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Abstract

Background: Postpartum depression (PPD) poses a significant maternal health challenge. The current approach to detecting
PPD relies on in-person postpartum visits, which contributes to underdiagnosis. Furthermore, recognizing PPD symptoms can
be challenging. Therefore, we explored the potential of using digital biomarkers from consumer wearables for PPD recognition.

Objective: The main goal of this study was to showcase the viability of using machine learning (ML) and digital biomarkers
related to heart rate, physical activity, and energy expenditure derived from consumer-grade wearables for the recognition of
PPD.

Methods: Using the All of Us Research Program Registered Tier v6 data set, we performed computational phenotyping of
women with and without PPD following childbirth. Intraindividual ML models were developed using digital biomarkers from
Fitbit to discern between prepregnancy, pregnancy, postpartum without depression, and postpartum with depression (ie, PPD
diagnosis) periods. Models were built using generalized linear models, random forest, support vector machine, and k-nearest
neighbor algorithms and evaluated using the κ statistic and multiclass area under the receiver operating characteristic curve
(mAUC) to determine the algorithm with the best performance. The specificity of our individualized ML approach was confirmed
in a cohort of women who gave birth and did not experience PPD. Moreover, we assessed the impact of a previous history of
depression on model performance. We determined the variable importance for predicting the PPD period using Shapley additive
explanations and confirmed the results using a permutation approach. Finally, we compared our individualized ML methodology
against a traditional cohort-based ML model for PPD recognition and compared model performance using sensitivity, specificity,
precision, recall, and F1-score.

Results: Patient cohorts of women with valid Fitbit data who gave birth included <20 with PPD and 39 without PPD. Our results
demonstrated that intraindividual models using digital biomarkers discerned among prepregnancy, pregnancy, postpartum without
depression, and postpartum with depression (ie, PPD diagnosis) periods, with random forest (mAUC=0.85; κ=0.80) models
outperforming generalized linear models (mAUC=0.82; κ=0.74), support vector machine (mAUC=0.75; κ=0.72), and k-nearest
neighbor (mAUC=0.74; κ=0.62). Model performance decreased in women without PPD, illustrating the method’s specificity.
Previous depression history did not impact the efficacy of the model for PPD recognition. Moreover, we found that the most
predictive biomarker of PPD was calories burned during the basal metabolic rate. Finally, individualized models surpassed the
performance of a conventional cohort-based model for PPD detection.
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Conclusions: This research establishes consumer wearables as a promising tool for PPD identification and highlights personalized
ML approaches, which could transform early disease detection strategies.

(JMIR Mhealth Uhealth 2024;12:e54622) doi: 10.2196/54622

KEYWORDS

wearable device; All of Us; postpartum depression; machine learning; Fitbit; mobile phone

Introduction

Background
Postpartum depression (PPD) is the most common complication
of childbirth, occurring in approximately 1 in 7 women [1].
PPD can have several implications for women, manifesting in
ways such as irritability, mood swings, fatigue, sleep and
appetite disturbance, and thoughts of suicide [2]. Undetected
PPD has also been shown to have financial implications for
affected individuals as it can lead to challenges in maintaining
employment or reduced work performance [3]. Furthermore,
PPD has been linked to an elevated risk of mood disorders in
the child as well as paternal depression [4,5].

Unfortunately, PPD remains significantly underdiagnosed and
undertreated, as indicated by the strikingly low treatment rate
of only 15% [6]. The current method of diagnosing PPD relies
on screening instruments such as the Edinburgh Postnatal
Depression Scale (EPDS), Center for Epidemiologic Studies
Depression Scale, Patient Health Questionnaire, and Postpartum
Depression Screening Scale, where the EPDS is the most
commonly used instrument [7]. Often, women also need to
undergo blood tests to assess thyroid function as the symptoms
of PPD frequently overlap with hyperthyroidism [7]. Due to the
challenges in diagnosing PPD, traditional approaches using
these screening tools contribute to inadequate screening of
women and subsequent underdiagnosis [8,9]. Therefore, the
advent of new technologies is greatly needed to enable adequate
and, hopefully, earlier detection of PPD.

Digital health tools have been gaining traction in recent years
due to the near-ubiquitous ownership of smartphones [10].
Leveraging data passively collected by wearables (ie, digital
biomarkers such as the average heart rate [HR], total steps, and
calories burned per day) coupled with machine learning (ML)
algorithms provides an opportunity to model the relationship
between digital biomarkers and a particular disease for early
recognition.

Prior Work
Previous studies have demonstrated that ML algorithms using
digital biomarkers from smartwatches can predict cardiovascular
diseases, infection, diabetes, and mental health conditions
[11-14]. For example, one study demonstrated that a wearable
device could estimate the changes in the severity of patients
with major depressive disorder, where their findings indicated
that ML models exclusively using digital biomarkers from
wearables achieved moderate performance with correlation
coefficients of 0.56 (95% CI 0.39-0.73) and 0.54 (95% CI
0.49-0.59) in the time-split and user-split scenarios, respectively,
between model predictions and actual Hamilton Depression
Rating Scale scores [15]. Another study recruited individuals

with moderate depression for 4 weeks to develop individualized
ML models based on digital biomarkers to predict mood. Their
findings displayed a correlation between digital biomarkers and
depression, as evidenced by high-performing models with a
mean absolute error of 0.77 (SD 0.27) points on the 7-point
Likert scale, which corresponds to a mean absolute percent error
of 27.9% (SD 10.3%) [16]. A study by Wang et al [17] found
that students with higher depressive symptoms measured using
the 8-item Patient Health Questionnaire were more likely to (1)
use their phone at study locations (correlation coefficient
[r]=0.39; P<.001) compared to all-day phone use (r=0.28;
P=.01), (2) have irregular sleep time (r=0.30; P=.02) and wake
time (r=0.27; P=.04) schedules, (3) be stationary for more time
(r=0.37; P=.01), and (4) visit fewer places during the day
(r=−0.27; P=.02). In addition, students with higher depressive
symptoms measured using the 4-item Patient Health
Questionnaire scores (1) were around a fewer number of
conversations (P=.002), (2) slept for shorter durations (P=.02),
(3) fell asleep later (P=.001), (4) woke up later (P=.03), and (5)
visited fewer places (P=.003) over the previous 2-week period
[17]. Other studies examining the association between digital
biomarkers from wearables and depression include those by (1)
Moshe et al [18], who demonstrated a negative association
between the variability of locations visited and depressive
symptoms (β=−.21; P=.04) and a positive association between
total sleep time and time in bed and depressive symptoms
(β=.24; P=.02); and (2) Rykov et al [19], who showed that a
larger variation in nighttime HR between 2 AM and 4 AM
(r=0.26; P=.001) and between 4 AM and 6 AM (r=0.18; P=.04)
and lower regularity of weekday circadian activity based on
steps (r=−0.17; P=.049) were associated with higher severity
of depressive symptoms.

Additional research has been conducted related to understanding
the relationship between wearable-derived digital biomarkers
and PPD. For instance, one study showed that the features most
predictive of maternal loneliness, which is commonly associated
with PPD, were activity intensity, activity distribution during
the day, resting HR, and HR variability [20]. It was also shown
that women with milder depression symptoms typically had a
larger daily radius of travel compared to those with more severe
symptoms (2.7 vs 1.9 miles; P=.04) [21]. Finally, women with
depression have been shown to have a lower HR variability
(measured using the SD of 24-hour NN intervals, F=6.4; P=.01,
and the SD of the averages of NN intervals in 5-minute
segments, F=6.04; P=.02) and elevated HR while sleeping
(F=5.05; P=.03) compared to women without depression [22].

While these studies highlight a relationship between digital
biomarkers and depression or PPD, they suffer from the
following limitations: (1) some studies use data in the model
that need active patient engagement with partnered mobile apps,
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where user retention is known to decrease over time with
health-related apps; (2) most studies do not use a predictive
framework but rather examine the association between digital
biomarkers and depressive symptoms; (3) only one study has
developed individualized ML models; (4) most studies analyzing
women with PPD have limited time frames and do not capture
continuous longitudinal data across different phases of
pregnancy; and (5) no studies have developed individualized
ML models for women in the postpartum period combining
data from wearables and the electronic health record (EHR)
[23]. Therefore, a method that provides continuous and
personalized monitoring without the need for clinical encounters
to enable early detection of mental health disorders, including
PPD, is needed.

Goal of This Study
The All of Us Research Program (AoURP) is a comprehensive
data set that collects several types of health-related data,
including surveys, EHRs, physical measurements, and wearable
data from Fitbit devices, with an emphasis on patient populations
that have been previously underrepresented in biomedical
research [24]. Currently, the longitudinal Fitbit data from

>15,000 AoURP participants are made available to registered
researchers on the All of Us Researcher Workbench, providing
an opportunity to explore digital biomarkers in a diverse cohort
of participants.

