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Abstract

Background: The COVID-19 pandemic prompted various containment strategies, such as work-from-home policies and reduced
social contact, which significantly altered people’s sleep routines. While previous studies have highlighted the negative impacts
of these restrictions on sleep, they often lack a comprehensive perspective that considers other factors, such as seasonal variations
and physical activity (PA), which can also influence sleep.

Objective: This study aims to longitudinally examine the detailed changes in sleep patterns among working adults during the
COVID-19 pandemic using a combination of repeated questionnaires and high-resolution passive measurements from wearable
sensors. We investigate the association between sleep and 5 sets of variables: (1) demographics; (2) sleep-related habits; (3) PA
behaviors; and external factors, including (4) pandemic-specific constraints and (5) seasonal variations during the study period.

Methods: We recruited working adults in Finland for a 1-year study (June 2021-June 2022) conducted during the late stage of
the COVID-19 pandemic. We collected multisensor data from fitness trackers worn by participants, as well as work and sleep-related
measures through monthly questionnaires. Additionally, we used the Stringency Index for Finland at various points in time to
estimate the degree of pandemic-related lockdown restrictions during the study period. We applied linear mixed models to examine
changes in sleep patterns during this late stage of the pandemic and their association with the 5 sets of variables.

Results: The sleep patterns of 27,350 nights from 112 working adults were analyzed. Stricter pandemic measures were associated
with an increase in total sleep time (TST) (β=.003, 95% CI 0.001-0.005; P<.001) and a delay in midsleep (MS) (β=.02, 95% CI
0.02-0.03; P<.001). Individuals who tend to snooze exhibited greater variability in both TST (β=.15, 95% CI 0.05-0.27; P=.006)
and MS (β=.17, 95% CI 0.03-0.31; P=.01). Occupational differences in sleep pattern were observed, with service staff experiencing
longer TST (β=.37, 95% CI 0.14-0.61; P=.004) and lower variability in TST (β=–.15, 95% CI –0.27 to –0.05; P<.001). Engaging
in PA later in the day was associated with longer TST (β=.03, 95% CI 0.02-0.04; P<.001) and less variability in TST (β=–.01,
95% CI –0.02 to 0.00; P=.02). Higher intradaily variability in rest activity rhythm was associated with shorter TST (β=–.26, 95%
CI –0.29 to –0.23; P<.001), earlier MS (β=–.29, 95% CI –0.33 to –0.26; P<.001), and reduced variability in TST (β=–.16, 95%
CI –0.23 to –0.09; P<.001).

Conclusions: Our study provided a comprehensive view of the factors affecting sleep patterns during the late stage of the
pandemic. As we navigate the future of work after the pandemic, understanding how work arrangements, lifestyle choices, and
sleep quality interact will be crucial for optimizing well-being and performance in the workforce.

(JMIR Mhealth Uhealth 2024;12:e53389) doi: 10.2196/53389
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Introduction

Background
Sleep is a crucial component of daily life, closely interconnected
with all aspects of our routines and overall well-being, including
mental health [1,2], physical health [3], and work performance
[4,5]. The COVID-19 pandemic profoundly impacted various
aspects of daily life, with sleep patterns being a particularly
significant area of concern. However, the effects on sleep were
often indirect, resulting from changes in daily routines and
lifestyle adjustments rather than being a direct consequence of
the virus.

In response to the pandemic, outdoor restrictions limited our
exposure to natural daylight, a crucial element for regulating
circadian rhythms and sleep patterns [6]. Similarly, mobility
restrictions altered daily physical activity (PA) patterns.
Additionally, workplace restrictions led to work-from-home
policies, which resulted in reduced mobility and flexible working
hours. While these changes led to more relaxed work schedules,
they also blurred the boundaries between professional and
personal life. Notably, factors such as daylight exposure, PA,
and work routines—each significantly affected by the
pandemic—are well-established influences on sleep health [7,8].

Traditional sleep measurements often rely on self-reported
methods, such as the Karolinska [9] or Pittsburgh sleep diary
[10]. While these methods are effective for tracking day-to-day
sleep over short periods, conducting diary studies over longer
intervals is generally not feasible due to the cognitive burden
on participants. Nonintrusive measurements using smartphones
and fitness trackers have recently emerged as a more viable
alternative for capturing sleep data over extended periods. While
consumer-grade devices may not precisely detect sleep stages,
they have shown promising results for measuring sleep onset,
duration, and wake-up time. Assessing sleep with these devices
has the advantage of capturing data in people’s natural living
environments, unlike sleep laboratories. Additionally, this
method is not subject to memory biases that can occur with
survey responses and sleep diaries.

The evolution of mobile health (mHealth) technologies has
significantly enhanced traditional sleep monitoring methods,
particularly through the use of wearable devices. These devices
offer a more accessible and less invasive way to monitor sleep
patterns, while also deepening our understanding of sleep-related
phenomena. For instance, wearable devices have been used to
determine individuals’ chronotypes and track their sleep and
activity rhythms over extended periods [11,12]. They have also
been used to measure sleep alignment between coworkers [13],
examine the relationship between sleep and burnout [14], and
assess sleep patterns in various populations, including patients
with mental disorders [15]. Several studies have confirmed the
validity and reliability of wearable devices, demonstrating
notable sensitivity compared with the gold-standard
polysomnography (PSG). For example, a review of 7 consumer
sleep-tracking devices [16] highlighted their high effectiveness
in detecting sleep relative to PSG. Similarly, a study [17]
evaluated 6 consumer wearable devices and validated their

accuracy in assessing sleep timing and duration compared with
PSG.

