touching
each other. The colors were chosen in order to uniformly span
the RGB color cube, using 6 different intensities for each
color. Since the color depth was defined on a range from 0
to 255 (1 byte), the values of each color were 0, 51, 102,
153, 204, and 255. In this way, the total number of colors
was 6^3=216, ranging from black (0, 0, 0) to white (255, 255,
255) and including all combinations of RGB (ie, [0, 0, 0], [0,
0, 51], [0, 0, 102],…[51, 0, 0],…[255, 255, 255]; Figure 2A).
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Figure 2. Representation of the artificial pain drawings generated with MATLAB. (A) A total of 216 colored circles with a 30-pixel diameter were
randomly located within the area of the body chart. The colors were uniformly distributed in the RGB color cube. (B) Five body charts with randomly
generated shapes. RGB: red, green, and blue.

Area and Location Analysis
The second set of PDs was composed of 5 artificial PDs
generated by adding several red shapes (ellipses, rectangles,
and triangles) to the same body chart; the shapes were
generated with random sizes, orientations, and positions and
could overlap and be partially outside the body chart mask
(Figure 2B). The red color was chosen mainly because it can
be easily associated with pain in a body chart; in addition, in
the RGB cube, the red color is located in one of the vertices
(ie, it has the highest SD value among triplets of RGB values,
together with yellow, magenta, cyan, blue, and green), and it
is easy to find red pens or markers in common shops.

Each of the 2 sets was printed in color, using the same
printer (Sharp MX-7580) to print 11 copies; markers were
added at the 4 corners, and a QR code was added at the
bottom left side. The markers and the QR code were included
in order to allow the platform to align the images and add the
PDs to the internal database.
Selection of Scanning Devices
The 11 sets of drawings were then scanned using different
devices and apps (Table 1).

We selected 3 flatbed scanners with different sizes and
prices: 1 professional office printer or scanner that was
available in our university (Sharp MX-4070; price about US
$5000), 1 portable flatbed scanner (Canon Lide 220; ~US
$50), and a home printer or scanner (HP Envy 4500; ~US
$300).

In addition, we selected 3 smartphones with different
price ranges: iPhone 12 (~US $1000), Samsung Galaxy (~US
$400), and Ulefone Armor (~US $100). All the 3 devices
were using the same app for scanning images (vFlat scan), in
order to compare only the hardware of the devices.

Moreover, for the cheapest smartphone, we selected 6 free
apps available in the android apps Google Play repository.
The apps were selected according to their popularity and
ranking based on users’ comments.

For each scanner, a PDF file was generated including the
corresponding set of images (1 with colored circles and 5 with
red shapes). The PDF files were uploaded in the sketch your
pain platform [32].

Table 1. List of devices used to scan the artificial pain drawingsa.
Type Device model Resolution Price (US $) App
Flatbed Sharp MX-4070 300 dpib ~5000 —c

Flatbed Canon Lide 220 300 dpi ~50 —
Flatbed HP Envy 4500 300 dpi ~300 —
Smartphone iPhone 12 12 Mpxd ~1000 vFlat Scan
Smartphone Samsung Galaxy S10 Lite 32 Mpx ~400 vFlat Scan
Smartphone Ulefone Armor-X 13 Mpx ~100 vFlat Scan
Smartphone Ulefone Armor-X 13 Mpx ~100 TapScanner
Smartphone Ulefone Armor-X 13 Mpx ~100 Simple Scan
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Type Device model Resolution Price (US $) App
Smartphone Ulefone Armor-X 13 Mpx ~100 Fast Scanner
Smartphone Ulefone Armor-X 13 Mpx ~100 CamScanner
Smartphone Ulefone Armor-X 13 Mpx ~100 TurboScan

aThe flatbed devices generated the PDF files using proprietary software, while smartphones needed an app to generate the PDF using the camera.
bdpi: dots per inch.
cNot available.
dMpx: megapixels.

Image Processing
The original area of each pain spot generated with MATLAB
was computed as well as the coordinates of the centroid of
each pain spot. The sketch your pain platform identified the
QR codes and allowed the processing of each identified pain
spot, providing area in pixels and coordinates of the centroid.