It is unknown whether digital biomarkers from consumer
wearables can be used to detect PPD. In this study, we combined
several orthogonal approaches demonstrating that digital
biomarkers can be used for individualized classification of PPD
with data collected from Fitbit using the AoURP (Figure 1).
This work demonstrated that (1) the integration of data sources,
including EHR and wearable data, proves valuable for PPD
recognition; (2) using longitudinal and continuous wearable
data across various pregnancy phases supports ML model
development; and (3) combining these integrated data sources
facilitates the creation of individualized ML models, which may
outperform cohort-based models. As such, our findings
uncovered a novel method for recognizing PPD and serve as a
framework that can be leveraged to facilitate early PPD
detection. Moreover, the significance of this research
underscores the promise of individualized ML models for
detecting PPD, which can be applied to other mental health
disorders.

Figure 1. An overview of the analysis workflow to evaluate the potential for digital biomarkers in postpartum depression (PPD) recognition. (1) Develop
and perform computational phenotyping of PPD and non-PPD cohorts; (2) merge with available digital biomarker data for each woman (heart rate,
steps, physical activity, and calories burned); (3) classify each day as 1 of 4 periods (prepregnancy period, pregnancy, postpartum period without
depression, or PPD); (4) build and assess individualized ML models testing random forest, generalized linear models, support vector machine, and
k-nearest neighbor algorithms; (5) validate the machine learning (ML) approach in women without PPD; (6) compare individualized model performance
in women with and without PPD; (7) determine variable importance for PPD recognition; (8) generate Shapley additive explanations dependence plots
to assess the relationship between digital biomarkers and PPD; and (9) compare individualized ML models versus a cohort-based model for PPD
detection. EHR: electronic health record.

Methods

Data Source and Platform
This study used the AoURP Registered Tier v6 data set. Study
analysis was conducted using the AoURP Researcher
Workbench cloud platform. All computational phenotyping,
data processing, data analysis, and ML algorithms were
conducted using R (R Foundation for Statistical Computing).

Fitbit data collected in the AoURP adhere to a
bring-your-own-device model, wherein participants who
contribute their data are already in possession of a Fitbit device.
The daily average HR, HR SD, minimum HR, quartile 1 HR,
median HR, quartile 3 HR, and maximum HR were calculated
using the Fitbit HR level table. The sum of steps was calculated
using the Fitbit intraday steps table. Activity calories, calories
burned during the basal metabolic rate (calories BMR), calories
out, fairly active minutes, lightly active minutes, marginal
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calories, sedentary minutes, and very active minutes were taken
from the Fitbit activity summary table. Day-level data were
calculated for each of the 4 periods: prepregnancy period,
pregnancy, postpartum period, and PPD (or PPD equivalent).
All digital biomarkers included in this analysis are passively
tracked by Fitbit; however, calories BMR is a calculated digital
biomarker based on self-reported height, weight, age, and gender
[25].

Ethical Considerations
The protocol for the human participant research conducted was
reviewed by the institutional review board of the AoURP
(protocol 2021-02-TN-001). The institutional review board
follows the regulations and guidance of the National Institutes
of Health Office for Human Research Protections for all studies,
ensuring that the rights and welfare of research participants are
overseen and protected uniformly. Participants who contribute
data to the AoURP have gone through an informed consent
process with the option to withdraw at any time. Privacy is
maintained by 1) storing data on protected computers, 2)
researchers can’t see information to directly identify participants,
such as name or social security number, 3) researchers sign a
contract they won’t try to identify participants. Furthermore,
the Researcher Workbench is only accessible to researchers
through an institution with a signed Data Use Agreement and
to researchers who complete the necessary training. If
participants are asked (and decide) to go to an All of Us partner
center for physical measurements to give blood, saliva, or urine
samples, they are offered a one-time compensation of $25 in
the form of cash, a gift card, or an electronic voucher.

In compliance with the Data and Statistics Dissemination Policy
of the AoURP, counts of <20 cannot be presented to mitigate
the risk of patient reidentification [26]. As the cohort of patients
with PPD presented in this analysis comprised <20 patients,
percentages were presented as percentage ranges (eg, instead
of presenting the data as 53%, they were presented as
50%-55%). Publication of results in this manner has been
approved by the AoURP Resource Access Board. Furthermore,
race and ethnicity were not reported due to the limited sample
size as requested by the AoURP Resource Access Board.

Computational Phenotyping

Identifying Women With PPD
Women with PPD were identified using the following three-fold
approach: (1) selecting women with a diagnosis of PPD using
the condition data and identifying women with a record of (2)
pregnancy or (3) delivery who had been diagnosed with
depression or had antidepressant drug exposure during the
postpartum period.

The first branch of the 3-fold approach to creating a cohort of
women with PPD was conducted using Observational Medical
Outcomes Partnership concept IDs in the condition table based
on the Observational Health Data Sciences and Informatics
initiative in Multimedia Appendix 1 [27,28]. For both the second
and third branches of the method, we first identified women
with a record of delivery (using condition data) or pregnancy
(using the condition and survey tables) based on concept IDs
from previously published work in Multimedia Appendix 1.

Next, the data were filtered on the earliest record of delivery or
pregnancy to capture and analyze digital biomarker data during
the prepregnancy period. To estimate the date of pregnancy or
delivery (depending on which was available for that individual),
the date observed in the EHR from the AoURP was adjusted
by adding or subtracting 9 months, which is a typical pregnancy
duration [29]. Our next step was to estimate the window of the
postpartum period, which was defined as starting from the date
of delivery and spanning 24 months after that date, to monitor
depressive symptoms [30,31]. Consistent with other EHR
computational phenotyping studies of PPD, individuals were
also classified as being PPD positive if they had a diagnosis of
depression in the condition table or antidepressant drug exposure
within the postpartum window [32] (Multimedia Appendix 1).
Specific concepts containing the terms episode, remission,
reactive, atypical, premenstrual, schizoaffective, and seasonal
were excluded when identifying individuals with a depression
diagnosis as they would not appropriately capture women with
a persistent depression during the postpartum period. If a woman
in the PPD cohort showed records of depression diagnosis and
antidepressant drug exposure, we selected the earliest record to
be considered the index date. For women with pregnancy and
delivery data available, the index date and data used were based
on the delivery record as this provided an elevated level of
confidence in defining the postpartum period and, subsequently,
whether the depression diagnosis or antidepressant drug
exposure occurred during the postpartum period. Finally, the
final PPD cohort was generated by selecting unique women
from each of the 3 branches of our approach.

Identifying Women Without PPD
Women without PPD were selected as a control group to validate
our approach because they experienced the same periods as
women in the PPD cohort with the exception of having
diagnosed or inferred PPD (see the previous section). Therefore,
our modeling approach could be tested in an identical fashion
(see more details about ML models in the section titled
Individualized ML Models for Women Without PPD). To
establish a cohort of women without PPD, we applied an
identical rationale to that of the second and third branches of
our PPD phenotyping, as described previously. Subsequently,
women with records indicating PPD or depression diagnosis
during the postpartum period from the condition table or any
instances of antidepressant drug use from the drug exposure
table were excluded.

Data Preparation for Analysis and Individualized ML
Models
To prepare the data for analysis and individualized ML models
using wearable data, we first merged day-level data from Fitbit
(HR, steps, physical activity, and calories burned; see Table S1
in Multimedia Appendix 2 [33-35] for more information on
digital biomarkers) for each individual ranging from 2 years
before to 30 days after the index date to capture their behavior
before, during, and after pregnancy. Previous studies have
demonstrated that HR, steps, and activity measurements from
Fitbit are fairly accurate and can be used for research purposes
[36,37]. The decision to choose measures related to HR instead
of resting HR was based on the availability of data and the
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consideration of having enough measurements for each
individual to train ML models. Digital biomarker data were
filtered on days of compliant data, which were characterized
by (1) at least 10 hours of Fitbit wear time within a day and (2)
between 100 and 45,000 steps, as seen in previous studies [38].
Individuals from the PPD cohort were excluded from
individualized ML models if they had <50 days of total data.

Statistical Analysis

Assessing Variation in Digital Biomarkers Among
Women
The lme4 and lmerTest packages in R were used to construct
hierarchical linear regression models aiming to assess the
presence of noteworthy differences among women and examine
the relationship between each period and digital biomarkers
[39,40]. To assess whether there was a significant level of
variation in digital biomarkers among individuals, we processed
data to calculate the average value of each digital biomarker
during each period (eg, average HR during the prepregnancy
period, average HR during pregnancy, average HR during the
postpartum period, and average HR during PPD) and conducted
linear mixed-effects models with person ID as the random effect.
One model was built for each digital biomarker, where the
digital biomarker served as the outcome variable, the period
was considered the independent variable, and person ID was
incorporated as a random effect. The presence of significant
variability among individuals was evaluated using the
performance package at a significance level of .05 [41].