Prior research comparing sleep patterns before and during the
pandemic has revealed notable differences. Studies found that
following the pandemic’s onset, individuals tended to go to bed
later [18], slept for longer durations [19], exhibited reduced
variability between weekday and weekend sleep [20,21], and
experienced increased sleep disturbances or diminished sleep
quality [22]. Various factors have been identified as contributing
to these disruptions in sleep routines, including decreased PA
[23], social isolation [24], increased use of electronic devices
[4], and the shift to working from home [13].

While previous studies have focused on the immediate
consequences of lockdowns and restriction policies, less
attention has been paid to the long-term effects, particularly
during the late stages of the pandemic when restrictions began
to relax. This phase is crucial for understanding the residual
effects of the pandemic on sleep patterns and how quickly
individuals revert to their prepandemic sleep habits. The
transition to working from home as the default mode has resulted
in a less constrained work-life routine, leading to more flexible
sleep-wake schedules. Certain demographics may benefit more
from these transitions, such as individuals with more flexible
routines (eg, research personnel) or those who tend to snooze
their alarms after waking, referred to as “snoozers.”
Additionally, occupation is a known factor influencing sleep
patterns, with a classic example being the contrast between shift
workers and nonshift workers [25,26]. However, less is
understood about the differences between various roles within
academia, such as researchers with deadline-driven roles and
administrative personnel typically following a 9-to-5 schedule.
Therefore, a comprehensive, longitudinal analysis of sleep
patterns that includes these variables and extends into the late
stages of the pandemic is important.

Objectives
Our study aims to provide a holistic view of how the pandemic
has influenced sleep patterns. We evaluate the long-term
relationships between sleep patterns, including average and
variability in total sleep duration and sleep timing, alongside
individuals’characteristics (demographics, occupation, and PA)
and external factors (stringency of restriction policies and
seasonal variations). Our research utilizes longitudinal data
from fitness trackers and questionnaire responses collected from
working adults at a Finnish university. This extensive data set
enables us to examine shifts in sleep behavior during the later
stages of the COVID-19 pandemic, from June 2021 to June
2022. The study’s timeframe covers a full annual seasonal cycle,
which is crucial for analyzing sleep patterns in Finland, where
significant seasonal changes and daylight variations occur due
to its northern latitude.

Methods

Study Data
This work used data from the cor:ona (comparison of rhythms:
old vs. new) study [27] as part of a 1-year multimodal data set
of working adults.
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Ethics Approval
The study was approved by the Aalto University Research Ethics
Committee (approval number D/536/03.04/2021_COR_ONA).

Participants and Procedures
The cor:ona study recruited 128 full-time employees from a
university in Finland for a 1-year investigation into how their
daily activities changed during different stages of the COVID-19
pandemic. Throughout the study, participants wore a Polar Ignite
fitness tracker (Polar Electro Oy), enabling us to unobtrusively
collect various measures related to sleep and PA. In addition,
participants completed an initial baseline questionnaire, an exit
questionnaire, and a shorter version of the baseline questionnaire
each month. The monthly questionnaires asked for information
about their daily routines, work, and sleep quality over the past
month. The detailed recruitment procedure and participants’
demographics were described in a previous study [27].

Fitness Tracker Data

Sleep Measures
The fitness trackers measured bedtime (defined as the recorded
time when a person fell asleep), waketime (defined as the
recorded time when a person woke up), and interruption duration
(defined as the total time in seconds spent awake between sleep
start and end times) for each day. A sleep period was defined
as the longest sleep episode for each day. Sleep patterns were
measured using 4 metrics: (1) total sleep time (TST), which
measured the time a person spent asleep, calculated as the
duration from bedtime minus the interruption duration; (2)
midsleep (MS), the midpoint between bedtime and waketime,
which was used to measure sleep timing and computed as
(bedtime + TST)/2. Additionally, we proposed 2 other metrics
to measure sleep regularity: (3) TST variability, computed as
the SD of TST during weekdays (Sunday night to Thursday
night); and (4) MS variability, computed as the SD of MS during
weekdays. We focused exclusively on weekdays due to the
expected differences between weekday and weekend sleep
patterns. The Niimpy behavioral data analysis toolbox [28] was
used for extracting sleep measurements.

Physical Activity Measures
The fitness tracker recorded the number of steps taken each
hour, which were then summed to provide a daily step count.
To comprehensively account for daily PA patterns, including
their timing and distribution, we introduced 2 additional metrics:
midstep and intradaily variability (IV) [29]. These metrics are
designed to capture the timing and dispersion of PAs throughout
the day. Specifically, midstep represents the hour of the day
when half of the total number of steps is achieved, analogous
to MS in the context of PA. By contrast, IV quantifies the
fragmentation of the activity-rest rhythm and is measured as
follows:

where N=24 is the total number of samples within each day; Xi

is the i measurement sampled at P=60-minute interval; and 
is the average value of all samples in a day. Low IV indicates

less fragmented activity-rest rhythm, whereas high IV could
imply daytime naps or nighttime awakenings.

External Data
Seasonal data were collected from the World Weather Online
developer application programming interface [30]. Given the
significant variation in day length in Finland during the study
(up to 13 hours), day length was used as a proxy for seasonal
variables. The choice of day length as a proxy was motivated
by Friborg et al [31]. The study compared 2 geographically
distinct locations with substantial differences in day length
variability: Ghana and Norway. Although no noticeable seasonal
effects of day length were observed in Ghanaians, Norwegians
showed a delay in both bedtime and waketime during summer
weekdays, though sleep duration remained relatively unaffected.

