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Abstract

Background: Longitudinal monitoring of vital signs provides a method for identifying changes to general health in an individual,
particularly in older adults. The nocturnal sleep period provides a convenient opportunity to assess vital signs. Contactless
technologies that can be embedded into the bedroom environment are unintrusive and burdenless and have the potential to enable
seamless monitoring of vital signs. To realize this potential, these technologies need to be evaluated against gold standard measures
and in relevant populations.

Objective: We aimed to evaluate the accuracy of heart rate and breathing rate measurements of 3 contactless technologies (2
undermattress trackers, Withings Sleep Analyzer [WSA] and Emfit QS [Emfit]; and a bedside radar, Somnofy) in a sleep laboratory
environment and assess their potential to capture vital signs in a real-world setting.

Methods: Data were collected from 35 community-dwelling older adults aged between 65 and 83 (mean 70.8, SD 4.9) years
(men: n=21, 60%) during a 1-night clinical polysomnography (PSG) test in a sleep laboratory, preceded by 7 to 14 days of data
collection at home. Several of the participants (20/35, 57%) had health conditions, including type 2 diabetes, hypertension, obesity,
and arthritis, and 49% (17) had moderate to severe sleep apnea, while 29% (n=10) had periodic leg movement disorder. The
undermattress trackers provided estimates of both heart rate and breathing rate, while the bedside radar provided only the breathing
rate. The accuracy of the heart rate and breathing rate estimated by the devices was compared with PSG electrocardiogram-derived
heart rate (beats per minute) and respiratory inductance plethysmography thorax-derived breathing rate (cycles per minute),
respectively. We also evaluated breathing disturbance indexes of snoring and the apnea-hypopnea index, available from the
WSA.

Results: All 3 contactless technologies provided acceptable accuracy in estimating heart rate (mean absolute error <2.12 beats
per minute and mean absolute percentage error <5%) and breathing rate (mean absolute error ≤1.6 cycles per minute and mean
absolute percentage error <12%) at 1-minute resolution. All 3 contactless technologies were able to capture changes in heart rate
and breathing rate across the sleep period. The WSA snoring and breathing disturbance estimates were also accurate compared

with PSG estimates (WSA snore: r2=0.76; P<.001; WSA apnea-hypopnea index: r2=0.59; P<.001).

Conclusions: Contactless technologies offer an unintrusive alternative to conventional wearable technologies for reliable
monitoring of heart rate, breathing rate, and sleep apnea in community-dwelling older adults at scale. They enable the assessment
of night-to-night variation in these vital signs, which may allow the identification of acute changes in health, and longitudinal
monitoring, which may provide insight into health trajectories.
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Introduction

Background
Vital signs measured in clinical practice include heart rate,
breathing rate, blood pressure, and body temperature. These
serve as objective measurements of normal physiological
functions and play a fundamental role in the assessment of health
[1,2]. With aging, there is an increased incidence of functional
limitations and chronic conditions, including hypertension,
coronary heart disease, stroke, type 2 diabetes, and sleep apnea.
More than 65% of adults aged ≥65 years report multimorbidity.
The presence of uncontrolled comorbidities reduces the quality
of life; leads to loss of independence; and increases the incidence
of falls, hospitalization, and mortality [3-6].

Standardized, continuous vital signs monitoring systems, when
implemented for at-home monitoring and care of older adults,
including people living with dementia, can serve as an important
tool for early identification of changes in health, improve care
in older people, and reduce the burden on the health care system
[7-10]. Commercially available wearable devices (wearables)
and contactless technologies (nearables) are increasingly used
for home monitoring and have the potential to enable remote
health monitoring and promote independent living [11-18].
These technologies offer secure digital infrastructure that allows
reliable and seamless transfer of collected data to cloud servers
and can facilitate long-term remote monitoring opportunities
for health care.

Wearables are widely used for continuous, at-home monitoring
of heart rate, and some have been evaluated in-laboratory
settings, predominantly in younger age groups [17-25]. Although
several wearables have been shown to be acceptable for older
adults, lower technology adoption rate; user comfort trade-off;
and burden of maintenance (eg, removal during some daily
activities such as showers, periodic recharging, and mobile app
use) may make them unsuitable for long-term use in people
with cognitive impairment due to their associated behavioral
and psychological symptoms [23,26].

Contactless technologies can be embedded in the living
environment such as under the bed mattress (undermattress
devices or bed sensors) or on the bedside table (eg, bedside
radars) and allow contactless monitoring when the user is in
bed [27]. They are powered by the mains and securely stream
the collected data wirelessly. They use several contactless
sensing modalities to measure a composite signal
(ballistographic signal) containing movements resulting from
breathing and cardiac activity to extract vital signs (heart rate
and breathing rate) information. The bedside radars use the
Doppler radar technique, while the undermattress devices use
several technologies, such as electromechanical films and

pneumatic sensors [27,28]. Due to their inconspicuous nature
and low maintenance, they do not pose any of the burdens
imposed by wearables and are an ideal tool for continuous
monitoring of vital signs, behavioral information, and sleep in
community-dwelling older adult populations with long-term
conditions and in people living with dementia [13,14,29,30].

Objective
To realize the potential of contactless technologies for
monitoring vital signs such as heart rate and breathing rate in
the community, the validity of their measurements needs to be
evaluated in relevant populations. While the validity of the heart
rate and breathing rate estimates collected from a few contactless
technologies has been evaluated in younger populations, to the
best of our knowledge, there are no vital signs evaluation studies
in older adults (aged >65 years) although these devices have
been implemented in longitudinal studies [13,29,31-33]. Here,
we evaluated the validity of heart rate and breathing rate
measurements collected from 3 contactless technologies (a
bedside radar and 2 undermattress devices) against
polysomnography (PSG) electrocardiogram (ECG)-derived
heart rate and respiratory inductance plethysmography thorax
(RIP thorax)-derived breathing rate in a laboratory setting.
Throughout this paper, we have used the term vital signs to
denote heart rate or breathing rate and vice versa. The evaluation
addresses aspects of overnight average estimates; the ability to
capture overnight trends; variability in heart rate and breathing
rate; and accuracy at different sleep stages and time resolutions
(60-, 10-, and 1-minute intervals) of estimates. We also discuss
the data collection reliability in a home environment and
summary estimates of breathing disturbance from the devices.
To enhance the relevance of this study, we applied liberal
inclusion and exclusion criteria for the participant selection,
such that several participants had comorbidities that were
representative of the general older population.