Interrupted Time-Series Analysis, Tukey Honest
Significant Differences Test, and Digital Biomarker
Directionality Assessment Between Periods
The interrupted time-series analysis (ITSA) was conducted
using the its.analysis package in R with a significance level of
.05 [42]. To compare whether there was a difference in digital
biomarkers during different periods before, during, and after
pregnancy, in addition to when patients experienced PPD, 4
periods were defined for each individual identified with PPD
(prepregnancy period, pregnancy, postpartum period without
depression [hereafter referred to as postpartum period], and
postpartum period with depression [PPD]). The median duration
of each period was 206 (IQR 154.50-313.50) days for the
prepregnancy period, 258 (IQR 226-264) days for pregnancy,
42 (IQR 27.5-90) days for the postpartum period, and 42.5 (IQR
40.25-44.75) days for PPD. For each woman, a model was
constructed for each digital biomarker, with 250 replications
used for bootstrapping, which is a parameter of the itsa.model()
function. Bootstrapping runs replications of the main model
with randomly drawn samples and a trimmed median (10%
removed); the F value is reported, and a bootstrapped P value
is derived from it [42]. The dependent variable was the digital
biomarker value, the time parameter was the date, and the
interrupting variable was the period (prepregnancy period,
pregnancy, postpartum period, and PPD). The mean and SD
were calculated for each digital biomarker during each of the 4
periods for each woman. Furthermore, a Tukey honest
significant difference (HSD) test was conducted to assess the
statistical significance of the differences in each digital

biomarker between each permutation of periods
(PPD–prepregnancy period, PPD-pregnancy, PPD–postpartum
period, postpartum period–prepregnancy period, postpartum
period–pregnancy, and pregnancy–prepregnancy period) within
each individual at a significance level of .05 [43]. Next, the
percentage of women exhibiting a significant relationship was
calculated for each digital biomarker in each group comparison
(eg, PPD–prepregnancy period). To determine the overall trend
in digital biomarker change between pairs of periods (eg, PPD
and prepregnancy period, PPD and pregnancy, and PPD and
postpartum period), the average difference across all individuals
was computed for each digital biomarker. This average also
included nonsignificant differences as they still contributed
insights into the directionality of digital biomarkers during those
periods even if the differences were not statistically significant.
Finally, a 2-sided unpaired t test (2-tailed) at a significance level
of .05 was conducted to assess the statistical significance of the
net difference compared to 0, with positive change defined as
an average value of >0 and negative change defined as an
average value of <0. The outcomes were visualized in a heat
map using the ggplot2 package in R. Percentages were
represented as percentage ranges to preserve patient
confidentiality, with the upper value of each range depicted in
the heat maps (eg, 62% would fall within the 60%-65% range,
and 65% would be displayed in the heat map).

Evaluating Health Care–Seeking Behavior
Health care–seeking behavior was assessed by looking at the
number of visits recorded for each woman during the postpartum
period (ie, ranging from the date of delivery to 30 days after the
index date for each woman). The number of visits was
determined by counting the number of rows in the visit
occurrence table in the AoURP. We subsequently conducted
an unpaired 2-sided Wilcoxon test with a significance level of
.05 to determine whether the medians exhibited a significant
difference between the PPD and non-PPD cohorts.

We also examined the proportion of women who adhered to the
recommendation set by the American College of Obstetricians
and Gynecologists, which advised women to attend at least one
visit within the initial 6 weeks of the postpartum period. Of
note, this guideline was updated in 2018 and now recommends
a postpartum visit within the first 3 weeks following delivery
[33]. However, we used the pre-2018 guideline in our analysis
because the AoURP cohort includes individuals enrolled before
2018. The percentages of women who attended postpartum
visits within the first 6 weeks in the PPD and non-PPD cohorts
were compared using a 2-proportion z test at a significance level
of .05. The exact percentage of women in the PPD cohort, in
addition to the exact counts used to calculate the percentages,
was obfuscated to maintain patient privacy.

Comparing Self-Reported and Gold-Standard Weight
Measurements
Weight measurements were queried in AoURP using the
measurements table (Observational Medical Outcomes
Partnership concept ID 3025315). Self-reported and
gold-standard weight measurements were distinguished by
referencing the src_id column, indicating a physical
measurement (self-reported) as opposed to measurements
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obtained from an EHR site (gold standard). Subsequently, we
identified the self-reported and gold-standard weight
measurements with the shortest time interval for each woman.
Only measurements taken within a period of <30 days were
considered to ensure that the measurements were closely aligned
and not too distant. The median and IQR of self-reported and
gold-standard measurements were calculated and compared
using a paired 2-sided Wilcoxon test at a significance level of
.05. This process was repeated in the PPD and non-PPD cohorts.

Comparing Weight Across Periods of Pregnancy
Weights across different periods of pregnancy (prepregnancy
period, pregnancy, postpartum period, and PPD [or PPD
equivalent for those without PPD]) were computed in the PPD
and non-PPD cohorts using linear mixed-effects models in the
lme4 package in R, with weight serving as the outcome variable,
period as the independent variable, and person ID as the random
effect. The results were evaluated at a significance level of .05.
For women in the PPD cohort, the PPD period was used as the
reference as it was the period of interest for understanding
weight change. Similarly, the PPD-equivalent period was used
as the reference for women in the non-PPD cohort. We further
calculated the estimated means of weight across periods using
the emmeans package in R for both the PPD and non-PPD
cohorts.

Comparing Weight Retention in the PPD and Non-PPD
Cohorts
To assess weight retention among women who experienced
PPD compared to those without PPD, we first calculated the
median weight of each woman during the prepregnancy period.
Second, we identified the weight measurement during the
postpartum period that was closest in value to the median
prepregnancy weight on an individual basis. Third, the time
difference in days was computed between the date of the weight
measurement and the onset of pregnancy for each individual.
Finally, we determined the median and IQR for the time
difference in days mentioned in step 3 (ie, difference in days
between the date of the weight measurement during the
postpartum time period that was closest in value to the median
prepregnancy weight for each individual) and subsequently
conducted an unpaired 2-sided Wilcoxon test to assess the
difference in medians at a significance level of .05 between
women in the PPD and non-PPD cohorts.

Building ML Models

Individualized ML Models for Women in the PPD Cohort
Individualized ML models were developed with the objective
of determining the potential of digital biomarkers to differentiate
among 4 distinct pregnancy phases: prepregnancy period,
pregnancy, postpartum period without depression (ie, postpartum
period), and postpartum period with depression (ie, PPD).
Specifically, we sought to assess whether we could develop ML
models for each woman to make a prediction to classify a day
of Fitbit data as falling during the prepregnancy, pregnancy,
postpartum, or PPD period based on behavioral and biometric
data captured by digital biomarkers on Fitbit. In other words,
the models tested whether there was a unique digital signature
associated with each period of pregnancy in an individualized

manner. Therefore, multinomial models were developed with
period as the outcome with all 16 digital biomarkers as the
features in the model (see Table S1 in Multimedia Appendix 2
for a list of the digital biomarkers included). Initially, our
intention was to examine the model’s capacity to discriminate
between periods with and without PPD, thereby constructing
binomial classification models. However, we recognized the
hierarchical nature of the data with repeated measurements
(multiple days of data) during the prepregnancy, pregnancy,
and postpartum time frames. Consequently, due to the repetitive
nature of our data, we opted for constructing multinomial ML
models to effectively discern among the 4 identified periods,
where the PPD period was treated as both a period and a
diagnosis. We were then able to focus on the PPD period by (1)
constructing a confusion matrix to assess model performance
for the PPD period at an individual level and (2) performing
variable importance (see the following Variable Importance
sections) for the PPD period.

To build intraindividual models, the data were filtered on each
woman, where they were considered PPD negative ranging from
2 years before to 15 days before the index date and PPD positive
from 14 days before to 30 days after the index date. We selected
14 days preceding the index date as the first day of being
positive for PPD because the criteria for diagnosis state that
patients must display 5 depressive symptoms lasting 2 weeks
[44]. The time frame of 30 days following the index date was
chosen because some individuals in the PPD cohort received
antidepressant medication on the day of their diagnosis, which
can begin to take effect after approximately 4 weeks of use [45].
For each individual, the data were centered and scaled before
building models using 3 repeats of 10-fold cross-validation and
a tune length of 5 with random forest (RF), generalized linear
models (GLMs), support vector machine (SVM), and k-nearest
neighbor (KNN) as these algorithms have been used in previous
studies assessing depression using wearables [15,46]. Of note,
no bootstrapping was performed as part of the individualized
ML workflow. Models were built using the Caret package in
R and evaluated using a combination of the κ statistic and
multiclass area under the receiver operating characteristic curve
(mAUC), which are standard metrics for classification ML
models [47-50]. Model performance for each period was further
assessed using a confusion matrix, which calculated sensitivity,
specificity, precision, recall, and F1-score [50].