We also utilized the Stringency Index (SI) [32], a composite
measure ranging from 0 to 100, to assess daily COVID-19
restriction policies. Higher values on this index indicate more
stringent COVID-19 restrictions, including measures such as
school and workplace closures, the cancellation of public events,
and the enforcement of stay-at-home orders. This index allows
for standardized comparisons of policy responses across
different countries or regions, as well as changes within the
same region over time.

Questionnaire Data
Upon entering the study, participants completed a baseline
questionnaire that collected basic background information,
including age, gender, chronotype, occupation, and origin,
among others. Chronotype was assessed using the reduced
Morningness-Eveningness Questionnaire (MEQ) [33], with
higher scores indicating a morning type and lower scores
indicating an evening type. For the origin-related question,
participants chose from 3 options: Finland, Europe (excluding
Finland), or outside of Europe. Participants indicating they were
from Finland were classified as Finnish, while those selecting
other options were described as having a “migrant background.”
Regarding occupation, participants specified whether they were
academic or service staff. The term “academic staff” refers to
individuals involved in academic and research activities within
the organization, while “service staff” includes those in roles
such as human resources and other administrative or support
functions. Participants were determined as a snoozer if they
answered “yes” to the following question: “Snoozing can be
considered as choosing to go back to sleep after an alarm has
awakened you intending to wake up later; setting the alarm
earlier than when you intend to wake up; or setting multiple
alarms with the intent to not wake up on the first alarm. Do you
currently consider yourself a snoozer using this definition?,” as
adapted from [34].

For the analysis of snoozer characteristics, we used the 2-item
Patient Health Questionnaire (PHQ-2) [35] and the short form
of the Pittsburgh Sleep Quality Index (PSQI) [10], averaging
the values collected from the monthly questionnaires.
Additionally, the short form of the Positive and Negative Affect
Schedule (PANAS-SF) [36] was used in the initial baseline
questionnaire.
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Data Exclusion and Preprocessing
Sleep data were restricted to the period from July 1, 2021, to
May 31, 2022. Because of our rolling recruitment process, which
started in mid-June 2021 and ended in June 2022, we excluded
data from June of both years. This exclusion was necessary
because we lacked complete data for these months, and
including partial data could have introduced bias. A standard
filter, adopted from [37], was applied to remove outliers in TST
(TST<3 hours and TST>13 hours). Participants with fewer than
30 recorded nights due to dropout or technical issues were
excluded. For gender-related analysis, nonbinary participants
(n=1) were excluded to preserve their privacy. To maintain the
interpretability of the relationships between sleep patterns and
the examined variables, we chose not to normalize the dependent
and independent variables.

Statistical Analysis
We used a logistic regression model to examine factors
predicting snoozing behavior. Using snoozing behavior as the
dependent variable, and to replicate the findings from [34], we
included the same set of independent variables: age, gender,
step count, TST, BIG-5 personality traits (openness,
conscientiousness, extraversion, agreeableness, and
neuroticism), PANAS-SF, PHQ-2, PSQI, and MEQ. To further
investigate the potential confounding effects of chronotype
(measured by MEQ) on the relationship between personality
traits and snoozing behavior, we conducted a Baron and Kenny
[38] mediation analysis.

Given the nature of our data set, which included repeated sleep
measurements for each participant, we used mixed effects linear
models [39] to analyze how sleep patterns and their regularity
evolve over time. The models included TST, MS, and the
variability of TST and MS as dependent variables. For models
with variability of TST and MS as dependent variables, the
numerical independent variables were averaged across
weekdays. We adopted a sequential modeling strategy, building
3 distinct models for each dependent variable. Model 1 included
basic characteristics such as chronotype, age, gender, origin,
occupation, and parenting cohabitation status (number of
children in the household). Model 2 extended model 1 by
adjusting for external factors such as the stringency of
restrictions and day length. Finally, model 3 built on model 2

by incorporating PA metrics, including step count, midstep, and
IV. This approach allows for the exploration of the unique
contributions of each new set of variables beyond those
accounted for in the previous model. All models included
hierarchical random effects for the study participants to account
for repeated measurements. The models are formulated as
follows:

Model 1: Yij = β0 + β1xij1 + β2xij2 +···+ β2xij7 + β8xij8

+ uj +  ij

Model 2: Yij = β0 + β1xij1 + β2xij2 +···+ β9xij9 + β10xij10

+ uj +  ij

Model 3: Yij = β0 + β1xij1 + β2xij2 +···+ β11xij11 +
β12xij12 + β13xij13 + uj +  ij

where the independent variables are xij1=age, xij2=gender,
xij3=number of children, xij4=origin, xij5=occupation, xij6=MEQ,
xij7=snoozer, xij8=free day, xij9=Stringency Index, xij10=day
length, xij11=steps(×1000), xij12=midstep, and xij13=step entropy.

95% CIs were reported using bootstrapping. The performance
of the model was compared using the likelihood ratio test (LRT)
to ensure model parsimony. All statistical analyses were
performed using R software (version 3.6.1; R Foundation) [40].
Linear mixed models were tested using the lme4 package [41],
and P values for these models were calculated using the
lmerTest package [42].