For the analysis of colors, we analyzed whether the
platform was able to identify a pain spot corresponding to
each of the locations where colored circles were generated.
If the area of the identified pain spot was larger than a fixed
threshold (90% of the theoretical area; eg, 450 out of 500
pixels), then the pain spot was counted (Figure 3).

Figure 3. Examples of identification of pain spots from colored circles. (A) The original drawing and the output of the platform algorithm for 3
different devices are shown. The green color represents an identified pain spot. The purple circle on the bottom left corner (indicated with the thick
arrow) was not identified by the iPhone (D) and Sharp scanner (B), but it was identified by the Armor phone (C). The black circle on the neck
(indicated with the thin arrow) was not identified by any of the devices.

Statistical Analysis
The variables used for the statistics were the area (A) of pain
spots in square pixels and the coordinates of the centroid
(x, y) of each pain spot in pixels. The variables computed
for each scanning device were compared with the variables
computed for the corresponding pain spots on the original
artificial PDs generated with MATLAB. The percentage area
error (E) was computed as the difference between the 2 areas
divided by the area computed on original PD and expressed
as a percentage. The distance (D) between the theoretical
centroid of the pain spot computed on original image and the
centroid of the pain spot identified by each device was also
computed and expressed in pixels.

Intraclass correlation coefficient (ICC) estimates (and their
95% CIs) of pain area and barycenter coordinates were
calculated using MATLAB and a 1-way mixed-effects model.

In addition, standard error of measurement (SEM) and
minimal clinical differences were computed for pain area and
barycenter position.

Descriptive statistics is presented with box and whisker
plots with median and IQR values.

Results
Color Analysis
A Boolean table with the results of pain spot identification
was generated with 216 lines (1 for each color) and 11
columns (1 for each scanner). A graphical representation of
the table is represented in Figure 4.

Each color is represented by a circle in the 3D color cube,
and the size of each circle is proportional to the number of
scanners that were able to identify that color (ie, if the area
of the identified pain spot was larger than 90% of the printed
circle). The maximum circle diameter was set to two-thirds of
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the spacing between adjacent circles. In this way, it is easy
see which colors are best for PDs. As expected, the colors
with identical values in RGB triplets (ie, shades of gray,
black, and white) were never identified by the software,
and colors with low values of SD in RGB triplets (eg,

low-saturation colors) were not identified with most devices.
The colors that were identified with all devices are located
close to the corners of the color cube (ie, high-saturation
colors, such as red, cyan, magenta, and yellow).

Figure 4. Representation of the performance of the algorithm in identifying different color circles. The middle diagonal (from white to black where
RGB components are equal) and the colors located close to the central diagonal are not identified by the algorithm, while colors such as red, magenta,
and yellow are identified by all devices. RGB: red, green, and blue.

Area and Location Analysis
Figure 5 shows the distribution of areas of the pain spots
generated artificially and randomly distributed on each of the
5 body charts. The pain spots were divided into 3 catego-
ries according to their area in square pixels (A<502: small;
502≤A<1002: medium; and A≥1002: large).

The ICC for pain area was 0.99, with a 95% CI 0.99‐
0.99 (F74,750=1.44e+04). In addition, the ICC and CI values
for barycenter coordinates were above 0.99 (x-coordinate:
F84,930=4.55e+05; y-coordinate: F103,843=5.12e+05).

Table 2 shows the SEM and minimal detectable change
values for each device compared with the theoretical value.

Figure 6A shows the percentage error of pain extent
for each device for the 3 categories of pain spot areas.
For all devices, the percentage error was below 20% for
small, medium, and big pain spots, with lower values
associated with bigger areas. A significant negative correla-
tion was observed between percentage of error and spot size
(R=−0.237; P=.04; Figure 6B).

Figure 7 shows the percentage error of distance between
the theoretical location of the centroid of each pain spot and
the location of the centroid of the identified pain spot. The
distribution of the distances was always below 5 pixels except
for the Armor device with the TurboScan app (11th column).
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Figure 5. Representation of the distribution of shapes according to their size. The 3 colors are used to represent the 3 categories that were used for
further analysis The image in the legend shows the thresholds used to divide the categories (as square shapes).