Comparing Individualized ML Model Performance
Between Women With a History of Depression Before
or During Pregnancy
To initially ascertain the presence of depression history before
or during pregnancy within the PPD cohort, we determined the
date of delivery (using condition data) or the date of pregnancy
(using condition and survey data) based on the concept IDs
detailed in Multimedia Appendix 1. Depending on the available
data for each woman, the date of pregnancy was calculated by
subtracting 9 months from the date of delivery, whereas the
date of delivery was calculated by adding 9 months to the date
of pregnancy, representing a standard pregnancy duration [29].
In cases in which both delivery and pregnancy records existed,
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priority was given to the date of delivery due to its heightened
reliability.

For the evaluation of individualized ML model performance
within the PPD cohort concerning women with a history of
depression, the cohort was categorized into four subgroups
encompassing (1) no previous depression history, (2) depression
before pregnancy, (3) depression during pregnancy, and (4)
depression both before and during pregnancy. To examine
potential disparities in individualized ML model performance,
a 2-sided unpaired t test was conducted with a significance
threshold of .05. This analysis was executed to compare the
no-depression-history group with the groups of women
exhibiting depression before, during, or both before and during
pregnancy. Sensitivity, specificity, precision, recall, and F1-score
metrics were subjected to this statistical comparison process.

Individualized ML Models for Women Without PPD
To construct individualized ML models for women in the
non-PPD cohort, we implemented an analogous approach to
the one used for women in the PPD cohort, where an ML model
was built for each woman with period as the multinomial
outcome. It is worth noting that women without PPD would not
have a fourth period (ie, postpartum period with depression in
women with PPD) as they did not experience PPD. To ensure
comparability and effectively gauge model performance between
women with and without PPD, we created a PPD-equivalent
period for the non-PPD cohort mirroring the PPD period.
Considering that the median time to diagnose PPD was found
to be 83 days following delivery, we ensured uniformity by
setting the index date of the PPD-equivalent period at 83 days
after delivery. As we established an index date aligned with that
of the PPD cohort, the interval of 14 days before the index date
was not considered as the PPD-equivalent period for these
women because they did not actually experience PPD. The goal
was to validate any observed alterations in the PPD cohort by
investigating whether there were any changes in the digital
signature between the postpartum and PPD-equivalent periods,
which should not exist given that these women did not
experience PPD. Subsequently, individualized ML models were
constructed in a manner akin to those in the PPD cohort using
the RF algorithm (as this algorithm yielded optimal results in
the PPD cohort) using 3 repetitions of 10-fold cross-validation
and a tuning length of 5. Similar to the approach developed for
women in the PPD cohort, model performance was evaluated
using sensitivity, specificity, precision, recall, and F1-score
[49,50]. Models were not assessed using mAUC or κ as model
performance only decreased in the PPD-equivalent period and
not in the prepregnancy, pregnancy, or postpartum periods
compared to those in the PPD cohort.

Comparing Individualized ML Model Performance for
Women in the PPD and Non-PPD Cohorts
For comparing the performance of individualized ML models
in the PPD cohort to those in the non-PPD cohort, we performed
a 2-sided unpaired t test with a significance level of .05.

Variable Importance

Shapley Additive Explanations Approach
We used the RF ML models to generate a ranking of digital
biomarkers for each individual as these models had the best
performance. Following that, Shapley values were computed
for each measurement within each individualized model for the
PPD class using the iml package in R [51]. To determine the
feature ranking within individual models, we computed the
average absolute Shapley values across all measurements for
each digital biomarker and sorted the rankings from largest to
smallest. We then tallied the number of models in which each
biomarker ranked among the top 5 most predictive for the PPD
class to produce an overall ranking of digital biomarkers.
Furthermore, we determined the most predictive feature of PPD
by totaling the number of models in which each digital
biomarker ranked as the top predictor for the PPD class.

Permutation Approach
To enhance the robustness of our approach, variable importance
was also computed using a permutation-based method in the
Caret package in R [50]. Subsequently, the features were sorted
based on the magnitude of values assigned for the variable
importance regarding the PPD class. Using a similar
methodology as with Shapley additive explanations (SHAP),
we tabulated the number of models in which each digital
biomarker ranked among the top 5 most predictive for the PPD
class, yielding a comprehensive ranking of digital biomarkers.
The frequency with which each feature ranked as the foremost
predictive digital biomarker was also recorded for the PPD class.

SHAP Dependence Plots
SHAP dependence plots were generated using the gpplot2
package in R [52]. For each individual, plots were generated
by graphing the Shapley value against the corresponding actual
value for the digital biomarker. Given that the outcome of the
models was multinomial (prepregnancy period, pregnancy,
postpartum period, or PPD), 3 separate SHAP dependence plots
were generated for each individual using calories BMR data
during PPD with one other period (ie, one plot for the
prepregnancy and PPD periods [referred to as prepregnancy vs
PPD], one plot for pregnancy and PPD [referred to as pregnancy
vs PPD], and one plot for the postpartum and PPD periods
[referred to as postpartum vs PPD]) to more easily analyze the
relationship between calories BMR in a binomial context
between PPD and one other period. This process was repeated
for women in the non-PPD cohort in a similar fashion to those
in the PPD cohort, specifically, PPD-equivalent versus
prepregnancy period (prepregnancy vs PPD-equivalent),
PPD-equivalent versus pregnancy (pregnancy vs
PPD-equivalent), and PPD-equivalent versus postpartum
(postpartum vs PPD-equivalent). The Pearson correlation
coefficient and its corresponding P value were computed at a
significance level of .05, followed by calculating the percentages
of women with and without a significant correlation. If a
significant correlation was observed, we further determined its
direction (positive or negative) and calculated the percentages
of women with a positive or negative correlation. The overall
consensus regarding the relationship was determined by
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comparing the percentage of positive and negative correlations
for each digital biomarker across all individuals, thereby
identifying which direction had a greater rate. In cases in which
the proportion of women with a significant correlation was
<40%, the direction was not assessed due to the small sample
size, which may not be representative of the population.

Building an ML Model for PPD Using a Cohort-Based
Approach
For the construction of an ML model that assessed whether a
woman had PPD, our focus was on using the PPD and
PPD-equivalent periods sourced from both the PPD and
non-PPD cohorts. We proceeded to develop a binomial RF
classification model in which 75% of individuals from each
cohort were designated for the training set and the remaining
25% were assigned to the test set using the Caret package in R
[50]. To ensure the reliability of model performance assessment,
we diligently executed train and test set divisions based on
individual person IDs, thereby preventing any overlap of women
between the 2 sets that could potentially distort the results [53].
The model’s target outcome pertained to a binary classification
of whether an individual exhibited PPD relying on all 16 digital
biomarkers as input (refer to Table S1 in Multimedia Appendix
2 for a comprehensive description of the digital biomarkers
used). The data were normalized through centering and scaling
procedures. Notably, repeated cross-validation was omitted due
to the presence of repeated measurements stemming from
various person IDs. The model’s construction integrated a tune
length of 5. The models were evaluated using the same κ and

area under the receiver operating characteristic curve metrics
(not multiclass in this instance as the outcome was binary).
Subsequently, a confusion matrix was generated to calculate
sensitivity, specificity, precision, recall, and F1-score [47-50].

Results

Descriptive Statistics
Through computational phenotyping in the AoURP, a patient
cohort of women who gave birth with PPD (n<20) and without
PPD (n=39) provided valid Fitbit data (Figure 2). The median
age in the PPD cohort was 35.60 (IQR 32.83-37.36) years
compared to that in the non-PPD cohort, which was 33.60 (IQR
30.72-35.56) years. The median and IQR were calculated for
each digital biomarker across all women in the PPD and
non-PPD cohorts (Table 1). In both the PPD and non-PPD
cohorts, we computed the median number of days with digital
biomarker data during the prepregnancy, pregnancy, postpartum,
and PPD (or PPD-equivalent) periods and the corresponding
IQRs (additional details about the PPD-equivalent period, a
similar fourth period for those without PPD, can be found in
the Methods section; Table 1). Briefly, the digital biomarkers
included in this analysis were daily average HR, HR SD,
minimum HR, quartile 1 HR, median HR, quartile 3 HR,
maximum HR, sum of steps, activity calories, calories BMR,
calories out, fairly active minutes, lightly active minutes,
marginal calories, sedentary minutes, and very active minutes
(see the descriptions in Table S1 in Multimedia Appendix 2).

Figure 2. A schematic of postpartum depression (PPD) computational phenotyping.
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Table 1. Descriptive statistics of the postpartum depression (PPD) and non-PPD patient cohorts in the All of Us Research Program.