Methods

Cohort Characteristics
The study data were collected at home for a period of 7 to 14
days, followed by an overnight laboratory session (with full
PSG) at the Surrey Sleep Research Centre in 2 cohorts (cohort
1: n=18, from January to March 2020; cohort 2: n=17, from
June to November 2021). The participant group consisted of 35
individuals (men: n=21, 60%) aged between 65 and 83 (mean
70.8 SD 4.9) years. The participants were identified and
recruited through the Surrey Clinical Research Facility. All
participants attended an in-person screening visit, during which
a range of assessments were completed. These included medical
history (self-reported), the Pittsburgh Sleep Quality Index, the
International Consultation on Incontinence
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Questionnaire-Urinary Incontinence, intermediate activities of
daily living questionnaire, and the Epworth Sleepiness Scale.
The vital signs (heart rate, breathing rate, blood pressure, and
temperature) were also collected and reviewed to determine
inclusion in the study. To ensure the ecological validity of the
collected data in this population, participants with stable
comorbidities such as hypertension, type 2 diabetes, arthritis,
and so on, were included in the study if their comorbidity and
concomitant medications were stable and were not considered
to pose a safety risk. Eligible participants had to be able to
independently perform activities of daily life, as assessed by
the intermediate activities of daily living questionnaire, and
comply with study procedures. Participants were provided with
detailed information about the study and provided written
informed consent before any study procedures were performed.
A detailed description of the inclusion and exclusion criteria
can be found in our previous publications, in which we evaluated
the ability of these technologies to estimate sleep timing in the
home environment and sleep stages as defined by PSG [34,35].

Ethical Considerations
The study received a favorable opinion from the University of
Surrey Ethics Committee (UEC-2019-065-FHMS) and was
conducted in line with the Declaration of Helsinki and the
principles of Good Clinical Practice. Potential participants were
given detailed information about the study protocol, and they
provided written informed consent before any study procedures
were performed. Complete details of the study, along with the
data management, privacy, and confidentiality measures, are
discussed in the protocol [36].

Study Protocol
The undermattress devices (Withings Sleep Analyzer [WSA];
Withings] and Emfit QS; Emfit Ltd) were deployed both in the
laboratory and at home, while the bedside radar (Somnofy;
VitalThings) was only used in the laboratory. The participants
also used an actigraphy device (Actiwatch Spectrum [AWS];
Philips Respironics) and maintained a consensus sleep diary at
home [37]. During the home deployment period, the contactless
technologies did not require any manual intervention or
maintenance by the participants, and the data was transmitted
automatically via Wi-Fi. To ensure the anonymity of the data,
no personally identifiable participant information was added to
the device applications, and a portable Wi-Fi router was used
for data transfer. The contactless devices remained active and
collected data continuously for the entire period of the study.
The participants wore AWS on their nondominant hands
throughout the study period, removing them briefly in scenarios
that could lead to the device becoming wet. AWS data have
been reported elsewhere [34].

After the home data collection period, 1 overnight full clinical
PSG recording was conducted, which included an extended
time in bed of 10 hours. On average, the participants slept
385.97 (SD 65.67) minutes in the sleep laboratory as measured
via PSG and 405.96 (SD 84.00) minutes as measured via
consensus sleep diary at home [34,35]. The WSA was used in
both cohort 1 and cohort 2, while the Somnofy and Emfit were
deployed only in cohort 2. The data from the contactless
technologies were collected simultaneously along with PSG in

the laboratory and with AWS and sleep diary at home. Empatica
E4 (Empatica Srl), a wrist-worn device that collects activity
and photoplethysmography, was also deployed during the
laboratory session, and our evaluation of this device is reported
elsewhere [26]. All devices and PSG data were collected for
the entire 10-hour in-bed period in the laboratory. A detailed
description of the study protocol is given in the protocol [36].

The Reference Vital Signs Data
During the in-laboratory session, PSG data were collected using
the SomnoHD system (SOMNOmedics GmbH). The collected
data included electroencephalography (256 Hz; F3-M2, C3-M2,
O1-M2, F4-M1, C4-M1, and O2-M1); ECG (modified lead II
subclavicular electrode placement; 256 Hz); RIP thorax and
abdomen (128 Hz); photoplethysmography (128 Hz);
electromyography (256 Hz, both submental and limb); and
electrooculography (256 Hz; E2-M1 and E1-M2). In addition,
data on the snore sensor (256 Hz) and airflow via nasal cannula
and flow thermistor (128 Hz) were also collected. Sleep was
scored at 30-second intervals in the Domino software
environment as per American Academy of Sleep Medicine
(AASM) guidelines by 2 independent scorers (a registered
polysomnographic technologist and a trained scorer), and a
consensus hypnogram was generated [38]. The sleep hypnogram
contains 5 stages: rapid eye movement (REM), stage 1 of
non-REM sleep (N1), stage 2 of non-REM sleep (N2), stage 3
of non-REM sleep (N3), and wake. The apnea-hypopnea index
(AHI; number of apnea/hypopnea events per hour) and period
limb movement index (PLMI; number of period limb movement
events per hour) were determined by the Registered
Polysomnographic Technologist using scoring rules
recommended by AASM. An apnea was scored when there was
a ≥90% drop in airflow lasting for at least 10 seconds, while a
hypopnea was scored using the 3% drop in oxygen saturation
and an arousal in the electroencephalogram criteria. The severity
of apnea was determined using the following thresholds as per
AASM guidelines: AHI score of <5 (normal), 5 to <15 (mild
apnea), 15 to <30 (moderate apnea), and ≥30 (severe). A
periodic limb movement event was scored when at least 4
consecutive limb movements occurred, each separated from the
preceding limb movement by at least 5 seconds but not more
than 90 seconds apart. PLMI of >15 seconds is used as the cutoff
for the presence of periodic limb movement disorder [39,40].
In addition, participants with cardiac arrhythmia were identified
using the arrhythmia index generated by the Domino software
and verified by visual inspection of the record.

The PSG data were exported as standard EDF+ files along with
recording markers and the consensus hypnogram. The ECG
from the PSG was used for the extraction of the heart rate
reference data, while the RIP thorax was used as the breathing
rate reference data. For one of the participants in whom RIP
thorax was unavailable, RIP abdomen was used to create the
breathing rate reference data. MATLAB 2021b was used for
all data analyses reported. The RR intervals used for the
computation of the heart rate were derived from the ECG using
the PhysioNet cardiovascular signal toolbox and a
well-evaluated beat detection toolbox [41,42]. This beat-to-beat
information was used to estimate reference heart rate (beats per
minute [bpm]) at 30-second intervals, which is the same as the
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PSG hypnogram. For extracting the breathing rate (cycles per
minute [cpm]) from the RIP thorax signal at 30-second intervals,
the RRest package was used [43,44].

Contactless Technologies: Data Overview
The WSA and Somnofy data (json format) were downloaded
using the respective manufacturer’s application programming
interface, while the Emfit data (CSV format) were downloaded
from the manufacturer’s web interface. All the compared
contactless technologies (WSA, Emfit, and Somnofy) provided
breathing rate data, while only the undermattress devices (WSA
and Emfit) provided heart rate data.

The devices provided vital signs (heart rate and breathing rate)
data and sleep hypnograms at different resolutions (WSA: 60
seconds; Emfit and Somnofy: 30 seconds). The WSA and
Somnofy heart rate and breathing rate estimations were available
at 60 and 30-second resolutions (same as the respective device
hypnogram resolution), while the Emfit estimated heart rate at
a 4-second resolution. These 4-second estimates were averaged
to generate estimates at 30-second intervals to match the Emfit
sleep label intervals. To allow data analysis relative to local
time, daylight savings correction was applied to the Coordinated
Universal Time timeseries generated by the devices. The sleep
hypnograms generated by the devices contain 4 stages: deep
sleep (DS=N3), light sleep (LS=N2/N1), REM, and wake.