Table 2. Standard error of measurement and minimal detectable change for the identification of pain area and for the barycenter distance for each
device compared with the theoretical value.

Device model Area SEMa (pixels2) Area MDCb (pixels2)
Barycenter distance SEM
(pixels)

Barycenter distance MDC
(pixels)

Sharp MX-4070 262 513 1.5 2.9
Canon Lide 220 348 682 1.5 3.0
HP Envy 4500 219 429 1.5 3.0
iPhone—vFlat 134 262 1.0 2.1
Galaxy S10 lite—vFlat 172 336 1.4 2.6
Armor X—vFlat 182 356 1.3 2.5
Armor X—TapScanner 247 485 2.1 4.2
Armor X—Simple Scan 251 491 2.6 5.1
Armor X—Fast Scanner 287 563 2.4 4.8
Armor X—CamScanner 227 444 2.0 3.8
Armor X—TurboScan 505 989 4.0 7.8

aSEM: standard error of measurement.
bMDC: minimal detectable change.
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Figure 6. (A) Distribution of errors in identifying the pain spot areas expressed in percentages. The 3-color box and whisker plots for each device
represent the distribution of area error for each of the 3 categories (small, medium, and large pain spots). (B) Correlation between percentage of error
and spot size (the regression line is indicated as a dashed line).

Figure 7. Distribution of errors in the location of the pain spots expressed in pixels. The 3-color box and whisker plots for each device represent the
distribution of barycenter distance error for each of the 3 categories (small, medium, and large pain spots). The image of the eye shows the actual
dimensions of 5 pixels in the full body chart (paper dimensions: 2048×1536 pixels).

Discussion
Principal Findings
The results of this study showed that the pen-and-paper
drawings can be imported and processed with negligible
differences using different devices. To our knowledge, there
were no other studies focusing on the acquisition of paper
pen drawings using mobile devices. Before conducting this
study, we were largely using our platform, asking patients to

use the red marker because we suspected that blue markers
would be mistaken as black. As expected, indeed the red
color is the best choice for multiple reasons: the red color is
associated with the inflammatory process; thus, it is easy for a
patient to visualize their own pain as a red spot (eg, compared
with green or blue). Moreover, in shops, markers labeled as
“red” are very similar to the theoretical value of (255, 0, 0),
while markers labeled as “green,” or “blue” can have different
darker or lighter shades.
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Surprisingly, in our results, blue and green were identi-
fied only with few devices (mostly flatbed scanners). One
of the reasons could be the ink of the printer, whose color
was slightly different from what was expected. The illumi-
nation of the room could also have an impact, since the
light emitted by different bulbs or neon could carry different
wavelengths in different proportions. The light sensors of
cameras and scanners could have different sensitivities to
different wavelengths, and probably the red-light sensors have
higher sensitivities.

When observing the printed page, we noticed that the blue
ink was slightly darker than what we observed on the PC
monitor, but it was difficult to objectively evaluate which one
was correct, as we did not have a gold standard for each color.
In summary, the results confirmed our initial prediction: the
red marker is the optimal choice for PDs. However, in cases
where the patient does not have a red marker available, we
recommend using a flatbed scanner to generate the PDF for
import to the platform. This approach helps minimize the bias
resulting from external factors such as lights or photo LED
sensitivity.

Regarding the accuracy of the pain spot identification,
all the devices showed similar performance when using red
color. The cheapest flatbed scanner showed larger errors
probably due to the distortion of the image. When observ-
ing the digital image, we noticed that the proportions were
slightly distorted (maybe due to the calibration of the motor
or due to friction of the transmission chain). For this reason,
the alignment process of the algorithm could not perfectly
align the 4 markers in the corner; thus, the pain spot location
had larger errors and extensions.