Non-PPD (n=39), median (IQR)PPD (n<20), median (IQR)Descriptive statistics

33.60 (30.72-35.56)35.60 (32.83-37.36)Age (y)

Digital biomarker

78.31 (72.32-83.97)74.23 (68.36-80.66)Average HRa (bpm)

12.70 (10.72-15.12)12.18 (10.58-14.05)HR SD (bpm)

57.00 (52.00-61.00)54.00 (49.00-60.00)Minimum HR (bpm)

68.00 (62.00-74.00)64.00 (59.00-71.00)Quartile 1 HR (bpm)

76.00 (70.00-82.00)72.00 (66.00-78.00)Median HR (bpm)

85.00 (78.00-92.00)81.00 (74.00-88.00)Quartile 3 HR (bpm)

127.00 (119.00-141.00)124.00 (117.00-135.00)Maximum HR (bpm)

7352.00 (4838.00-10834.00)7567.50 (4884.00-10536.25)Sum steps

964.00 (684.00-1275.00)989.00 (742.75-1263.00)Activity calories

1390.00 (1340.00-1496.00)1466.00 (1379.00-1539.00)Calories burned during BMRb

2180.00 (1925.00-2465.50)2236.00 (2012.00-2483.25)Calories out

8.00 (0.00-23.00)9.00 (0.00-24.00)Fairly active minutes

245.00 (187.50-310.00)245.00 (189.00-315.00)Lightly active minutes

489.00 (322.00-680.00)501.00 (349.00-665.00)Marginal calories

710.00 (607.00-880.50)646.00 (563.00-741.00)Sedentary minutes

4.00 (0.00-21.00)2.00 (0.00-18.00)Very active minutes

Number of days in each period

227.00 (109.50-340.75)206.00 (154.50-313.50)Prepregnancy period

221.00 (129.00-269.50)258.00 (226.00-264.00)Pregnancy

72.00 (46.00-82.00)42.00 (27.50-90.00)Postpartum period

29.00 (14.50-31.00)42.50 (40.25-44.75)PPD

aHR: heart rate.
bBMR: basal metabolic rate.

Digital Biomarker Comparison Across Periods of
Pregnancy Revealed Altered Profiles and
Heterogeneity Among Women
Because of the known heterogeneity in depressive symptoms,
we hypothesized that variability in digital biomarkers may exist
across individuals in the PPD cohort [54]. To test this
hypothesis, we conducted linear mixed-effects models for each
digital biomarker in women with PPD, where we found that the
random effect of person ID was significant (P<.001) for all
digital biomarkers, suggesting meaningful variability across
individuals (Table S2 in Multimedia Appendix 2). These results,
coupled with a smaller cohort sample size, prompted us to
perform subsequent analyses using an intraindividual approach.

In women with PPD, we next sought to compare whether there
was a difference in digital biomarkers across different periods
of pregnancy: prepregnancy period, pregnancy, postpartum
period, and PPD (where PPD represents both a period and a
diagnosis). Therefore, an intraindividual ITSA and Tukey HSD

test were conducted for each digital biomarker. Because of the
physiological changes associated with pregnancy, such as
increases in blood and stroke volume, in addition to the
behavioral fluctuations that occur during PPD, such as a loss
of energy and psychomotor retardation, we hypothesized that
all digital biomarkers (those related to HR, steps, physical
activity, and calories burned) would be altered across the
prepregnancy, pregnancy, postpartum, and PPD periods
[44,55-57]. ITSA results supported our hypothesis and
demonstrated a significant difference in all digital biomarkers
across periods in most women with PPD (Table S3 in
Multimedia Appendix 2). Consistent with ITSA findings, Tukey
HSD results showed that several digital biomarkers were
significantly altered between PPD and other periods
(prepregnancy, pregnancy, and postpartum periods; Figure 3).
We further observed various trends in digital biomarkers
between pairs of periods (ie, PPD and prepregnancy period,
PPD and pregnancy, and PPD and postpartum period; Figure 3
and Table S4 in Multimedia Appendix 2).
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Figure 3. Digital biomarkers vary across different periods of pregnancy among women with postpartum depression (PPD). The percentage of women
in the PPD cohort exhibiting a significant difference in digital biomarker values between each pair of periods (left [represented by 0-100]) and the
direction of their relationship (right). The x-axis illustrates a comparison of Tukey honest significant differences (HSD) between 2 periods of interest,
representing the subtraction of digital biomarker values between the first and second periods. Tukey HSD tests were individually conducted for each
woman’s data, and the percentage showing a significant relationship was calculated and presented on the heat map. The heat map on the right illustrates
the overall relationship between the digital biomarker during the 2 periods of interest among the women who exhibited a significant relationship (as
indicated by the percentage shown on the left heat map), with the period listed second serving as the reference. In summary, the findings indicated that
digital biomarkers undergo significant alterations across different periods of pregnancy on an individual basis. Calories BMR: calories burned during
the basal metabolic rate; HR: heart rate; NS: not significant; Q1: quartile 1; Q3: quartile 3.

Individualized ML Models Effectively Differentiated
PPD From Alternative Periods of Pregnancy
Having seen that digital biomarkers were significantly altered
across multiple periods of pregnancy in women with PPD, we
surmised that individualized multinomial ML models could
accurately distinguish between our 4 periods of pregnancy
(prepregnancy period, pregnancy, postpartum period, or PPD;
Figure 3 and Tables S3 and S4 in Multimedia Appendix 2).
Therefore, we sought to assess whether ML models for each
woman could accurately classify an unknown day of Fitbit data
as falling during the prepregnancy, pregnancy, postpartum, or
PPD period based on behavioral and biometric data captured
by digital biomarkers on Fitbit. In essence, the models examined
whether there existed a distinct digital signature linked to each

pregnancy period in an individualized fashion. To probe this
hypothesis, intraindividual ML models were generated using
RF, GLM, SVM, and KNN to conclude which algorithm would
yield the best-performing results. Models were assessed using
a combination of the mAUC and κ, which are 2 frequently used
metrics [48,58]. After averaging the mAUC for individual
models within each algorithm, the results revealed that RF
models performed the best, followed by GLM, SVM, and then
KNN, with an average mAUC of 0.85, 0.82, 0.75, and 0.74,
respectively (Table 2). Assessing models in a similar fashion
using another metric, κ, yielded concordant results for RF (0.80),
GLM (0.74), SVM (0.72), and KNN (0.62) model performance,
suggesting that the RF algorithm had the best performance and
should be used going forward (Table 2).

Table 2. Individualized random forest (RF) models exhibited the best performance for multinomial period classification.

κ, mean (SD)mAUCa, mean (SD)Algorithm

0.80 (0.15)0.85 (0.09)Random forest

0.74 (0.16)0.82 (0.09)Generalized linear model

0.72 (0.16)0.75 (0.10)Support vector machine

0.62 (0.19)0.74 (0.10)k-nearest neighbor

amAUC: multiclass area under the receiver operating characteristic curve.
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As our analysis aimed to assess the potential of digital
biomarkers for personalized classification of PPD, we sought
to further examine each RF model’s performance via a confusion
matrix. Thus, the average sensitivity, specificity, precision,
recall, and F1-score were calculated across all individual models,
where the results for the PPD class were 0.79, 0.95, 0.84, 0.79,
and 0.81, respectively (Figure S1 in Multimedia Appendix 2).
The same metrics for the prepregnancy, pregnancy, and
postpartum periods were also calculated (Figure S1 in
Multimedia Appendix 2).

To ensure the widespread applicability of these algorithms to
a diverse range of women, we did not exclude individuals with
a history of depression either before or during pregnancy.
Therefore, we sought to determine whether having depression
before or during pregnancy impacted individual model
performance, specifically for recognizing the PPD class. To
answer this question, we computed the average sensitivity,
specificity, precision, recall, and F1-score within the group of
women experiencing PPD categorized based on their depression
history: (1) no previous history of depression, (2) history before
pregnancy, (3) history during pregnancy, or (4) history both
before and during pregnancy. Notably, the findings revealed no
statistically significant variations in any of these metrics between
women with a history of depression during the prepregnancy
or pregnancy periods and those without such a history (Figure
S2 in Multimedia Appendix 2). Promisingly, this suggests the
potential for a forthcoming technology focused on detecting
PPD through digital biomarkers to be relevant for women with
or without a previous history of depression before or during
pregnancy.