Results

Data Summary
In total, 112 users and 27,350 nights were included in the TST
and MS analyses. The models for the variability of TST and
MS used the weekday SD of both measures, which included
3682 observations. The average age of participants was 39.5
(SD 9.9) years. Of these 112 participants, 49 were academic
staff and 63 were service staff. Figure 1 presents the average
values of the 4 sleep metrics—TST, MS, and their corresponding
SDs—for each participant included in the analysis. Figure 2
illustrates the sleep patterns over time for 2 participants: 1 with
low variability and 1 with high variability in their sleep patterns.

JMIR Mhealth Uhealth 2024 | vol. 12 | e53389 | p. 4https://mhealth.jmir.org/2024/1/e53389
(page number not for citation purposes)

Luong et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. TST, MS, and their SDs of participants included in the analysis. Each dot represents the participant's mean value for the corresponding
metrics. MS: midsleep; TST: total sleep time.

Figure 2. Sleep data over time from two participants. Participant 1 (red line) demonstrates shorter, later, and more variable sleep compared to Participant
2 (blue line).
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Total Sleep Time
We begin by investigating the factors that influence TST using
the 3 linear mixed models described earlier. Table 1 presents
the results of these models predicting TST. For improved
interpretability, the rate of change in TST is expressed as the
estimate of the predictors multiplied by 60 minutes. In the full
model (model 3), an increase in age by 1 year was associated
with a 1.2-minute decrease in TST (95% CI –1.8 to –0.6;
P=.008). Regarding gender, males were found to sleep 20.4
minutes less than females (95% CI –33.0 to –7.8; P<.001).
Comparing occupations, service staff were found to sleep 22.2

minutes more than academic staff (95% CI 8.4-36.6; P=.004).
A detailed monthly breakdown of the variations in sleep pattern
measurements across different occupations is provided in
Multimedia Appendix 1. After adjusting for day length and the
SI, an additional hour of day length was associated with a
0.60-minute decrease in TST (95% CI –0.72 to –0.36; P<.001).
Conversely, a 1-point increase in the SI offset this decrease by
0.18 minutes (95% CI 0.06-0.30; P<.001). In the full model,
which included PA, a 1-unit increase in IV was associated with
a 15.6-minute decrease in TST (95% CI –17.5 to –13.8; P<.001).
Moreover, an additional hour in midstep was associated with a
1.8-minute increase in TST (95% CI 1.2-2.4; P<.001).

Table 1. Estimates of fixed effects from the linear mixed effects model predicting TSTa.

Model 3dModel 2cModel 1bPredictors

P valueeCIEstimatedP valueeCIEstimatedP valueeCIEstimated

.008f–0.03 to
–0.01

–0.02.002f–0.03 to
–0.01

–0.02.002f–0.03 to
–0.01

–0.02Age

<.001 g–0.55 to
–0.13

–0.34<.001g–0.55 to
–0.14

–0.34<.001g–0.55 to
–0.14

–0.34Gender (male)

.56–0.07 to
0.14

0.03.51–0.07 to
0.15

0.04.51–0.07 to
0.15

0.04Number of children

.93–0.24 to
0.24

0.01.97–0.27 to
0.27

0.01.97–0.27 to
0.27

0.01Origin (migrant back-
ground)

.004f0.14 to
0.61

0.37.01h0.11 to
0.60

0.36.01h0.11 to
0.60

0.36Occupation (service)

.79–0.20 to
0.22

0.30.60–0.04 to
0.02

–0.01.59–0.04 to
0.02

–0.01MEQ

.14–0.44 to
0.05

–0.18.11–0.44 to
0.05

–0.2.11–0.44 to
0.05

–0.2Snoozer (Yes)

<.001g0.06 to
0.11

0.08<.001g0.07 to
0.13

0.10<.001g0.07 to
0.13

0.10Free day (Yes)

<.001g0.001 to
0.005

0.003<.001g0.003 to
0.007

0.005———iStringency Index

<.001g–0.012 to
–0.006

–0.01<.001g–0.01 to
–0.01

–0.01———Day length

<.001g–0.01 to
0.01

–0.01——————Steps (×1000)

<.001g0.02 to
0.04

0.03——————Midsteps

<.001g–0.29 to
–0.23

–0.26——————Intradaily variability

aThe σ2 values for models 1-3 were 1.13, 1.13, and 1.1, respectively. The intraclass correlation coefficient values for models 1-3 were 0.19, 0.19, and

0.19, respectively. The marginal R2/conditional R2 values for models 1-3 were 0.055/0.234, 0.057/0.235, and 0.069/0.245, respectively. The Akaike
information criterion values for models 1-3 were 81,208.16, 81,154.98, and 80,783.26, respectively.
bIncludes demographic and occupational variables.
cIncludes model 1 + restriction and seasonal factors.
dIncludes model 2 + physical activity influences.
eItalicized values denote significance.
fP<.01.
gP<.001.
hP<.05.
iNot available.
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The marginal R2 values represent the proportion of variance

explained by the fixed effects, while the conditional R2 values
indicate the proportion of variance accounted for by both fixed

and random effects. The increase in both R2 values suggests
that more complex models, particularly model 3, explained a
greater proportion of the variance in the dependent variable.
The LRT between models 1 and 2 indicated that model 2 was

a significantly better fit (χ2
2=57.17; P<.001). Additionally, the

LRT between models 2 and 3 showed that model 3 provided a

significantly improved fit (χ2
3=377.72; P<.001). The

performance of the full model (model 3) was further supported
by the Akaike information criterion (AIC), which was lowest
for model 3 (AIC 80,783.26), indicating that it offered the most
optimal fit for the data.