As expected, the smaller pain spots showed larger
percentage errors but no differences in the barycenter location
error, because of the distortion of pain spots due to the
erosion process. The choice of the app for the mobile device
had a significant effect on the percentage errors. In particular,
the app named V-Flat showed better results than the others
(when installed on the cheapest mobile device), leading to
results that were comparable with high-rank mobile devices.
The V-Flat app includes an algorithm that recognizes the
corners of the paper and compensates for the distortions of
the camera and even the distortions due to bent paper. For
this reason, the results were as good as flatbed professional
scanners (<5% of error). In general, the errors in identifi-
cation of pain extent (<5%) and pain location (<5 pixels)
were much lower than the precision of a subject in drawing
or identifying their own pain and thus were lower than the
minimum clinical significance of PDs [17,37,38].
Limitations
This study has some limitations that may introduce bias into
the results. First, the acquisitions made with mobile devi-
ces were not conducted under controlled lighting conditions.
Although all acquisitions took place during daylight hours
without direct sunlight on the paper, variations in the time

of day and weather conditions could have affected the colors
identified by the devices. In addition, we did not calibrate
the “white level” of the mobile phone camera. While some
apps offered advanced camera settings for optimizing virtual
scanners, we chose to use the default settings to maintain as
close to a real-life environment as possible. As a result, we
did not test under unusual lighting conditions (eg, candlelight,
colored lamps, neon lights).

Another limitation is that we could not directly compare
the performance of our platform with other existing methods,
since the body charts are specific for each existing app.

Furthermore, we tested only 1 printer to print all the
artificial PDs, which introduces potential bias. The colored
circles in the first part of the study were positioned within
the body chart but in different locations. This variation in
placement could impact the results, as colors farther from the
center of the paper may experience greater distortion due to
misalignment. However, this approach was necessary to avoid
printing an excessive number of papers.

The decision of using artificial PDs is due to the fact that
we conducted 2 studies in parallel. The first study involved
the use of actual PDs generated by humans [36], while in
this study, we wanted to investigate different colors in order
to investigate all the RGB space. In addition, the location
of pain spots in PDs generated by humans depends on the
pathology of patients, while in this case, we preferred to
have a uniform distribution of pain spots with a priori known
sizes and locations. Both studies showed that the platform has
excellent results, but in this study, we were able to quantify
the error since we knew the theoretical pain spot areas.

The sample size of mobile devices and flatbed scanners is
small. However, the objective of the study was not to provide
an exhaustive sample of devices but rather to demonstrate
that even inexpensive devices are sufficient for accurately
acquiring paper PDs.

Similarly, the sample of scan apps is also limited, and
some of them are no longer available for free as of manuscript
submission. The app market is continuously evolving, with
new apps being released regularly. Our intention was to find
a selection of free virtual scanners available in the Play Store,
and again, our aim was to show that various apps perform
similarly.
Conclusions
The system was already tested in real clinical settings and
was shown to be easy to implement, easy to use, and well
accepted. The acquisition of paper PDs using the proposed
platform has been demonstrated to be robust and reliable
across a wide range of scanning devices. The accuracy of
pain extent and location analysis consistently falls within the
error measurement range of PDs. The use of the proposed
algorithm will enable the use of PD analysis in various
clinical settings.

Authors’ Contributions

JMIR MHEALTH AND UHEALTH Cescon et al

https://mhealth.jmir.org/2024/1/e53119 JMIR Mhealth Uhealth 2024 | vol. 12 | e53119 | p. 10
(page number not for citation purposes)

https://mhealth.jmir.org/2024/1/e53119


CC participated in the conceptualization, methodology, software, data curation, and writing—original draft preparation. GL
participated in the software and validation. NB led the visualization and investigation. VG participated in the investigation.
MD contributed to data curation. EK participated in writing—review and editing. PM did the supervision. AER participated in
project administration. MB participated in the conceptualization, funding acquisition, and writing—reviewing and editing.
Conflicts of Interest
None declared.
References
1. Puntillo F, Giglio M, Paladini A, et al. Pathophysiology of musculoskeletal pain: a narrative review. Ther Adv

Musculoskelet Dis. 2021;13:1759720X21995067. [doi: 10.1177/1759720X21995067] [Medline: 33737965]
2. Ekman EF, Koman LA. Acute pain following musculoskeletal injuries and orthopaedic surgery: mechanisms and

management. Instr Course Lect. 2005;54:21-33. [Medline: 15948432]
3. Graven-Nielsen T. Mechanisms and manifestations in musculoskeletal pain: from experimental to clinical pain settings.