Individualized ML Models for PPD Recognition Were
Specific
To validate our approach of using digital biomarkers in
individualized ML models for PPD detection, we aimed to test
our strategy in a cohort of women who had given birth but did
not experience PPD. We chose women without PPD as a control
group for validation because they experienced the same 3 phases
of pregnancy (prepregnancy period, pregnancy, and postpartum
period) as women in the PPD cohort with the exception of PPD.
Given that women without PPD did not have a distinct

PPD-specific period as observed in the PPD cohort, we
introduced a fourth time segment in the non-PPD cohort (the
PPD-equivalent period). Following the same ML pipeline as
for the PPD cohort, individualized RF models were built for
women in the non-PPD cohort. If our conjecture held, we
anticipated observing elevated model metrics during the
prepregnancy and pregnancy periods followed by diminished
performance in the postpartum and PPD-equivalent time
segments. This expectation arose from the idea that digital
biomarkers remain unaltered during the postpartum and
PPD-equivalent periods, resulting in the model’s inability to
differentiate between them.

In line with our hypothesis, the sensitivity, specificity, precision,
recall, and F1-scores substantiated that ML models effectively
identified the prepregnancy (0.89, 0.91, 0.88, 0.89, and 0.88,
respectively) and pregnancy (0.85, 0.91, 0.87, 0.85, and 0.86,
respectively) time intervals through digital biomarkers (Table
3). When compared to model performance in the prepregnancy
and pregnancy periods, there was no significant reduction in
model performance during the postpartum period (0.74, 0.96,
0.76, 0.74, and 0.75, respectively); however, a noticeable decline
in performance was observed during the PPD-equivalent period
(0.52, 0.99, 0.69, 0.52, and 0.61, respectively; Table 3). To
further assess potential variations in the classification
performance between the PPD and PPD-equivalent periods, we
carried out a t test comparing the average sensitivity, specificity,
precision, recall, and F1-score between the PPD and non-PPD
cohorts for these periods. The findings indicated a statistically
significant decrease in sensitivity, precision, recall, and F1-score
when predicting the PPD-equivalent period in the non-PPD
cohort as opposed to predicting the PPD period in the PPD
cohort (Figure 4). On the other hand, specificity remained
largely unchanged (Figure 4). The decrease in performance
among individualized ML models in the PPD-equivalent period
implies that the models were unable to accurately classify the
PPD-equivalent period, which was expected as there was no
actual distinction between the postpartum and PPD-equivalent
periods for these women. Collectively, these outcomes helped
demonstrate the specificity of our approach in identifying PPD,
reinforcing the agreement that personalized models using digital
biomarkers can indeed effectively recognize PPD.
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Table 3. Machine learning (ML) models did not accurately detect the postpartum depression (PPD)–equivalent period in women without PPD.

Value, mean (SD)Time period and metric

Prepregnancy period

0.89 (0.15)Sensitivity

0.91 (0.10)Specificity

0.88 (0.09)Precision

0.89 (0.15)Recall

0.88 (0.13)F1-score

Pregnancy period

0.85 (0.12)Sensitivity

0.91 (0.06)Specificity

0.87 (0.07)Precision

0.85 (0.12)Recall

0.86 (0.09)F1-score

Postpartum period

0.74 (0.20)Sensitivity

0.96 (0.04)Specificity

0.76 (0.16)Precision

0.74 (0.20)Recall

0.75 (0.18)F1-score

PPD-equivalent period

0.52 (0.33)Sensitivity

0.99 (0.03)Specificity

0.69 (0.28)Precision

0.52 (0.33)Recall

0.61 (0.30)F1-score
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Figure 4. Individualized machine learning models for postpartum depression (PPD) recognition outperformed those in women without PPD detecting
the PPD-equivalent period. The sensitivity, specificity, precision, recall, and F1-score were calculated across individual random forest models for women
in the PPD and non-PPD cohorts for the prepregnancy (A), pregnancy (B), postpartum (C), and PPD or PPD-equivalent periods (D). Individualized
model performance was not significantly different regarding sensitivity, specificity, precision, recall, and F1-score for predicting the prepregnancy,
pregnancy, or postpartum periods between women in the PPD and non-PPD cohorts. Individualized model performance was reduced for sensitivity,
precision, recall, and F1-score, whereas specificity did not differ between the PPD and non-PPD cohorts. Data are expressed as mean and SD.

Calories BMR Was the Most Predictive Digital
Biomarker of PPD
To elucidate which digital biomarkers were most predictive of
the PPD class, we performed SHAP to explain individual
predictions for each digital biomarker across all RF
intraindividual models [59]. Features were sorted based on their
predictive value for the PPD class within each individual model,
and subsequently, the occurrences of each digital biomarker
ranking in the top 5 across all intraindividual models were
tallied, where an example beeswarm plot for one woman is
shown in Figure S3 in Multimedia Appendix 2. This process
aimed to identify whether any digital biomarkers consistently
played a crucial role in predicting the PPD class. The results
showed that the 5 features most frequently ranked in the top 5
were calories BMR, average HR, quartile 1 HR, lightly active
minutes, and minimum HR (Table 4). Interestingly, calories
BMR ranked in the top 5 features predictive of the PPD class
in 95% to 100% of the models and was the number 1 rated
digital biomarker in 80% to 85% of the individualized models
(Table 4).

To add a layer of robustness to our approach assessing which
features were most predictive of the PPD class, the variable

importance of each digital biomarker was also calculated using
a permutation approach [60]. Consistent with our findings
obtained using SHAP, the top 5 digital biomarkers for the PPD
class were calories BMR, average HR, quartile 1 HR, minimum
HR, and lightly active minutes (Table 4). Calories BMR again
ranked in the top 5 digital biomarkers predictive of the PPD
class 95% to 100% of the time and ranked number one 95% to
100% of the time (Table 4).

Because of the intriguing observation that calories BMR was
highly predictive of PPD across all models, we sought to better
understand its relationship with the PPD class in our models
using SHAP dependence plots to visualize and calculate the
Pearson correlation coefficient between the PPD period and the
prepregnancy, pregnancy, or postpartum periods (see Figure
S4A-C in Multimedia Appendix 2 for example plots from
individual women). Across all individual SHAP dependence
plots of calories BMR filtered in the prepregnancy versus PPD
periods, our initial observation revealed that 95% to 100% of
women exhibited a significant Pearson correlation coefficient
(Figure 5A). Of these women, 60% to 65% showed a positive
relationship, indicating an elevated level of calories BMR during
the PPD period relative to the prepregnancy period (Figure 5A).
Compared to the prepregnancy versus PPD period, it was
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observed that 75% to 80% and 85% to 90% of individualized
SHAP dependence plots of calories BMR during the pregnancy
versus PPD and postpartum versus PPD periods exhibited a
significant Pearson correlation coefficient, respectively (Figure
5A). Of those, 60% to 65% and 85% to 90% of women during
the pregnancy versus PPD and postpartum versus PPD periods
demonstrated a negative relationship, respectively, suggesting
that a decrease in calories BMR relative to the pregnancy and
postpartum periods was predictive of PPD (Figure 5A). SHAP
dependence plots were also generated for individualized models
of the other top 4 digital biomarkers predictive of PPD (average
HR, quartile 1 HR, minimum HR, and lightly active minutes)
in the prepregnancy versus PPD, pregnancy versus PPD, and
postpartum versus PPD periods (Figure 5A). Notably, during

the prepregnancy versus PPD periods, half of the women
exhibited a positive relationship in plots of lightly active
minutes, indicating an increase in lightly active minutes
associated with PPD in those models (Figure 5A). To examine
the rise in lightly active minutes relative to other digital
biomarkers of physical activity (sedentary minutes, fairly active
minutes, and very active minutes), we calculated the ratio of
the number of lightly active minutes to each of the 3 other digital
biomarkers of physical activity across all individuals. In this
case, we observed that the average ratios of lightly active
minutes to sedentary minutes, fairly active minutes, and very
active minutes were 0.35 (SD 0.49), 17.7 (SD 4.92), and 21.72
(SD 5.11), respectively (Figure S5 in Multimedia Appendix 2).

Table 4. The variable importance rankings demonstrated that calories burned during the basal metabolic rate (calories BMR) were the most predictive
digital biomarker of the postpartum depression (PPD) class.

Percentage ranked number 1Percentage ranked top 5Method and digital biomarker

SHAPa

85100Calories BMR

040Average HRb

040Quartile 1 HR

1035Lightly active minutes

035Minimum HR

100Sedentary minutes

100Sum of steps

Permutation

100100Calories BMR

065Average HR

060Quartile 1 HR

050Minimum HR

040Lightly active minutes

aSHAP: Shapley additive explanations.
bHR: heart rate.