Apart from heart rate and breathing rate, Emfit generates
continuous heart rate variability and activity measures, while
Somnofy provides the estimates of movement and environmental
variables such as ambient light, sound, temperature, pressure,
humidity, and indoor air quality, which were out of scope for
this evaluation and are not discussed here.

Both at home and in the laboratory, all devices were connected
to the same network, and the devices used the manufacturer’s
time synchronization protocol such as network time protocol
to timestamp the data. Although this ensured that the devices
were synchronized to local time, we performed another
synchronization step to allow an accurate comparison of the
data between the devices. The device vital signs measures were
aligned to the PSG reference vital signs estimates via
cross-correlation between the device and PSG vital signs and
hypnograms, and the lag (within a 5-minute window) that
provided the best alignment of both the vital signs data and
hypnograms was then applied. The WSA data were converted
from 60- to 30-second intervals by upsampling. Epochs in the
PSG and device hypnograms that were scored as artifacts or no
presence were excluded from the assessment.

Vital Signs Assessment

Overview
The evaluation of the epoch-by-epoch heart rate and breathing
rate data collected by the contactless technologies was
performed against reference estimates derived from PSG ECG
and RIP thorax. The accuracy and reliability of the heart rate
and breathing rate estimates were performed at different levels
of time resolution to determine use cases in which the
contactless technologies can be used. These include accuracy
assessment of overnight average estimates; ability to capture

overnight trends; variability in vital signs; and accuracy in
different sleep stages and at different time resolutions (60-, 10-,
and 1-minute intervals) of estimates. All laboratory data analyses
were performed over the total recording period of the PSG. At
all temporal resolutions of comparisons, only complete or valid
pairs of estimates were used.

Performance Measures
To assess the accuracy of the vital signs estimates (heart and
breathing rates), mean absolute error (MAE) and mean absolute
percentage error (MAPE) were used as the primary metrics.
MAE and MAPE are used to measure the error in the estimate
between the device and the PSG reference vital signs.
Bland-Altman metrics such as minimum detectable change
(MDC), bias, and limits of agreement (LoA) were also computed
to provide an overview of the agreement of the estimates and
to allow comparison with the evaluations reported in the
literature [45,46]. All the measures are reported with 95% CIs.
MDC is the smallest change in the estimate that can be detected
by the device that exceeds the measurement error. It is equal to
half the agreement width [47],

MDC = (LoAUpper bound – LoALower bound) / 2 (1)

We used intraclass correlation (ICC) with 2-way random effects
to measure the reliability of measurement and standardized
absolute difference, a directionless Cohen d, described by
Guruswamy Ravindran et al [35] and Haghayegh et al [47], for
measuring the dispersion in the bias. All ICC values (range 0-1)
were estimated with α of .05; ranges used for interpretation
were as follows: ICC<0.5 (poor), ICC=0.5 to 0.75 (moderate),
and ICC>0.75 (good reliability). Apart from the above metrics,

the coefficient of determination (r2, a measure of how close the
measured estimates are to the reference, computed using simple
linear regression) was also used for the concordance analysis.
For estimating the significance of differences between vital
signs during different sleep stages, devices, and time courses,
we used ANOVA followed by linear mixed effects models with
the different groups (devices, sleep stages, and time) as fixed
effects (with interactions) and participant as a random effect.
MATLAB 2021b was used for all statistical analyses.

Acceptable Agreement for Heart Rate
The satisfactory level of agreement between the PSG reference
heart rate and the device-determined heart rate was set to an
error of 10% or +5 or –5 bpm as recommended by the
Association for the Advancement of Medical Instrumentation
[42,48].

Acceptable Agreement for Breathing Rate
For breathing rate, to the best of our knowledge, no
device-specific satisfactory level of agreement is discussed in
the literature. Hence, the agreement in breathing rate estimates
between human observers is used to set the acceptable level for
our evaluation. We set the permissible level of error in breathing
rate estimation to be +4 or –4 cpm, as reported by Lim et al
[49].

Breathing Disturbance Estimates
Apart from epoch-by-epoch heart rate and breathing rate, WSA
also provides a “snoring” signal, which is a binary variable
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depicting snore presence detected by the device. In addition,
the WSA also provides the summary estimates of snoring
duration (WSA snore), breathing disturbance intensity (WSA
breathing disorder index [BDI]), and AHI (WSA AHI). The
Emfit and Somnofy devices do not generate breathing
disturbance measures. Only complete or valid pairs of estimates
were used to analyze the summary measures. For WSA BDI
and AHI estimates, we explored the relationship between them
and the concordance of these WSA estimates to the PSG AHI
in the laboratory.

For the WSA snore estimates, we explored the concordance of
the all-night snore duration estimated by the PSG snore sensor
(ie, PSG snore microphone placed on the side of the neck) and
the WSA. The PSG snore sensor data were scored by the
Somnomedics Domino software using 30 dB as the snore
amplitude threshold and a minimum snore duration of 300 ms.
We further explored the differences in the snore intensity as
measured by the PSG snore sensor for the epochs determined
to contain snore events by the WSA, followed by an exploration
of the distribution of the snore events during the different sleep
stages.

Results

Characteristics of the Study Population
Of the 35 participants, more than half of the participants (n=20,
57%) reported comorbidities, including type 2 diabetes, obesity,
arthritis, and hypertension, with concomitant medication. In
this study population, the mean heart rate was 62.2 (SD 8.9)
bpm (men: n=21, 60%; mean 60.6, SD 9.3 bpm; women: n=14;
64.4, SD 7.8 bpm), and mean breathing rate was 14.7, SD 2.9
cpm (men: 14.6, SD 2.9 cpm; women: 14.7, SD 3.0 cpm), as
assessed from the overnight laboratory PSG. The average BMI

of the participants was 27.0 (SD 4.8) kg/m2, with 17% (n=6,
BMI >30) being obese. The mean systolic and diastolic blood
pressures measured during screening were 148.7 (SD 16.2)
mmHg and 87.0 (SD 9.6) mmHg, respectively. During the
clinical PSG, it emerged that 95% (n=33) of the participants in
the study had some degree of apnea. Of the participants with
apnea, 8 (23%) had severe (AHI>30), 9 (26%) had moderate
(AHI=15 to <30), and 16 (46%) had mild apnea (AHI=5 to
<15). A total of 10 (29%) participants had PLMI>15, which is
similar to the prevalence of periodic limb movement syndrome
in community-dwelling older adults [50,51]. Some form of
cardiac arrhythmia was found in 51% (n=18) of the participants,
with 29% (n=10) of them also having severe or moderate apnea.
A detailed description of the population characteristics can be
found in the study by Ravindran et al [34].