Pain. Nov 1, 2022;163(Suppl 1):S29-S45. [doi: 10.1097/j.pain.0000000000002690] [Medline: 35984370]
4. Roulin MJ, Ramelet AS. Pain indicators in brain-injured critical care adults: an integrative review. Aust Crit Care. May

2012;25(2):110-118. [doi: 10.1016/j.aucc.2011.10.002] [Medline: 22104632]
5. Shafshak TS, Elnemr R. The visual analogue scale versus numerical rating scale in measuring pain severity and

predicting disability in low back pain. J Clin Rheumatol. Oct 1, 2021;27(7):282-285. [doi: 10.1097/RHU.
0000000000001320] [Medline: 31985722]

6. Galer BS, Jensen MP. Development and preliminary validation of a pain measure specific to neuropathic pain: the
Neuropathic Pain Scale. Neurology. Feb 1997;48(2):332-338. [doi: 10.1212/wnl.48.2.332] [Medline: 9040716]

7. Gracely RH, Kwilosz DM. The Descriptor Differential Scale: applying psychophysical principles to clinical pain
assessment. Pain. Dec 1988;35(3):279-288. [doi: 10.1016/0304-3959(88)90138-8] [Medline: 3226757]

8. McCaffery M, Pasero C. Pain Clinical Manual. 2nd ed. Mosby; 1999. ISBN: 978-0815156093
9. Melzack R, KatzJ. McGill Pain Questionnaire. In: Encyclopedia of Pain. Springer; 1971:1792-1794. [doi: 10.1007/978-

3-642-28753-4]
10. Wong DL, Hockenberry MJ, Wilson D, Winkelstein ML, Schwartz P. Wong’s Essentials of Pediatric Nursing. 6th ed.

Mosby; 2001. ISBN: 978-0-323-00989-8
11. Shaballout N, Neubert TA, Boudreau S, Beissner F. From paper to digital applications of the pain drawing: systematic

review of methodological milestones. JMIR Mhealth Uhealth. Sep 5, 2019;7(9):e14569. [doi: 10.2196/14569] [Medline:
31489841]

12. Schmid AB, Ridgway L, Hailey L, et al. Factors predicting the transition from acute to persistent pain in people with
‘sciatica’: the FORECAST longitudinal prognostic factor cohort study protocol. BMJ Open. Apr 5, 2023;13(4):e072832.
[doi: 10.1136/bmjopen-2023-072832] [Medline: 37019481]

13. Suvinen TI, Kemppainen P, Le Bell Y, Kauko T, Forssell H. Assessment of pain drawings and self-reported comorbid
pains as part of the biopsychosocial profiling of temporomandibular disorder pain patients. J Oral Facial Pain Headache.
Oct 2016;30(4):287-295. [doi: 10.11607/ofph.1589] [Medline: 27792795]

14. Unruh A, McGrath P, Cunningham JS, Humphreys P. Childrenʼs drawings of their pain. Pain. Dec 1983;17(4):385-392.
[doi: 10.1016/0304-3959(83)90170-7] [Medline: 6664684]

15. Grunnesjö M, Bogefeldt J, Blomberg S, Delaney H, Svärdsudd K. The course of pain drawings during a 10-week
treatment period in patients with acute and sub-acute low back pain. BMC Musculoskelet Disord. Dec 11, 2006;7:65.
[doi: 10.1186/1471-2474-7-65] [Medline: 16901354]

16. Margolis RB, Tait RC, Krause SJ. A rating system for use with patient pain drawings. Pain. Jan 1986;24(1):57-65. [doi:
10.1016/0304-3959(86)90026-6] [Medline: 2937007]

17. Barbero M, Moresi F, Leoni D, Gatti R, Egloff M, Falla D. Test-retest reliability of pain extent and pain location using a
novel method for pain drawing analysis. Eur J Pain. Sep 2015;19(8):1129-1138. [doi: 10.1002/ejp.636] [Medline:
25565607]