Midsleep
Using the same approach, we developed 3 linear mixed models
to assess the associations between the same set of predictors
and MS. The results are presented in Table 2. To enhance
interpretability, the rate of change in MS is measured as the
estimate of the predictors multiplied by 60 minutes. Across all

3 models, chronotype (MEQ) (P<.001) and sleep on a free day
(P<.001) consistently emerged as significant factors. In the full
model (model 3), a 1-point increase in the MEQ was associated
with an 8.4-minute decrease in MS (95% CI –10.8 to –5.4;
P<.001). Sleep on a free day occurred 11.4 minutes later (95%
CI 9.6-12.6; P<.001) compared with a workday. After adjusting
for season and restriction policies, MS was delayed by 0.6
minutes (95% CI 0.6-1.2; P<.001) for each additional hour of
day length. A 1-point increase in the SI was associated with a
1.2-minute increase in MS (95% CI 1.2-1.8; P<.001). In the full
model, which included PA variables, a 1-unit increase in IV
was linked to a 17.4-minute earlier MS (95% CI –19.8 to –15.6;
P<.001). Similarly, an increase in step count was associated
with a 0.6-minute earlier MS (95% CI –1.2 to 0.0; P=.04).

The LRT between models 1 and 2 indicated that model 2 was

a better fit (χ2
2=443.70; P<.001). Additionally, the LRT between

models 2 and 3 showed that model 3 provided a significantly

improved fit (χ2
3=291.63; P<.001). The AIC value for model

3 was also the lowest (AIC 86,315.145), indicating that it
provided the best fit for the data.
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Table 2. Estimates of fixed effects from the linear mixed effects models predicting MSa.

Model 3dModel 2cModel 1bPredictors

P valueeCIEstimatedP valueeCIEstimatedP valueeCIEstimated

.56–0.02 to
0.01

–0.006.46–0.02 to
0.01

–0.01.38–0.02 to
0.01

–0.01Age

.49–0.19 to
0.38

0.11.43–0.17 to
0.40

0.12.39–0.16 to
0.41

0.13Gender (male)

.08–0.30 to
0.02

–0.14.02f–0.33 to
–0.02

–0.18.02f–0.33 to
–0.02

–0.1fNumber of children

.63–0.29 to
0.02

0.09.34–0.20 to
0.53

0.18.32–0.18 to
0.55

0.19Origin (migrant back-
ground)

.23–0.55 to
0.14

–0.21.29–0.52 to
0.15

–0.18.33–0.51 to
0.17

–0.17Occupation (service)

<.001g–0.18 to
–0.09

–0.14<.001g–0.18 to
–0.09

–0.14<.001g–0.18 to
–0.09

–0.14MEQ

.08–0.05 to
0.66

0.32.08–0.04 to
0.63

0.29.09–0.06 to
0.61

0.27Snoozer (Yes)

<.001g0.16 to
0.21

0.19<.001g0.18 to
0.24

0.21<.001g0.18 to
0.24

0.21Free day (Yes)

<.001g0.02 to
0.03

0.02<.001g0.02 to
0.03

0.02———hStringency Index

.002i0.00 to
0.01

0.01.048f0.00 to
0.01

0.00———Day length

<.001g–0.02 to
–0.01

–0.01——————Steps (×1000)

.43–0.00 to
0.01

0.00——————Midsteps

<.001f–0.33 to
–0.26

–0.29——————Intradaily variability

aThe σ2 values for models 1-3 were 1.38, 1.36, and 1.36, respectively. The intraclass correlation coefficient values for models 1-3 were 0.26, 0.26, and

0.27, respectively. The marginal R2/conditional R2 values for models 1-3 were 0.168/0.389, 0.178/0.400, and 0.179/0.400, respectively. The Akaike
information criterion values for models 1-3 were 86,990.188, 86,573.060, and 86,315.145, respectively.
bIncludes demographic and occupational variables.
cIncludes model 1 + restriction and seasonal factors.
dIncludes model 2 + physical activity influences.
eItalicized values denote significance.
fP<.05.
gP<.001.
hNot available.
iP<.01.

Total Sleep Time Variability
Table 3 presents the factors predicting the variability in TST.
Across the 3 models, age (P=.01), number of children (P=.03),
occupation (P<.001), and snoozing behavior (P=.006) emerged
as significant factors. In the final model (model 3), each
additional year of age was associated with a 0.01-unit increase
in TST variability (95% CI 0.00-0.01; P=.01). Notably,
participants with snoozing habits exhibited higher TST
variability, increasing by 0.15 units (95% CI 0.05-0.27; P=.006).
Each additional child was associated with a 0.06-unit reduction
in TST variability (95% CI –0.11 to –0.00; P=.03). Service staff

also demonstrated lower TST variability, with a reduction of
0.15 units compared with academic staff (95% CI –0.27 to
–0.05; P<.001). When accounting for PA, a decrease of 1 hour
in midsteps was correlated with a 0.01-unit increase in TST
variability (95% CI –0.02 to –0.00; P=.03), while a 1-unit
increase in IV was associated with a 0.16-unit decrease in TST
variability (95% CI –0.23 to –0.09; P=.03). The LRT indicated
that model 2 did not provide an improvement over the baseline

model (χ2
2=4.78; P=.09). However, model 3 demonstrated better

performance compared with the baseline model (χ2
5=31.95;

P<.001).
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Table 3. Estimates of fixed effects from the linear mixed effects model predicting TST variabilitya.