Overview of Vital Signs Data

Example Case
An example of vital sign data collected by WSA for 14 days at
home followed by 1 day in the laboratory is shown in Figure 1.
The participant had moderate apnea with an AHI of 24.1
events/hour, as determined by the clinical PSG during the
laboratory visit (day 0). The raster plot (Figure 1A) shows heart
rate, sleep-wake stage, and breathing rate as estimated by the
WSA. The vital sign data were available when the participant
was in bed at night and during daytime in-bed periods, which
were also reported as naps by the participant. The days –14 to
–1 depict the data collected at home, while day 0 depicts data
collected in the sleep laboratory. The darker, purple-colored
regions denote sleep, while the lighter regions denote wake as
identified by the WSA. The gray areas represent out-of-bed
periods (ie, periods during which the device did not record data).
The first day of data from the WSA at home were lost. This
participant had irregular nocturnal bed timing, with an average
time in bed during the nocturnal period of 10 hours 8 minutes
at home. Mean nocturnal heart rate and breathing rate varied
across nights. The WSA AHI showed night-to-night variability
(Figure 1B), and the WSA AHI during the laboratory visit was
25 events/hour, which was close to the PSG AHI value. The
heart rate showed a trend across the nocturnal sleep period, with
a higher heart rate at the beginning of the nocturnal sleep period
and a lower heart rate just before the end of the sleep period.

Figure 2 shows the contactless technology–derived vital sign
data collected alongside PSG reference data during the
laboratory visit for the participant depicted in Figure 1. The
PSG heart rate and breathing rate both show changes as the
hypnogram shows transitions between different stages of sleep,
with higher variability during wake and REM sleep and lower
variability during non-REM sleep. The differences in the data
resolution (WSA: 60 seconds; Emfit and Somnofy: 30 seconds)
between the contactless technologies can be seen from the plots.
The WSA vital signs estimates provided by the device are
rounded to the nearest integers, leading to more discretized vital
sign data. The trends in the heart rate and breathing rate data
recorded by the PSG and the contactless technologies are more
similar during the sleep periods compared with the wake periods.
The Somnofy had a number of missing estimates of breathing
rate during many of the wake epochs determined by the device,
and these missing vital sign epochs also coincided with periods
of higher activity, as detected by a wrist-worn activity device
(Empatica E4). Snoring, as detected by the WSA, followed a
pattern that closely followed the snoring signal detected by PSG,
with some disagreement in the detection of the snoring event
(Figure 2).
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Figure 1. Vital signs from a male participant aged 65 to 70 years collected at home and in the laboratory. (A) Raster plot showing the heart rate (bpm),
and breathing rate (cpm) as detected by the Withings Sleep Analyzer along with device-detected sleep (or) wake period and sleep diary information.
(B) Estimates of mean heart rate, mean breathing rate, and apnea-hypopnea index (AHI; depicted as circles adjacent to the time courses) were made
during the night as determined by the device.
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Figure 2. Vital sign data simultaneously collected from 3 contactless technologies and polysomnography (PSG) in the laboratory for the male participant
described in Figure 1. The PSG consensus hypnogram (top) is depicted at the top followed by the heart rate (red), and breathing rate (blue) from PSG
and contactless devices, and activity data in arbitrary units are from the Empatica E4 device. The gray regions in all the plots correspond to the lights-off
period. A: artifact; bpm: beats per minute; cpm: cycles per minute; N1: stage 1 of nonrapid eye movement (non-REM) sleep; N2: stage 2 of non-REM
sleep; N3: stage 3 of non-REM sleep; R: REM sleep; W: wake; WSA: Withings Sleep Analyzer.

Summary of Collected Data
In the laboratory study, all 35 PSGs (ground truth or reference
data, cohort 1: n=18, 51%; cohort 2: n=17, 49%) were available.
The total number of nights of data collected in the laboratory
for each of the 3 contactless technologies were 35 for WSA, 16
for Emfit, and 17 for Somnofy. One night of data was lost due
to a device malfunction for Emfit. At home, a total of 401 days
of data were collected across the 35 participants, with 321 days
of data available for WSA (cohort 1: n=10, 56%; cohort 2: n=17,
100%) and 228 days of data available for Emfit (cohort 2: n=17,
100%). At home, for WSA, portions of data from 8 participants
were lost in cohort 1 due to deployment errors and Wi-Fi

dropouts, with a data loss of 3.3% (11/332 days lost). For Emfit,
the data loss was 4.2% (10/238 days lost).

In the laboratory, the range of the heart rate estimated (minimum
to maximum) by the contactless technologies was 40 to 90 bpm
for WSA and 40 to 135 bpm for Emfit, whereas for breathing
rate, the ranges were 8 to 35 cpm for WSA, 6 to 30 cpm for
Emfit, and 6 to 30 cpm for Somnofy. The undermattress
device–generated vital sign (both heart rate and breathing rate)
data for 100% of the in-bed periods. Somnofy bedside radar,
by contrast, generated breathing rate data less continuously,
resulting in data unavailability at 32.21% (54.41/169.14 hours)
of the in-bed period (in-laboratory). Most of these missed
breathing rate epochs were found to be in the Somnofy-predicted
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wake state (the total percentage of breathing rate epochs
unavailable per label was follows: wake=34.35/54.41 hours,
62.39%, REM=6.96/54.41 hours, 12.73%; LS=12.19/54.41
hours, 23.1%, and DS=0.91/54.41 hours, 1.78%).

All-Night Vital Signs
The concordance between the nightly average heart rate and
breathing rate estimates of the contactless technologies against
PSG are shown in Figure 3 and Table 1. The WSA (MAPE
3.28%; ICC=0.87) had a lower level of agreement compared
with Emfit (MAPE 1.83%; ICC=0.96), and this was due to an
outlier participant with severe arrhythmia (see the outlier in

Figure 3). When the outlier was removed WSA (WSA*: MAPE
1.87%; ICC=1.0) had an agreement with the PSG that was
similar to that of Emfit. The MDC was higher for Emfit (3.25
bpm) compared with WSA* (1.17 bpm), which can be seen
from the higher dispersion in the Emfit estimates (Figure 2A).
For the breathing rate, Somnofy (MAPE 4.64%; ICC=0.82) had
a high agreement, followed by WSA (MAPE 6.29%; ICC=0.78)
and Emfit (MAPE 5.46%; ICC=0.76). The MDC follows the
agreement results, with Somnofy (1.98 cpm) having a somewhat
lower value compared with WSA (2.08 cpm) and Emfit (2.21
cpm).

Figure 3. Association between vital signs estimated by 3 contactless devices and estimates from polysomnography (PSG) averaged across the night
while sleeping in the sleep laboratory. (A) Heart rate (beats per minute [bpm]); (B) breathing rate (cycles per minute [cpm]). The error bars represent
the SD of the estimate within participants. The PSG heart rate and breathing rate are derived from electrocardiogram (ECG) and respiratory inductance
plethysmography thorax (RIP thorax), respectively. The number of participants (ie, nights) available for the devices are Withings Sleep Analyzer (WSA;
n=34), Emfit (n=16), and Somnofy (n=17).
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Table 1. All-night average of vital signs and their agreement metricsa.