18. Balasch-Bernat M, Dueñas L, Aguilar-Rodríguez M, et al. The spatial extent of pain is associated with pain intensity,
catastrophizing and some measures of central sensitization in people with frozen shoulder. J Clin Med. Dec 28,
2021;11(1):154. [doi: 10.3390/jcm11010154] [Medline: 35011895]

19. Ginzburg BM, Merskey H, Lau CL. The relationship between pain drawings and the psychological state. Pain. Nov
1988;35(2):141-146. [doi: 10.1016/0304-3959(88)90221-7] [Medline: 3237428]

20. Türp JC, Kowalski CJ, O’Leary N, Stohler CS. Pain maps from facial pain patients indicate a broad pain geography. J
Dent Res. Jun 1998;77(6):1465-1472. [doi: 10.1177/00220345980770061101] [Medline: 9649175]

JMIR MHEALTH AND UHEALTH Cescon et al

https://mhealth.jmir.org/2024/1/e53119 JMIR Mhealth Uhealth 2024 | vol. 12 | e53119 | p. 11
(page number not for citation purposes)

https://doi.org/10.1177/1759720X21995067
http://www.ncbi.nlm.nih.gov/pubmed/33737965
http://www.ncbi.nlm.nih.gov/pubmed/15948432
https://doi.org/10.1097/j.pain.0000000000002690
http://www.ncbi.nlm.nih.gov/pubmed/35984370
https://doi.org/10.1016/j.aucc.2011.10.002
http://www.ncbi.nlm.nih.gov/pubmed/22104632
https://doi.org/10.1097/RHU.0000000000001320
https://doi.org/10.1097/RHU.0000000000001320
http://www.ncbi.nlm.nih.gov/pubmed/31985722
https://doi.org/10.1212/wnl.48.2.332
http://www.ncbi.nlm.nih.gov/pubmed/9040716
https://doi.org/10.1016/0304-3959(88)90138-8
http://www.ncbi.nlm.nih.gov/pubmed/3226757
https://doi.org/10.1007/978-3-642-28753-4
https://doi.org/10.1007/978-3-642-28753-4
https://doi.org/10.2196/14569
http://www.ncbi.nlm.nih.gov/pubmed/31489841
https://doi.org/10.1136/bmjopen-2023-072832
http://www.ncbi.nlm.nih.gov/pubmed/37019481
https://doi.org/10.11607/ofph.1589
http://www.ncbi.nlm.nih.gov/pubmed/27792795
https://doi.org/10.1016/0304-3959(83)90170-7
http://www.ncbi.nlm.nih.gov/pubmed/6664684
https://doi.org/10.1186/1471-2474-7-65
http://www.ncbi.nlm.nih.gov/pubmed/16901354
https://doi.org/10.1016/0304-3959(86)90026-6
http://www.ncbi.nlm.nih.gov/pubmed/2937007
https://doi.org/10.1002/ejp.636
http://www.ncbi.nlm.nih.gov/pubmed/25565607
https://doi.org/10.3390/jcm11010154
http://www.ncbi.nlm.nih.gov/pubmed/35011895
https://doi.org/10.1016/0304-3959(88)90221-7
http://www.ncbi.nlm.nih.gov/pubmed/3237428
https://doi.org/10.1177/00220345980770061101
http://www.ncbi.nlm.nih.gov/pubmed/9649175
https://mhealth.jmir.org/2024/1/e53119


21. Ali SM, Lau WJ, McBeth J, Dixon WG, van der Veer SN. Digital manikins to self-report pain on a smartphone: a
systematic review of mobile apps. Eur J Pain. Feb 2021;25(2):327-338. [doi: 10.1002/ejp.1688] [Medline: 33113241]

22. Boudreau SA. Visualizing and quantifying spatial and qualitative pain sensations. Scand J Pain. Oct 26,
2022;22(4):681-683. [doi: 10.1515/sjpain-2022-0098] [Medline: 36136613]

23. Kanellopoulos AK, Kanellopoulos EK, Dimitriadis Z, et al. Novel software for pain drawing analysis. Cureus. Dec
2021;13(12):e20422. [doi: 10.7759/cureus.20422] [Medline: 35047261]