For a more comprehensive evaluation of the connection between
calories BMR and PPD, we also crafted SHAP dependence
plots from individualized ML models for women without PPD.
When first assessing the number of women with a significant
correlation in SHAP dependence plots of the prepregnancy
versus PPD-equivalent, pregnancy versus PPD-equivalent, and
postpartum versus PPD-equivalent periods, the results showed
that 75% to 80%, 70% to 75%, and 65% to 70% of women had
a significant relationship, respectively (Figure 5B). Of those,
there was an equal number of women with a positive and
negative relationship in the prepregnancy versus PPD-equivalent
periods compared to the PPD cohort, where most women
(60%-65%) exhibited a positive relationship (Figure 5B). This
implies that, among women in the PPD cohort, an escalation in
calories BMR corresponds to a higher likelihood of PPD when

compared to the prepregnancy period (Figures 5A and 5B). On
the other hand, in the non-PPD cohort, there was no uniform
pattern of association between calories BMR during the
prepregnancy and the PPD-equivalent periods across all women,
highlighting the distinctive nature of our observation. During
the pregnancy versus PPD-equivalent and postpartum versus
PPD-equivalent time frames, 80% to 85% and 75% to 80% of
women, respectively, exhibited a significant correlation in SHAP
dependence plots between calories BMR and Shapley values
(Figure 5B). As anticipated, this follows a similar pattern to
women in the PPD cohort (Figure 5A). These findings implied
that a reduction in calories BMR compared to the pregnancy or
postpartum periods is linked to the PPD (or PPD-equivalent)
periods (Figures 5A and 5B).
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Figure 5. The direction of digital biomarkers in machine learning models for postpartum depression (PPD) classification was heterogeneous. (A) The
percentage of women in the PPD cohort with a significant Pearson correlation (left) and the net relationship (right) for the top 5 overall ranked digital
biomarkers for PPD classification. (B) The percentage of women in the non-PPD cohort with a significant Pearson correlation (left) and the net relationship
(right) for the top 5 overall ranked digital biomarkers for PPD-equivalent classification. The proportion of women showing a significant Pearson
correlation coefficient between Shapley additive explanations (SHAP) values and digital biomarkers varied in both the PPD and non-PPD cohorts. The
x-axis illustrates the comparison of 2 periods, with the first period as the reference, whereas the shading indicates the percentage (0%-100%) of women
showing a significant relationship (A) or the net relationship among those with a significant relationship (B). SHAP dependence plots were generated
for each woman on an individual basis. For instance, the upper left tile in A presenting prepregnancy versus PPD and Calories BMR indicates the
percentage of women who showed a significant correlation on SHAP dependence plots of calories burned during the basal metabolic rate (calories
BMR) between the prepregnancy and PPD periods. In B, the upper left tile of the heat map for prepregnancy versus PPD and Calories BMR illustrates
that most women in the PPD cohort showed a positive relationship (elevated SHAP values with increases in calories BMR, meaning that a higher level
of calories BMR was more predictive of PPD than in the prepregnancy period) among women with a significant correlation, as shown in A. Among
those showing a significant relationship in SHAP dependence plots during the prepregnancy versus PPD (and prepregnancy versus PPD-equivalent)
periods, the correlation pattern for SHAP values and calories BMR differed—most women exhibited a positive correlation in the PPD cohort, whereas
there was no uniform pattern among women in the non-PPD cohort. Among women in the pregnancy versus PPD and postpartum versus PPD (and
PPD-equivalent) periods, most demonstrated a negative relationship between SHAP values and calories BMR in both the PPD and non-PPD cohorts.
HR: heart rate; NS: not significant; Q1: quartile 1.
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We further investigated (1) health care–seeking behavior among
women in the PPD and non-PPD cohorts; (2) the reliability of
self-reported weight (as calories BMR are calculated based on
age, sex, height, and weight); (3) the weight difference across
each of the 4 periods (prepregnancy period, pregnancy,
postpartum period, and PPD [or PPD equivalent]) between
women in the PPD and non-PPD cohorts; (4) the relationship
among weight, calories BMR, and PPD; and (5) weight retention
between women in the PPD and non-PPD cohorts (see more
details in Tables S5-S11 in Multimedia Appendix 2).

To showcase the effectiveness of our approach using
individualized ML models for PPD detection, we constructed
an ML model using conventional techniques. In this endeavor,

we harnessed the PPD and PPD-equivalent periods of the PPD
and non-PPD cohorts, respectively, enabling an assessment of
our individualized approach compared to conventional methods
using a binomial model for the classification of individuals with
or without PPD. By evaluating model outcomes through metrics
such as sensitivity, specificity, precision, recall, and F1-score,
we found that the average performance of the individualized
model surpassed that of the cohort-based strategy (Table 5).
Specifically, in the individualized approach, we observed
sensitivity, specificity, precision, recall, and F1-score values of
0.78, 0.95, 0.84, 0.78, and 0.81, respectively, in contrast to 0.54,
0.55, 0.49, 0.54, and 0.52, respectively, for the cohort-based
approach (Table 5).

Table 5. Individualized machine learning (ML) models outperformed a cohort-based model for postpartum depression (PPD) recognition.

ValueMethod and digital biomarker

Sensitivity

0.54Cohort-based modela

0.78 (0.15)Individualized models, mean (SD)

Specificity

0.55Cohort-based model

0.95 (0.09)Individualized models, mean (SD)

Precision

0.49Cohort-based model

0.84 (0.12)Individualized models, mean (SD)

Recall

0.54Cohort-based model

0.78 (0.15)Individualized models, mean (SD)

F1-score

0.52Cohort-based model

0.81 (0.13)Individualized models, mean (SD)

aSince the cohort-based ML approach is only to generate 1 model, there is no mean or SD.

Discussion

Principal Findings
In this study, our multifaceted analysis demonstrated that (1)
digital biomarkers differed among the prepregnancy, pregnancy,
and postpregnancy periods (up to 2 years before pregnancy,
pregnancy, postpartum period, and PPD; Figure 3 and Tables
S3 and S4 in Multimedia Appendix 2); (2) personalized N-of-1
ML models using digital biomarkers from consumer-grade
wearables were able to classify PPD and other periods of
pregnancy (Table 2 and Figure S1 in Multimedia Appendix 2);
(3) a history of depression before or during pregnancy did not
impact individualized ML model performance for PPD
recognition (Figure S2 in Multimedia Appendix 2); (4) calories
BMR, average HR, quartile 1 HR, lightly active minutes, and
minimum HR were the most influential digital biomarkers in
predicting the PPD period across all individualized models
(Table 4); and (5) individualized ML models for PPD

recognition outperformed the traditional cohort-based model
approach (Table 5). The results presented in this paper provide
a new opportunity for the potential to leverage passively
collected digital biomarkers from consumer-grade wearables
to facilitate early detection of PPD.

To the best of our knowledge, this is the first study proposing
that individualized ML models using passively collected digital
biomarkers from consumer-grade wearables can recognize PPD.
Moreover, this study is also unique due to (1) integrating EHR
and wearable data sources, (2) using longitudinal and continuous
wearable data across multiple periods of pregnancy for ML
methods, and (3) using individualized ML models for PPD
recognition. PPD is most commonly diagnosed using the EPDS,
which suffers from the following limitations: (1) postpartum
women must attend follow-up visits assessed by care providers
for PPD screening, where the rate of postpartum visits is highly
variable; (2) using the EPDS only captures the mental health
of a woman at a single point in time; and (3) the EPDS uses
self-reported symptoms, which may not be representative of a
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patient’s actual mental health status [61-63]. For these reasons,
our approach using passively monitored digital biomarkers from
consumer wearable technology may serve as an effective tool
for facilitating the detection of PPD in an individualized fashion,
especially in nonclinical settings.

Because of the variation in digital biomarkers detected among
women across different periods, our limited sample size, and
the availability of continuous intraindividual data, our study
was geared toward an individualized analytic approach (Table
S2 in Multimedia Appendix 2). The observed variability across
individuals is consistent with previous studies that have
emphasized the heterogeneous nature of depression prompting
individualized methodologies [16,54,64-66]. Moreover, ITSA
and Tukey HSD results revealed that digital biomarkers were
significantly altered among periods within each woman (Figure
3 and Tables S3 and S4 in Multimedia Appendix 2). Overall,
there were numerous individual-level alterations, which can be
explained by the considerable heterogeneity in depressive
symptoms [54]. Collectively, these data suggest that digital
biomarkers were significantly different across periods within
each person, leading us to believe that individualized ML models
would be able to accurately discriminate between PPD and other
periods of pregnancy.