ICCi (95%
CI)

MAPEh

(95% CI)
SADg

(95% CI)
MAEf

(95% CI)
MDCeLoA (up-

per bound),
(95% CI)

LoAd (lower
bound),
(95% CI)

Biasc (SD;
95% CI)

PSGb,
mean (SD)

Device,
mean (SD)

Vital signs

Heart rate

0.87 (0.75
to 0.93)

3.28 (0.40
to 6.16)

0.24 (–0.09
to 0.58)

1.69 (2.80
to 0.58)

7.116.61 (4.46
to 8.75)

–7.61 (–9.76
to –5.46)

–0.5 (3.63;
1.75 to 0.74)

62.16
(7.52)

61.66
(6.51)

WSAj

1 (0.99 to
1)

1.87 (1.56
to 2.17)

0.18 (–0.16
to 0.52)

1.15 (1.33
to 0.97)

1.170.07 (–0.29
to 0.43)

–2.28 (–2.64
to –1.92)

–1.11 (0.6;
–1.31 to –0.9)

62.84
(6.46)

61.73 (6.6)WSA*k

0.96 (0.90
to 0.99)

1.83 (0.52
to 3.13)

0.18 (–0.33
to 0.7)

1.08 (1.78
to 0.39)

3.253.68 (2.14
to 5.22)

–2.81 (–4.35
to –1.27)

0.44 (1.66;
–0.45 to 1.32)

63.42
(6.47)

63.85
(5.66)

Emfit

Breathing rate

0.76 (0.58
to 0.87)

6.29 (4.31
to 8.27)

0.63 (0.3 to
0.97)

0.97 (1.33
to 0.6)

2.081.13 (0.5 to
1.75)

–3.04 (–3.66
to –2.41)

–0.95 (1.06;
–1.32 to
–0.59)

14.61
(1.69)

13.66
(1.38)

WSA

0.76 (0.44
to 0.91)

5.46 (2.55
to 8.36)

0.49 (–0.02
to 1.01)

0.78 (1.22
to 0.34)

2.211.99 (0.94
to 3.03)

–2.43 (–3.48
to –1.38)

–0.22 (1.13;
–0.82 to 0.38)

14.35
(1.67)

14.13 (1.6)Emfit

0.82 (0.56
to 0.93)

4.64 (1.79
to 7.5)

0.43 (–0.07
to 0.93)

0.69 (1.14
to 0.24)

1.981.47 (0.57
to 2.37)

–2.48 (–3.38
to –1.58)

–0.51 (1.01;
–1.02 to 0.01)

14.28
(1.65)

13.77
(1.68)

Somnofy

aMetrics of agreement for overall heart rate of the devices against the electrocardiogram (ECG) estimates (included in the PSG). The number of
participants contributing to each of these devices was as follows: WSA (n=35), WSA* (n=34), Emfit (n=16), and Somnofy (n=17).
bPSG: polysomnography.
cBias is the difference in measurement between the device and PSG ECG.
dLoA: limits of agreement.
eMDC: minimum detectable changes; smallest detectable change independent of measurement error (half of Bland-Altman agreement width).
fMAE: mean absolute error.
gSAD: standardized absolute difference; directionless version of Cohen d.
hMAPE: mean absolute percentage error.
iICC: intraclass correlation coefficient with 2-way random effects; measure of measurement reliability.
jWSA: Withings Sleep Analyzer.
kWSA* depicts the outlier-removed WSA data.

Vitals Signs During Different Vigilance States
We investigated the agreement of the vital signs estimated by
the contactless technologies to the PSG reference during the
different vigilance states of the consensus PSG hypnogram. The
distribution of the vital signs for the different vigilance states
is provided in Figure S1 in Multimedia Appendix 1. The heart
rate and breathing rate estimates of both the PSG and contactless
devices were not normally distributed (via the
Kolmogorov-Smirnov test). The difference between the mean
heart rate estimated by the devices and PSG was <2.5 bpm
across all sleep stages. The difference between the mean
breathing rate estimated by the devices and the PSG was <1.5
cpm across all sleep stages. Overall, the concordance between
the estimates of both heart and breathing rate provided by the
contactless technologies and PSG was good across all vigilance
states (Figure S2 and Tables S1 and S2 in Multimedia Appendix
1).

Time Course of Vital Signs During Sleep
Figure 4A shows the time course of the heart rate and breathing
rate estimated by the contactless devices and PSG over the PSG
lights-off period in the laboratory. Figure 4B shows these time
courses for the sleep diary–defined lights-off periods recorded

at home (Figure 4B). The vital sign data were mean centered
and averaged over the epochs during which participants were
asleep as detected by the PSG hypnogram for the laboratory
data and as detected by the sleep scoring algorithms of the
devices for the at-home data. The data are plotted per hour
starting from the onset of the lights-off period. The error bars
represent the SD of the estimate and are shifted along the x-axis
to improve visibility.

Both in the laboratory and at home, the heart rate started close
to or above the mean, gradually decreased over the night, and
reached the nightly minimum in the second part of the sleep
period before a slight increase at the end of the sleep period.
The similarity between the contactless technology and PSG
heart rate hourly time series in the laboratory was determined
using MAPE. The WSA (MAPE 14.42%) closely follows the
PSG, while the Emfit (MAPE 144.34%) is less similar.

The breathing rate trends at home were similar to that of the
heart rate, starting above the overnight mean and gradually
decreasing to a lower value closer to the end of the night. In the
laboratory, the breathing rate hourly estimates were fluctuating
and did not show any clear trend. Both the WSA (MAPE
129.95%) and Somnofy (MAPE 130.01%) had the highest
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similarity with the PSG, while the Emfit had the lowest similarity (MAPE 295.76%).

Figure 4. Time course of vital signs during sleep in the laboratory (A and B) and at home (C and D). The number of participants available for each of
the devices (measured in nights) in the laboratory (polysomnography [PSG]: n=35, 35 nights; Withings Sleep Analyzer [WSA]: n=34, 34 nights; Emfit:
n=16, 16 nights; and Somnofy: n=17, 17 nights) and at home (WSA: n=27, 295 nights; Emfit: n=17, 213 nights). bpm: beats per minute; cpm: cycles
per minute.

Effect of Temporal Resolution on the Vital Signs
Accuracy
To examine the effect of the length of the time period over
which the vital signs are computed, we averaged the heart rate
and breathing rate estimates over 60 minutes, 10 minutes, and
1 minute and computed the agreement with the corresponding
PSG reference estimates (Tables 2 and 3). We examined the
cumulative distribution function (CDF) of the MAE at these
resolutions to better characterize the estimation error. The CDFs
are depicted in Figure 5, while more detailed scatter plots and
associated agreement measures are provided in Figure S3 and
Tables S2 and S3 in Multimedia Appendix 1.