24. Neubert TA, Dusch M, Karst M, Beissner F. Designing a tablet-based software app for mapping bodily symptoms:
usability evaluation and reproducibility analysis. JMIR Mhealth Uhealth. May 30, 2018;6(5):e127. [doi: 10.2196/
mhealth.8409] [Medline: 29848470]

25. Shaballout N, Aloumar A, Neubert TA, Dusch M, Beissner F. Digital pain drawings can improve doctors’ understanding
of acute pain patients: survey and pain drawing analysis. JMIR Preprints. Preprint posted online on Jun 27, 2018. [doi:
10.2196/preprints.11412]

26. Dixit A, Lee M. Quantification of digital body maps for pain: development and application of an algorithm for
generating pain frequency maps. JMIR Form Res. Jun 24, 2022;6(6):e36687. [doi: 10.2196/36687] [Medline: 35749160]

27. Galve Villa M, Palsson TS, Cid Royo A, Bjarkam CR, Boudreau SA. Digital pain mapping and tracking in patients with
chronic pain: longitudinal study. J Med Internet Res. Oct 26, 2020;22(10):e21475. [doi: 10.2196/21475] [Medline:
33104012]

28. Egsgaard LL, Christensen TS, Petersen IM, Brønnum DS, Boudreau SA. Do gender-specific and high-resolution three
dimensional body charts facilitate the communication of pain for women? A quantitative and qualitative study. JMIR
Hum Factors. Jul 20, 2016;3(2):e19. [doi: 10.2196/humanfactors.5693] [Medline: 27440737]

29. Campbell N, Ali F, Finlay AY, Salek SS. Equivalence of electronic and paper-based patient-reported outcome measures.
Qual Life Res. Aug 2015;24(8):1949-1961. [doi: 10.1007/s11136-015-0937-3] [Medline: 25702266]

30. Noyes JM, Garland KJ. Computer- vs. paper-based tasks: are they equivalent? Ergonomics. Sep 2008;51(9):1352-1375.
[doi: 10.1080/00140130802170387] [Medline: 18802819]

31. Touvier M, Méjean C, Kesse-Guyot E, et al. Comparison between web-based and paper versions of a self-administered
anthropometric questionnaire. Eur J Epidemiol. May 2010;25(5):287-296. [doi: 10.1007/s10654-010-9433-9] [Medline:
20191377]

32. SYP Dashboard. SUPSI - Sketch Your Pain. 2020. URL: https://syp.spslab.ch [Accessed 2024-08-19]
33. Luque-Suarez A, Falla D, Barbero M, et al. Digital pain extent is associated with pain intensity but not with pain-related

cognitions and disability in people with chronic musculoskeletal pain: a cross-sectional study. BMC Musculoskelet
Disord. Jul 30, 2022;23(1):727. [doi: 10.1186/s12891-022-05700-3] [Medline: 35906575]

34. Sketch Your Pain—tablet. SUPSI - Sketch Your Pain. 2020. URL: https://syp.spslab.ch/tablet [Accessed 2024-08-19]
35. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. Nov 1986;8(6):679-698.

[Medline: 21869365]
36. Barbero M, Cescon C, Schneebeli A, et al. Reliability of the pen-on-paper pain drawing analysis using different scanning

procedures. J Pain Symptom Manage. Feb 2024;67(2):e129-e136. [doi: 10.1016/j.jpainsymman.2023.10.019] [Medline:
37898312]

37. Abichandani D, Barbero M, Cescon C, et al. Can people with chronic neck pain recognize their own digital pain
drawing? Pain Physician. Mar 2020;23(2):E231-E240. [Medline: 32214308]

38. Leoni D, Falla D, Heitz C, et al. Test-retest reliability in reporting the pain induced by a pain provocation test: further
validation of a novel approach for pain drawing acquisition and analysis. Pain Pract. Feb 2017;17(2):176-184. [doi: 10.
1111/papr.12429] [Medline: 26992099]

Abbreviations
ICC: intraclass correlation coefficient
PD: pain drawing
RGB: red, green, and blue
SEM: standard error of measurement

Edited by Lorraine Buis; peer-reviewed by Mohamed Estai, Parisa Gazerani; submitted 26.09.2023; final revised version
received 22.04.2024; accepted 13.05.2024; published 27.08.2024