Model 3dModel 2cModel 1bPredictors

P valueeCIEstimatedP valueeCIEstimatedP valueeCIEstimated

.01f0.00 to
0.01

0.01.01f0.00 to
0.01

0.01.01f0.00 to
0.01

0.01Age

.060.00 to
0.21

0.10.03g0.01 to
0.21

0.11.038g0.01 to
0.21

0.11Gender (male)

.01g–0.11 to
–0.00

–0.06.052–0.11 to
0.00

–0.05.056–0.11 to
0.00

–0.05Number of children

.56–0.15 to
0.08

–0.03.54–0.15 to
0.09

–0.03.56–0.15 to
0.10

–0.03Origin (migrant back-
ground)

<.001h–0.27 to
–0.05

–0.15.004g–0.28 to
–0.05

–0.17.004g–0.28 to
–0.05

–0.17Occupation (service)

.60–0.01 to
0.02

0.57–0.01 to
0.02

0.55–0.01 to
0.02

0MEQ

.006f0.05 to
0.27

0.15.002f0.07 to
0.30

0.18.002 g0.07 to
0.30

0.18Snoozer (yes)

.08–0.00 to
0.01

0.16–0.00 to
0.01

0———iDaylength

.17–0.00 to
0.01

0.10–0.00 to
0.00

0———Stringency Index

.007g–0.01 to
0.00

–0.01——————Steps (×1000)

.02f–0.02 to
–0.00

–0.01——————Midsteps

.001h–0.23 to
–0.09

–0.16——————Intradaily variability

aThe σ2 values for models 1-3 were 0.24, 0.24, and 0.24, respectively. The intraclass correlation coefficient values for models 1-3 were 0.14, 0.14, and

0.14, respectively. The marginal R2/conditional R2 values for models 1-3 were 0.059/0.195, 0.060/0.194, and 0.068/0.200, respectively. The Akaike
information criterion values for models 1-3 were 5458.745, 5457.957, and 5436.793, respectively.
bIncludes demographic and occupational variables.
cIncludes model 1 + restriction and seasonal factors.
dIncludes model 2 + physical activity influences.
fP<.05.
gP<.01.
hP<.001.
iNot available.

eItalicized values denote significance.

Midsleep Variability
Table 4 presents the factors predicting the variability of MS.
Across the 3 models, the number of children (P=.004), snoozing
behavior (P=.01), midsteps (P=.008), and IV (P=.001) emerged
as significant factors. For each additional child, MS variability
was reduced by 0.10 units (95% CI –0.16 to –0.03; P=.004). In
all models, being a snoozer correlated with increased MS
variability. Specifically, snoozers experienced a 0.17-unit
increase in MS variability compared with nonsnoozers (95%
CI 0.03-0.31; P=.01). To better understand the characteristics

of snoozers, we conducted an analysis based on Mattingly et
al’s study [34]. Interestingly, our results revealed that age
(P=.02) and chronotype (P=.002) were significant factors in
predicting snoozing behavior. The full results are detailed in
Multimedia Appendix 2.

In the full model, including PA variables, midsteps also became
significant. Each hour increase in midsteps was associated with
a 0.02-unit decrease in MS variability (95% CI –0.04 to –0.00;
P=.008). However, the more complex models did not show a
significant improvement over the baseline model, as indicated

by the LRT (model 2: χ2
2=1.00; P=.60/model 3: χ2

5=10.17;
P=.07).
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Table 4. Estimates of fixed effects from the linear mixed effects model predicting MS variabilitya.

Model 3dModel 2cModel 1bPredictors

P valueeCIEstimatedP valueeCIEstimatedP valueeCIEstimated

.55–0.00 to
0.01

0.00.41–0.00 to
0.01

0.00.41–0.00 to
0.01

0.00Age

.17–0.04 to
0.22

0.09.12–0.03 to
0.23

0.10.12–0.03 to
0.23

0.10Gender (male)

.004g–0.16 to
–0.03

–0.10.01f–0.16 to
–0.02

–0.09f.01f–0.16 to
–0.02

–0.09Number of children

.45–0.20 to
0.09

–0.05.49–0.19 to
0.11

–0.05.49–0.19 to
0.11

–0.05Origin (migrant back-
ground)

.10–0.25 to
0.02

–0.11.11–0.25 to
0.02

–0.12.11–0.26 to
0.02

–0.12Occupation (service)

.94–0.02 to
0.02

0.00.98–0.02 to
0.02

0.00.96–0.02 to
0.02

0.00MEQ

.01f0.03 to
0.31

0.17.006g0.06 to
0.35

0.20.006g0.06 to
0.35

0.20Snoozer (yes)

.26–0.00 to
0.01

0.00.34–0.00 to
0.01

0.00———hDaylength

.89–0.00 to
0.00

0.00.94–0.00 to
0.00

0.00———Stringency Index

.41–0.01 to
0.01

0.00——————Steps (×1000)

.008g–0.03 to
–0.00

–0.02——————Midsteps

09–0.21 to
–0.02

–0.09——————Intradaily variability

aThe σ2 values for models 1-3 were 0.59, 0.59, and 0.59, respectively. The intraclass correlation coefficient values for models 1-3 were 0.09, 0.09, and

0.09, respectively. The marginal R2/conditional R2 values for models 1-3 were 0.034/0.120, 0.034/0.120, and 0.038/0.122, respectively. The Akaike
information criterion values for models 1-3 were 8679.371, 8682.369, and 8679.197, respectively.
bIncludes demographic and occupational variables.
cIncludes model 1 + restriction and seasonal factors.
dIncludes model 2 + physical activity influences.
eItalicized values denote significance.
fP<.05.
gP<.01.
hNot available.