For all devices and both heart and breathing rates, the CDFs
become steeper with increasing duration of the time window
over which these variables are computed. For both heart rate
and breathing rate, the agreement (measured by ICC) with the
PSG reference estimates increased with decreasing temporal

resolution (Figure S3 in Multimedia Appendix 1). On closer
inspection of the CDFs, we find that for the heart rate estimates,
the error at the 90th percentile is lower for WSA than for Emfit
for the 1-minute and 60-minute estimations (overall error<4
bpm). For the Emfit, the median (50th percentile) error of the
heart rate estimates became smaller with increasing duration of
the time window, but the WSA median error was always close
to 1. For the breathing rate, at all 3 resolutions, 50% of the
estimates had an error of <1 cpm. When we inspected the 90th
percentile error of breathing rate estimates at 1 minute, we found
that Somnofy had the lowest error (2.56 cpm), followed by
WSA (3.46 cpm) and Emfit (4.26 cpm). This trend was seen
for lower resolutions as well. At the 50th percentile, we see the
effect of discrete breathing rate output from WSA on the 50th
percentile error, where the error of the other 2 devices falls
below 0.5, while the WSA error does not. A detailed discussion
of the effects of temporal resolution on the agreement between
the device and PSG vital sign estimate is provided in Multimedia
Appendix 1.
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Table 2. Effect of temporal resolution on reliability of estimates of heart ratea.

ICCi (95%
CI)

MAPEh

(95% CI)
SADg

(95% CI)
MAEf

(95% CI)
MDCeLoA (up-

per bound),
(95% CI)

LoAd (lower
bound), (95%
CI)

Biasc (SD;
95% CI)

PSGb,
mean (SD)

Device,
mean (SD)

Heart rate
resolution

60 minutes

0.87 (0.84
to 0.9)

3.46 (2.41
to 4.51)

0.23 (0.12
to 0.35)

1.75 (2.15
to 1.35)

7.537.2 (6.44 to
7.97)

−7.86 (−8.63
to −7.1)

−0.33 (3.84;
−0.78 to 0.12)

62.09
(8.03)

61.76 (7.0)WSAj

0.91 (0.87
to 0.93)

1.95 (1.09
to 2.8)

0.18 (0 to
0.35)

1.16 (1.63
to 0.69)

5.586.04 (5.18
to 6.9)

−5.12 (−5.98
to −4.26)

0.46 (2.85;
−0.04 to 0.96)

63.58
(6.78)

64.04
(6.52)

Emfit

10 minutes

0.87 (0.86
to 0.88)

3.58 (3.15
to 4)

0.24 (0.19
to 0.28)

1.83 (1.99
to 1.67)

7.717.36 (7.05
to 7.66)

−8.07 (−8.38
to −7.76)

−0.36 (3.94;
−0.54 to
−0.18)

62.07
(8.21)

61.71
(7.18)

WSA

0.84 (0.82
to 0.86)

2.38 (1.9 to
2.86)

0.2 (0.13 to
0.27)

1.4 (1.66 to
1.14)

7.858.32 (7.84
to 8.79)

−7.39 (−7.86
to −6.91)

0.47 (4.01;
0.19 to 0.74)

63.57
(7.04)

64.03
(7.04)

Emfit

1 minute

0.84 (0.84
to 0.84)

4 (3.85 to
4.14)

0.26 (0.24
to 0.27)

2.08 (2.14
to 2.02)

8.98.54 (8.42
to 8.65)

−9.27 (−9.38
to −9.16)

−0.37 (4.54;
−0.43 to −0.3)

62.08
(8.59)

61.71
(7.44)

WSA

0.76 (0.75
to 0.76)

3.52 (3.33
to 3.7)

0.28 (0.26
to 0.3)

2.12 (2.22
to 2.02)

10.2710.73
(10.54 to
10.92)

−9.8 (−10 to
−9.61)

0.46 (5.24;
0.35 to 0.58)

63.56
(7.44)

64.02
(7.54)

Emfit

aMetrics of agreement for overall heart rate estimates from the devices against PSG electrocardiogram (ECG) estimates (beats per minute) at various
temporal resolutions.
bPSG: polysomnography.
cBias is the difference in measurement between the device and PSG ECG (device–PSG ECG).
dLoA: limits of agreement.
eMDC: minimum detectable changes; smallest detectable change independent of measurement error (half of Bland-Altman agreement width).
fMAE: mean absolute error.
gSAD: standardized absolute difference; a directionless version of Cohen d.
hMAPE: mean absolute percentage error.
iICC: intraclass correlation coefficient; with two-way random effects (measures of measurement reliability).
jWSA: Withings sleep analyzer.
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Table 3. Effect of temporal resolution on the reliability of estimates of breathing ratea.

ICCi

(95% CI)
MAPEh

(95% CI)
SADg

(95% CI)
MAEf

(95% CI)
MDCeLoA (up-

per bound),
(95% CI)

LoAd (lower
bound), (95%
CI)

Biasc (SD;
95% CI)

PSGb,
mean (SD)

Device,
mean (SD)

Breathing rate
resolution

60 minutes

0.72
(0.65 to
0.77)

6.48 (5.73
to 7.22)

0.59 (0.47
to 0.71)

1 (1.14 to
0.86)

2.511.6 (1.34 to
1.85)

−3.42 (−3.67
to −3.17)

−0.91 (1.28;
−1.06 to
−0.76)

14.58
(1.87)

13.67
(1.51)

WSAj

0.6 (0.47
to 0.7)

6.35 (4.68
to 8.02)

0.5 (0.32 to
0.67)

0.92 (1.16
to 0.67)

3.253.11 (2.6 to
3.62)

−3.39 (−3.9 to
−2.89)

−0.14 (1.66;
−0.44 to 0.15)

14.33
(1.85)

14.18
(1.86)

Emfit

0.76
(0.67 to
0.83)

3.47 (2.27
to 4.67)

0.32 (0.13
to 0.51)

0.55 (0.77
to 0.33)

2.341.92 (1.52
to 2.31)

−2.76 (−3.16
to −2.36)

−0.42 (1.19;
−0.65 to
−0.19)

14.31 (1.8)13.89
(1.65)

Somnofy

10 minutes

0.63
(0.61 to
0.66)

7.29 (6.94
to 7.65)

0.59 (0.54
to 0.63)

1.14 (1.21
to 1.07)

3.282.34 (2.21,
2.47)

−4.21 (−4.34
to −4.08)

−0.93 (1.67;
−1.01 to
−0.86)

14.6 (2.2)13.67
(1.67)

WSA

0.54
(0.48 to
0.58)

7.42 (6.6 to
8.25)

0.5 (0.43 to
0.57)

1.09 (1.22
to 0.96)

4.123.94 (3.69
to 4.19)

−4.31 (−4.56
to −4.06)

−0.18 (2.1;
−0.33 to
−0.04)

14.35
(2.17)

14.16 (2.2)Emfit

0.69
(0.65 to
0.73)

4.2 (3.64 to
4.76)

0.36 (0.28
to 0.43)