Please cite as:
Cescon C, Landolfi G, Bonomi N, Derboni M, Giuffrida V, Rizzoli AE, Maino P, Koetsier E, Barbero M
Automated Pain Spots Recognition Algorithm Provided by a Web Service–Based Platform: Instrument Validation Study

JMIR MHEALTH AND UHEALTH Cescon et al

https://mhealth.jmir.org/2024/1/e53119 JMIR Mhealth Uhealth 2024 | vol. 12 | e53119 | p. 12
(page number not for citation purposes)

https://doi.org/10.1002/ejp.1688
http://www.ncbi.nlm.nih.gov/pubmed/33113241
https://doi.org/10.1515/sjpain-2022-0098
http://www.ncbi.nlm.nih.gov/pubmed/36136613
https://doi.org/10.7759/cureus.20422
http://www.ncbi.nlm.nih.gov/pubmed/35047261
https://doi.org/10.2196/mhealth.8409
https://doi.org/10.2196/mhealth.8409
http://www.ncbi.nlm.nih.gov/pubmed/29848470
https://doi.org/10.2196/preprints.11412
https://doi.org/10.2196/36687
http://www.ncbi.nlm.nih.gov/pubmed/35749160
https://doi.org/10.2196/21475
http://www.ncbi.nlm.nih.gov/pubmed/33104012
https://doi.org/10.2196/humanfactors.5693
http://www.ncbi.nlm.nih.gov/pubmed/27440737
https://doi.org/10.1007/s11136-015-0937-3
http://www.ncbi.nlm.nih.gov/pubmed/25702266
https://doi.org/10.1080/00140130802170387
http://www.ncbi.nlm.nih.gov/pubmed/18802819
https://doi.org/10.1007/s10654-010-9433-9
http://www.ncbi.nlm.nih.gov/pubmed/20191377
https://syp.spslab.ch
https://doi.org/10.1186/s12891-022-05700-3
http://www.ncbi.nlm.nih.gov/pubmed/35906575
https://syp.spslab.ch/tablet
http://www.ncbi.nlm.nih.gov/pubmed/21869365
https://doi.org/10.1016/j.jpainsymman.2023.10.019
http://www.ncbi.nlm.nih.gov/pubmed/37898312
http://www.ncbi.nlm.nih.gov/pubmed/32214308
https://doi.org/10.1111/papr.12429
https://doi.org/10.1111/papr.12429
http://www.ncbi.nlm.nih.gov/pubmed/26992099
https://mhealth.jmir.org/2024/1/e53119


JMIR Mhealth Uhealth 2024;12:e53119
URL: https://mhealth.jmir.org/2024/1/e53119
doi: 10.2196/53119

© Corrado Cescon, Giuseppe Landolfi, Niko Bonomi, Marco Derboni, Vincenzo Giuffrida, Andrea Emilio Rizzoli, Paolo
Maino, Eva Koetsier, Marco Barbero. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org),
27.08.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work, first published in JMIR mHealth and uHealth, is properly cited. The complete bibliographic information, a
link to the original publication on https://mhealth.jmir.org/, as well as this copyright and license information must be included.

JMIR MHEALTH AND UHEALTH Cescon et al

https://mhealth.jmir.org/2024/1/e53119 JMIR Mhealth Uhealth 2024 | vol. 12 | e53119 | p. 13
(page number not for citation purposes)

https://mhealth.jmir.org/2024/1/e53119
https://doi.org/10.2196/53119
https://mhealth.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mhealth.jmir.org/
https://mhealth.jmir.org/2024/1/e53119

	Automated Pain Spots Recognition Algorithm Provided by a Web Service–Based Platform: Instrument Validation Study
	Introduction
	Methods
	Ethical Considerations
	Sketch Your Pain Platform
	Generation of Artificial PDs
	Color Analysis
	Area and Location Analysis
	Selection of Scanning Devices
	Image Processing
	Statistical Analysis

	Results
	Color Analysis
	Area and Location Analysis

	Discussion
	Principal Findings
	Limitations
	Conclusions