Discussion

Principal Findings
In this study, we used a year-long longitudinal data set from
112 working adults and identified several significant
relationships between changes in sleep over time and various
factors, including restriction policies, seasonal changes, PA,
and sociodemographics. We found that more stringent
restrictions were associated with increased TST and delayed
MS. Additionally, seasonal factors played a notable role:
increased day length was linked to reduced TST and delayed
MS. Changes in work arrangements, particularly the shift to
remote work, directly impacted individuals based on their
occupations and sleep patterns. Academic personnel, with more
flexible schedules, slept less and exhibited greater variability
in TST compared with service personnel, who had more

structured work schedules. Additionally, individuals identified
as “snoozers” had more flexible sleep schedules with greater
variability in both TST and MS compared with nonsnoozers.
Moreover, activity patterns played a significant role: exercising
later in the day was associated with longer TST and reduced
variability in both TST and MS. To contextualize our findings
within the broader scope of sleep during the pandemic, the
following section details our results and compares them with
previous studies.

Demographic Factors
Previous research has highlighted several epidemiological
factors affecting sleep patterns, notably, age, gender, and
chronotype. Consistent with previous studies, we found that
older individuals tend to sleep less [43,44]. However, our
findings reveal a correlation between older age and increased
TST variability, which contrasts with prior results [45]. The
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variance in the observed correlations may be due to our study
using objective sleep measures, while [45] relied on self-reported
data. Additionally, we found no significant association between
MS variability and age. Regarding gender differences, our study
shows that males tend to have shorter and less consistent TST
compared with females. While the shorter TST among males
is well-documented [46,47], evidence regarding gender disparity
in TST variability is inconsistent. For instance, an actigraphy
study on a middle-aged cohort found that females exhibited
greater TST variability than males [48]. Conversely, a
survey-based study on university students [49] reported no
gender differences in TST variability. Additionally, our study
observes that parental duties significantly impact sleep patterns.
Parents typically exhibited earlier sleep times and more
consistent TST and MS than nonparents. The underlying reasons
for these observations remain uncertain, but one hypothesis is
that parents’ sleep/wake schedules are more stable due to the
need to synchronize their sleep patterns with those of their
children. While the specific relationship between parenting and
sleep pattern variability has not been extensively studied,
research on cohabitation suggests that living with others can
influence sleep patterns by reducing variability in sleep timing
and duration [50,51]. This context highlights how factors related
to shared living arrangements, such as parenting, can contribute
to greater sleep pattern regularity.

Snoozing Behavior
We observed higher variability in TST and MS among
individuals identified as “snoozers.” Interestingly, younger
individuals and those with an evening chronotype are more
likely to be “snoozers,” suggesting an interplay between age,
chronotype, and snoozing habits. The natural sleep-wake
patterns associated with an individual’s chronotype may
influence their tendency to snooze alarms. Morning types, who
wake up earlier, might not feel the need to snooze as much
because their schedules align better with societal norms, in
contrast to evening types.

Clinically, snoozing can be linked to prolonged sleep inertia, a
state of reduced alertness upon waking [52]. Morning types
(with high MEQ scores) may be less prone to snoozing and thus
avoid significant sleep inertia, potentially leading to better
alertness and performance. Conversely, evening types who
snooze might experience greater sleep inertia, which could
present additional challenges, such as managing increased work
demands.

Occupational Factors
We found that academic staff have shorter and more variable
TST compared with service staff, and also exhibit greater
variability in MS. The flexible and deadline-driven nature of
academic schedules may contribute significantly to these
irregular sleep patterns. As academics frequently adjust their
schedules to meet project deadlines or prepare lectures, the
dynamic nature of their workload can disrupt regular sleep
patterns. Additionally, the intellectual and creative demands of
academic work often extend beyond the traditional 9-5 workday,
further contributing to irregular sleep schedules.

Nonetheless, it is noteworthy that increased variability in sleep
patterns might impact overall health and well-being. For
instance, studies using actigraphy have found that higher TST
variability is associated with an increase in depressive symptoms
[53,54]. These implications become even more significant in
the context of the COVID-19 pandemic. The shift to remote
working and learning may introduce greater flexibility for
academic personnel. Although this flexibility allows for more
control over schedules, it may also blur the boundaries between
work and personal life, potentially leading to longer work hours
and more irregular sleep patterns.

Restriction Policies
The influence of lockdown measures during the pandemic on
sleep patterns is well documented, with increased TST and later
MS observed during lockdown periods [18,21,22]. Our findings
further reinforce previous evidence at a more granular scale. In
a more detailed analysis using the SI to measure lockdown
severity, Ong et al [55] found that a higher SI was correlated
with later and more variable MS. Contrary to Ong et al’s
findings, our study did not find a correlation between the SI and
the variability of MS. However, it is important to note the
methodological differences between our studies: while Ong et
al [55] conducted their correlation measurements on a monthly
basis, our analysis was performed at a weekly level. These
differences in granularity may account for the contrasting results.