0.68 (0.79
to 0.57)

2.932.45 (2.26
to 2.65)

−3.41 (−3.6 to
−3.21)

−0.48 (1.49;
−0.59 to
−0.36)

14.35
(2.05)

13.87
(1.77)

Somnofy

1 minute

0.51 (0.5
to 0.52)

9.85 (9.68
to 10.02)

0.64 (0.63
to 0.66)

1.51 (1.54
to 1.48)

4.553.61 (3.56
to 3.67)

−5.48 (−5.54
to −5.42)

−0.93 (2.32;
−0.97 to −0.9)

14.61
(2.61)

13.67
(2.04)

WSA

0.42 (0.4
to 0.44)

11.07
(10.74 to
11.4)

0.63 (0.61
to 0.65)

1.6 (1.65 to
1.56)

5.365.18 (5.07
to 5.28)

−5.54 (−5.65
to −5.44)

−0.18 (2.73;
−0.24 to
−0.12)

14.35
(2.57)

14.17 (2.5)Emfit

0.58
(0.57 to
0.6)

6.76 (6.54
to 6.99)

0.48 (0.46
to 0.51)

1.06 (1.1 to
1.01)

3.93.43 (3.35
to 3.51)

−4.38 (−4.46
to −4.3)

−0.47 (1.99;
−0.52 to
−0.43)

14.35
(2.43)

13.87
(1.91)

Somnofy

aMetrics of agreement for overall heart rate estimates from the devices against PSG electrocardiogram (ECG) estimates (beats per minute) at various
temporal resolutions.
bPSG: polysomnography.
cBias is the difference in measurement between the device and PSG ECG (device–PSG ECG).
dLoA: limits of agreement.
eMDC: minimum detectable changes; smallest detectable change independent of measurement error (half of Bland-Altman agreement width).
fMAE: mean absolute error.
gSAD: standardized absolute difference; a directionless version of Cohen d.
hMAPE: mean absolute percentage error.
iICC: intraclass correlation coefficient; with two-way random effects (measures of measurement reliability).
jWSA: Withings sleep analyzer.
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Figure 5. Effect of time window over which vital signs are estimated on device measurement error; (A) heart rate (beats per minute [bpm]) and (B)
breathing rate (cycles per minute [cpm]). The cumulative density function of the absolute error is represented for each of the devices for the window
lengths 1, 10, and 60 minutes. The median (50th percentile) and the 90th percentile are represented by horizontal lines. PSG: polysomnography; WSA:
Withings Sleep Analyzer.

Estimating Breathing Disturbances During Sleep

WSA Snore
The results of the WSA snore analysis and an example of the
overnight time course of the snore data are depicted Figure 6,
as well as in Figure S6 in Multimedia Appendix 1. Out of the
35 participants, snore data from both PSG and WSA were
available for 30 (86%) participants (PSG snore sensor data were
not available for 2 participants, and WSA snore data were
unavailable for 3 participants). Of the remaining 30 participants,
it was determined from PSG snore sensor data that 8 (27%)
participants did not have any form of snoring, whereas 22 (73%)
participants snored. The WSA incorrectly determined that 5
(23%) of these 22 participants had no snoring, leading to a
moderate performance with a Matthews correlation coefficient
of 0.69 (Figure 6C).

PSG determined that the 22 snorers had a nightly snoring
duration ranging between 10 and 270 minutes (Figure 6A). The
concordance between the snore duration estimates from the

WSA and PSG was high (r2=0.76; P<.001; n=30). When the
snoring intensity determined by the PSG snore sensor was
grouped based on the WSA snore labels (Figure 6B), we found
that, on average, the intensity of the PSG-detected snore events
that were not detected by WSA was lower than the intensity of
the snore events detected by both PSG and WSA, but there was
a considerable overlap between the distributions.

Overall, the snore events were underestimated by the WSA
compared with PSG. The distribution of the snoring events as
determined by the PSG snore sensor showed that snoring was
present across all sleep states, with >20% of all non-REM
epochs having snore events, while for REM epochs, this was
17.48% (Figure 6D). By contrast, when the distribution of snore
events automatically identified by WSA was analyzed, the
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WSA-determined snore events were high during LS and DS
and low during REM (Figure 6E). The corresponding confusion
matrix between the PSG consensus sleep stage and Withings
sleep stage prediction during WSA-identified snore events is

depicted in Figure 6E, which shows that the WSA does not
score wake when snore events are detected. WSA also scored
more snore epochs as DS, followed by LS and REM sleep.

Figure 6. Withings Sleep Analyzer (WSA) snore analysis. (A) Concordance of polysomnography (PSG)-assessed snore duration and WSA snore
(n=30). The linear fit is depicted by the red line. (B) Snore intensity as detected by the PSG snore sensor during WSA predicted snore and no snore.
(C) Confusion matrix for participants identified as snorers or nonsnorers (n=30). (D) Distribution of snore events across PSG-derived sleep stages for
both PSG and WSA. (E) Confusion matrix of epoch-to-epoch (EBE) concordance between PSG and WSA during WSA snore events (total WSA snore
epochs: 1611). bpm: beats per minute; cpm: cycles per minute; DS: deep sleep; LS: light sleep; REM: rapid eye movement.

WSA AHI
The WSA summary measures relevant to breathing disorders
are the BDI and AHI. WSA BDI data were available for 29
participants in the laboratory and for 24 participants at home (a
total of 222 nights available). Both WSA AHI and BDI were
available for only 64 nights across 7 participants at home. Upon
inspection of potential correlations between the WSA AHI and
WSA BDI, we found that the WSA BDI was double the value

of WSA AHI (WSA BDI=(2.006×WSA AHI)–0.133; r2=.999;
P<.001; n=64; Figure S7 in Multimedia Appendix 1). On the
basis of this inference, we used half BDI as the proxy for WSA
AHI for the remainder of the analysis.

We found a high correlation between the WSA AHI and PSG

AHI in the laboratory (r2=0.59; P<.001; n=29; Figure 7A). The
MAE was 6.49 (95% CI 4.89-8.10) events per hour. We further
explored the relationship between the PSG AHI in the laboratory
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and the mean WSA AHI at home (Figure 7B). We found that

there was a moderate level of correlation between the 2 (r2=0.44;
P<.001; n=24). There was also a high level of agreement
between the WSA AHI 1 night before the laboratory and both

in-laboratory WSA AHI (r2=0.74; P<.001; n=15) and PSG AHI

(r2=0.59; P<.001; n=16). We have depicted the WSA AHI (half
WSA BDI) for the 24 participants’ data available at home as a
heat map showing the night-to-night variability and missing
values in Figure S8 in Multimedia Appendix 1.

Figure 7. Relationship between polysomnography (PSG)-based apnea-hypopnea index (AHI) and Withings Sleep Analyzer (WSA) breathing disorder
index (BDI). (A) In laboratory (n=35) and (B) at home (n=29). The linear fit is depicted by the red line. AHI reference ranges are as follows: 0 to 4 (no
apnea), 5 to 14 (mild; shown in green), 15 to 29 (moderate; shown in blue), and ≥30 (severe; shown in red). For the WSA AHI estimates at home, each
data point depicts the mean per participant, and the vertical bars depict the minimum and maximum values.

Discussion

Principal Findings
In this study, we provide an evaluation of 3 contactless
technologies for monitoring heart rate, breathing rate, and
breathing disturbances during sleep in older men and women.
Overall, the contactless technologies provided heart rate (WSA
and Emfit) and breathing rate estimates (all 3 devices) with
acceptable agreement compared with standard reference
estimates from PSG ECG and RIP thorax. We also found that
these devices can be used for detecting respiratory events,
including apnea and snoring, in this population of older men
and women with stable comorbidities.

We were able to successfully collect data at home with limited
(<5%) data loss. The data loss was primarily due to Wi-Fi
dropouts, where the device spontaneously lost connection to
the Wi-Fi network. Overall, this demonstrates the ability of
these contactless devices to reliably collect continuous vital
sign data remotely in the community with little oversight and
maintenance.

The devices also captured the time course of vital signs during
sleep, in good agreement with the PSG, with relatively small
differences in performance between the devices. The heart rate
estimate range of both WSA and Emfit was narrower than the
Association for the Advancement of Medical
Instrumentation–recommended minimum allowable range of
30 to 200 bpm, with WSA having a more limited range
compared with Emfit [48]. WSA performed somewhat better

than Emfit at capturing heart rate trends, while Somnofy
performed the best in terms of breathing rate, followed by WSA
and Emfit. The decline of heart rate during the sleep period is
in accordance with previous studies, although the upswing in
heart rate at the end of the sleep period, which has been observed
in younger participants [52], was not very clear in the data
collected by any of the methods in this study. This may be
because, here, we studied older participants with comorbidities
including sleep apnea.

The contactless technologies provided estimates of heart rate
and breathing, which, when averaged across the night, were in
very good agreement with the PSG estimates. Outliers in both
the breathing rate and heart rate agreement plots were found to
originate from participants with severe breathing disturbances
or significant abnormal cardiac rhythm. The overall agreement
between contactless technology–derived estimates and the
estimates derived from PSG becomes poorer when the time
period over which the estimate is computed becomes shorter.
This is not surprising, but it puts limitations on the use cases in
which these devices can be applied. Improvement in the
estimates from WSA with reducing temporal resolution was
limited by the discretized or rounded output of vital signs from
the WSA, with 50% of the estimates having a minimum error
of 1 bpm.

At 1-minute resolution, the undermattress devices had an
acceptable accuracy with an MAE of <2.12 bpm and an MAPE
of <5% for heart rate estimates, which is lower than the errors
reported in the literature for wearable technologies during daily
activities and for many contactless technologies during sleep
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[24,27]. The breathing rate estimates at 1-minute resolution
were acceptable across all 3 devices with an MAE of ≤ 1.6-cpm
and an MAPE of >12% and were comparable to other
contactless technologies in previous evaluations in young
participants [27]. The accuracy of both the vital signs estimates
was higher during sleep than in the wake period primarily due
to reduced body movements. Somnofy, the best-performing
device in estimating breathing rate, was also the best-performing
device in our evaluation of sleep stage classification
performance [35].

Although in our evaluation of older participants, all the
compared contactless devices provided acceptable performance,
this performance was poorer than what was previously reported
in studies (Emfit and Somnofy) in a younger population. In the
evaluation conducted by Ranta et al [32] in a population of 34
participants with a median age of 32 years, the Emfit had an
MAE of 1.34 bpm for heart rate and an MAE of 0.59 cpm for
breathing rate. In contrast, in the evaluation conducted by Toften
et al [31], Somnofy had an MAE of 0.18 cpm in a population
of 37 participants with a mean age of 32.6 years. Although the
vital sign estimates from WSA have been used in large-scale
studies, there is no existing evaluation of the WSA-estimated
vital signs in the literature to the best of our knowledge [53,54].

The higher accuracy of Somnofy in estimating breathing rate
compared with the undermattress devices can be attributed to
the device not estimating breathing rate when the signal quality
is affected by body movements. Although this leads to some
loss of data, this also leads to better accuracy, highlighting the
need for a signal quality index associated with the
device-generated vital signs estimates.

Finally, our evaluation revealed that the WSA snore and BDI
estimates were accurate, and the performance of the WSA AHI
in terms of MAE in our study (MAE 6.49 events per hour; n=29)
was better than the results reported by Edouard et al [55] (MAE
9.5 events per hour; N=118; mean age 49.3 years). The
variability of WSA AHI across nights, as seen in Figure S8 in
Multimedia Appendix 1, highlights the ability of contactless
monitoring devices like WSA to capture fluctuations in
obstructive sleep apnea and their potential to play a crucial role
in understanding changes in daytime function, comorbid
conditions, and personalized management.

To the best of our knowledge, WSA snore has not been
previously evaluated in other studies. The breathing disturbance
detection has been performed using Emfit raw ballistography
data in the literature, but these algorithms are not open source

or available directly from the manufacturer and hence not used
in our analysis [56,57]. The availability of these breathing
disturbance estimates, along with the acceptable agreement of
the vital sign measures generated by the contactless
technologies, demonstrates their immediate potential usefulness
in population-wide deployment for home monitoring and care
[58].

Limitations
One of the limitations of the work is that the data
synchronization of the PSG reference data and the device data
is based on the best alignment of the vital signs data and
hypnogram, which is not ideal. Second, the algorithms used by
the different devices in deriving the ballistography signal and
heart rate and breathing rate information are hidden due to their
proprietary nature, and hence the interpretability of several
observations made in this study such as the bounded nature of
the output vital signs, outliers, and unavailability of data is
limited. Due to a lack of detailed documentation on the
snore-detection approach used by WSA, the minimum intensity
of the snoring that is detected as a snoring event by WSA is
unclear. Finally, out of the compared contactless devices, the
Somnofy radar does not provide heart rate estimates, which is
a limitation.

Conclusions
With their ability to reliably collect heart rate, breathing rate,
and breathing disturbance data longitudinally and at scale,
contactless technologies have the potential to be a powerful tool
for unintrusive remote vital signs monitoring in
community-dwelling older adults and people living with
dementia. Applications range from early detection of
abnormalities and deterioration of health to monitoring the
impact of interventions to improve health (eg, treatment of sleep
apnea). This is particularly valuable for patients using prescribed
medications for long-term conditions, as it may indicate the
need for dosage adjustments or even discontinuation (eg,
bradycardia in patients on cholinesterase inhibitors). Together,
these applications could improve overall home care. They also
allow for investigation into the night-to-night variation in sleep
and vital signs and how this variation is associated with health
outcomes and daytime function. Such approaches have already
shown that night-to-night variation in sleep apnea is associated
with uncontrolled hypertension [58] and that night-to-night
variation in sleep continuity is associated with day-to-day
variation in symptoms in people living with Alzheimer disease
[59].
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