Although not closely examined in this study, we postulate that
the side effects of restriction policies might significantly impact
sleep. Prolonged periods of staying at home could induce stress,
potentially increasing the prevalence of insomnia [56].
Furthermore, loneliness due to self-isolation could further
worsen sleep quality [57]. Despite these adverse effects,
restriction policies have also had positive aspects. The shift to
remote work persists, as postpandemic workplace policies
increasingly encourage hybrid and remote work [58]. This
change allows for greater flexibility in daily schedules,
potentially leading to improved and longer sleep.

Seasonality
Seasonal factors, such as day length, have been shown to
influence sleep patterns, including sleep duration and timing
[59,60]. Longer daylight hours during summer may encourage
longer waking periods, while shorter days in winter can disrupt
melatonin production, potentially leading to extended sleep
duration. Additionally, these seasonal shifts align with changes
in social schedules, such as holidays, which can further affect
regular sleep routines. In southern Finland, where day length
can vary by up to 13 hours between summer and winter, these
influences might be more pronounced. It is possible that reduced
exposure to natural daylight, due to limited mobility during the
pandemic, could have altered the effect of day length on sleep.

Physical Activity
The connection between PA and sleep has been extensively
studied [61-63]. While regular PA is generally recommended
for promoting good sleep, it is crucial to recognize that PA is
a multifaceted behavior with various elements—such as
duration, timing, and intensity—that can each influence sleep
differently [61]. Therefore, investigations into the relationship
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between sleep and PA should consider these diverse aspects of
PA.

When considering the timing of PA and its effect on sleep, our
findings indicate that engaging in PA later in the day is
associated with longer TST and reduced variability in both TST
and MS. This supports previous research, such as a review by
Youngstedt et al [63], which suggested that exercising later in
the day can be beneficial for sleep. Similarly, a survey study
found that engaging in light- to moderate-intensity workouts
early in the evening may have beneficial effects on sleep [64].
The impact of PA’s intensity on sleep could potentially modify
the effects of its timing. Sleep hygiene guidelines suggest that
vigorous exercise late at night may increase arousal and
subsequently impair sleep quality [65]. However, recent research
challenges this convention. For instance, Myllymäki et al [66]
conducted a study under controlled laboratory conditions and
found that exercise performed 4 hours before bedtime did not
disturb sleep. Furthermore, a review by Stutz et al [67] suggested
that evening exercise does not necessarily adversely impact
sleep, although exercising less than an hour before bedtime
could potentially disrupt sleep.

In addition to the volume and timing of PA, we found that the
fragmentation of activity rhythms, measured by IV, significantly
predicted sleep patterns. Our finding of a negative association
between IV and TST reinforces previous research [68], which
suggests that greater fragmentation in daily PA is linked to
shorter sleep duration. Additionally, the novel associations
between IV and MS, as well as the variability of TST, contribute
new insights into the study of activity rhythms and sleep
patterns.

By leveraging longitudinal data from fitness trackers, our study
highlights the potential of mHealth to offer deeper insights into
behavioral health patterns, especially regarding how lifestyle
changes during the pandemic have impacted sleep. This
integration of mHealth approaches in sleep research exemplifies
how technological advancements can enhance our understanding
and interventions in public health.

Limitations
This work has several unavoidable limitations. First, the absence
of baseline data from the prepandemic period limits our study,
preventing a comparison of sleep patterns and quality before
and during the later stages of the pandemic. Second, the study
was conducted among university staff, leading to a
nonrepresentative sample that may introduce bias and result in
a limited sample size. The relatively small sample size may

have contributed to the wide CIs observed, indicating that the
precision of our estimates could be improved. Consequently,
our findings should be interpreted with caution, especially when
generalizing to a broader population. Third, although we
attempted to control for all known factors affecting sleep, there
may still be unaddressed confounding variables. Fourth, we
used consumer-grade wearables for data collection, which,
despite their accessibility, may not provide the same accuracy
and reliability as professional-grade equipment. Fifth, recall
bias in self-reported measures is an inherent challenge. However,
we addressed this issue by using validated questionnaires and
conducting monthly data collection to minimize recall intervals.
Finally, the study’s geographical limitation restricts the
generalizability of our findings to other cultural or social
contexts.

Future Directions
One possible future research direction is to further investigate
the relationship between snoozing behavior and specific
demographics, such as age, to identify potential causative
factors. For example, a case-control study could be conducted
to compare individuals who frequently snooze with those who
rarely or never do, across various age groups. This approach
would enable a detailed examination of how snoozing behavior
varies with age, while controlling for potential confounding
variables.

Conclusions
Our study, through a holistic approach, provided insights into
the changes in sleep patterns and PA levels among working
adults during the late stages of the COVID-19 pandemic. The
flexible working hours during the pandemic led to corresponding
flexibility in sleep patterns in certain occupations and sleep
traits, particularly among individuals who self-identified as
snoozers. Our findings underscore the significant impact of
lifestyle habits on sleep health, particularly during
unprecedented times like a global pandemic. Moving forward,
it is essential to further investigate changes in sleep patterns
across diverse populations. Such research will help inform
workplace policies in the postpandemic era, considering the
potential benefits and challenges of remote work. One notable
advantage to consider is the increased amount of sleep that
workers may experience, potentially enhancing overall
efficiency and productivity. As we navigate the future of work,
understanding the interplay between work arrangements,
lifestyle choices, and sleep quality will be essential for
promoting optimal well-being and performance in the workforce.
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