Our study also highlights the strength of using individualized
N-of-1 ML models using digital biomarkers for identifying
PPD. Our findings underscored the models’ ability to
differentiate between distinct pregnancy phases—namely,
prepregnancy, pregnancy, postpartum, and PPD periods (Table
2 and Figure S1 in Multimedia Appendix 2). Notably, our
approach’s validity was confirmed by the noticeable decrease
in model performance during the PPD-equivalent period for the
non-PPD cohort compared to the PPD period for the PPD cohort
(Table 3 and Figure 4). This demonstrated the distinct behavioral
shifts that are observed during the onset of PPD, effectively
captured by digital biomarkers [2]. Furthermore, our results did
not indicate a significant variation in individualized model
performance across the 4 pregnancy periods among women
with a history of depression before or during pregnancy (Figure
S2 in Multimedia Appendix 2). This accentuated the robust
capability of individualized models to differentiate among
periods based on the distinct behavioral characteristics and
metabolic shifts linked to PPD after pregnancy as opposed to
the behavior changes exhibited by each woman before or during
pregnancy. This suggests that forthcoming technology centered
on detecting PPD through digital biomarkers could have
relevance for both individuals with and without a preexisting
history of depression before or during pregnancy. Future studies
should be conducted in a prospective framework to validate our
individualized methodology. We also want to emphasize in
future studies the importance of ML algorithms minimizing
false positives for PPD detection to prevent unnecessary
interventions [67].

Another crucial finding of our study was that the vital digital
biomarkers for PPD classification were calories BMR, average
HR, quartile 1 HR, minimum HR, and lightly active minutes,
where calories BMR was the most predictive feature (Table 4).
Therefore, we constructed SHAP dependence plots to enhance
our understanding of the relationship between calories BMR

and PPD. Plots for the prepregnancy versus PPD periods
suggested that an elevated level of calories BMR is predictive
of PPD, which is indicative of weight gain in these women
(Figure 5A) [2,68]. In plots for the pregnancy versus PPD and
postpartum versus PPD periods, the relationship between
Shapley and actual values of calories BMR flipped, signifying
that an increased number of calories BMR was inversely
associated with PPD (Figure 5A). The negative relationship in
the context of pregnancy versus PPD can likely be explained
by the metabolic changes during pregnancy, resulting in an
increased basal metabolic rate [69]. In the context of the
postpartum versus PPD periods, we speculate that the negative
relationship is because the median duration between the delivery
date and PPD diagnosis is 83 days, when patients may not have
fully returned to their prepregnancy physiological or behavioral
patterns, which can take up to 6 months [70]. As a result, the
relationship between Shapley values and actual values of
calories BMR may reflect this transitional period and the
ongoing postpartum changes experienced by women.

On the other hand, for the prepregnancy versus PPD-equivalent
periods for women in the non-PPD cohort, SHAP dependence
plots failed to unveil a uniform connection between calories
BMR and the PPD-equivalent period, likely due to physiological
distinctions, lifestyle changes during pregnancy, and random
dissimilarities among women [57,71-73]. However, the
comparison of SHAP dependence plots across the pregnancy
versus PPD-equivalent and postpartum versus PPD-equivalent
periods for women in the non-PPD cohort exhibited a consistent
negative correlation, similar to what was observed in the PPD
cohort (Figures 5A and 5B). This trend is likely a result of the
common occurrence of an increased basal metabolic rate during
pregnancy [69]. In the context of the postpartum versus
PPD-equivalent periods, our use of an index date set at 83 days
after delivery—the median number of days after delivery for
PPD diagnosis in the PPD cohort—implies that women likely
have not fully returned to their prepregnancy physiological
baseline [70]. This aligns with the parallel observation seen
during the pregnancy versus PPD-equivalent periods, reaffirming
the persisting metabolic effect postpartum.

Calories BMR are calculated using a combination of age, gender,
height, and weight. Hence, considering the relative stability of
age, gender, and height throughout the 4 phases of pregnancy
(prepregnancy period, pregnancy, postpartum period, and PPD),
alterations in calories BMR are likely indicative of weight
changes [74]. Calories BMR likely rely on self-reported height
and weight measurements as most individuals do not have
routine access to gold-standard measurements. Previous research
has indicated that self-reported weight is generally reliable and
accurate, where BMI was correctly determined for 91% of
pregnancies using self-reported weight; however, accuracy
varied between 70% in women who are underweight and 98%
in women who are overweight [75]. In our study, we found no
significant difference in self-reported and gold-standard weight
measurements (Table S6 in Multimedia Appendix 2). Hence,
it is important to acknowledge that an ideal approach would
involve a combination of gold-standard weight measurements
for accuracy and self-reported weight measurements for
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feasibility and accessibility to longitudinal data in analyses
related to PPD.

Given the known positive relationship between calories BMR
and weight, our analyses sought to further examine this
relationship in the context of women with PPD. To do so, we
leveraged the results from SHAP dependence plots, where we
found that the 60% to 65% of women with a positive relationship
between calories BMR and PPD relative to the prepregnancy
period (ie, a higher value of calories BMR during PPD compared
to the prepregnancy period) experienced weight gain (Table S9
in Multimedia Appendix 2). Similarly, the 85% to 90% of
women who showed a negative relationship between calories
BMR and PPD relative to the postpartum period (ie, a lower
value of calories BMR during PPD compared to the postpartum
period) showed weight loss (Table S10 in Multimedia Appendix
2). It is worth noting that previous research has suggested that
some women experience weight gain during PPD, whereas
others experience weight loss. For instance, it has been shown
that women with PPD may experience weight gain attributed
to emotional overeating [76,77]. Conversely, other studies
propose that women grappling with PPD might experience
weight loss resulting from skipped meals and overwhelming
anxiety [78]. Consistent with the individualized framework
presented in our study, we posit that it may be crucial to monitor
changes in weight (or calories BMR). For example, although
most women in our study exhibited an increase in calories BMR
during the PPD period compared to the prepregnancy period, a
percentage of women experienced a significant decrease in
calories BMR during PPD relative to the prepregnancy period.
When assessing the relationship between weight in the
prepregnancy and PPD periods in these women, we found that
these women did experience weight loss during the PPD period
relative to the prepregnancy period. Therefore, we suggest that
changes in body weight (or calories BMR), whether positive or
negative, could potentially serve as more informative indicators
of PPD. Considering the diverse manifestations of
depression—some individuals may gain weight, whereas others
may lose weight—we advocate for future studies to investigate
these changes on an individual level.

Considering previous research indicating that women with PPD
encounter challenges in reverting to prepregnancy weight
compared to those without PPD, we aimed to assess this
phenomenon in our cohorts. Strikingly, our findings did not
detect a significant difference in the time taken for women to
reach their prepregnancy weight between the PPD and non-PPD
cohorts (Table S11 in Multimedia Appendix 2). Due to the
association between calories BMR and weight, we aimed to
validate this observation using calories BMR data. Interestingly,
we observed a consistent pattern of no significant difference in
the time taken to return to prepregnancy calories BMR between
the PPD and non-PPD cohorts (Table S11 in Multimedia
Appendix 2). It is posited that the lack of difference may be
because women in the PPD cohort started at a higher average
weight during the prepregnancy period compared to those
without PPD (Table S8 in Multimedia Appendix 2). We also
suspect that the discrepancy in the results between the number
of days to return to prepregnancy weight detected via weight

measurements and calories BMR was a product of the limited
availability of weight data.

In the PPD cohort, the SHAP dependence plots for average HR,
quartile 1 HR, and minimum HR during the pregnancy versus
PPD periods also demonstrated a negative relationship,
indicating that higher values of these digital biomarkers are
inversely associated with PPD (Figure 5A). This relationship
may be ascribed to the elevated HR commonly observed during
pregnancy, which is a physiological response resulting from
vascular remodeling for promoting augmented blood flow to
the uterus [79-81]. In addition, there was a positive correlation
between the increase in lightly active minutes and the occurrence
of PPD in the pregnancy versus PPD periods, which may be
explained by an inverse relationship between lightly active
minutes and fairly active minutes or very active minutes (Figure
S5 in Multimedia Appendix 2). Specifically, a higher number
of lightly active minutes is concomitant with a decrease in the
amount of time spent in fairly active and very active physical
activities, aligning with the well-established understanding that
reductions in overall physical activity can contribute to an
increase in depressive symptoms [82]. In contrast, among
women without PPD, a notable correlation was found solely in
the prepregnancy versus PPD-equivalent periods concerning
minimum HR, where an elevation in minimum HR was linked
to the PPD-equivalent period (Figure 5B). Although a subset
of women demonstrated a significant correlation in SHAP
dependence plots concerning digital biomarkers of average HR,
quartile 1 HR, or lightly active minutes across the prepregnancy
versus PPD-equivalent, pregnancy versus PPD-equivalent, or
postpartum versus PPD-equivalent periods, the overall
proportion of women exhibiting such patterns was insufficient
to draw definitive conclusions regarding the relationship
between digital biomarkers during the prepregnancy, pregnancy,
or postpartum periods and the PPD-equivalent period (Figure
5B). We postulate that the contrasting patterns of digital
biomarkers between women in the PPD and non-PPD cohorts
imply potential differences in these biomarkers for women who
eventually experience PPD. Therefore, future studies of great
interest may seek to develop ML models during the
prepregnancy or pregnancy periods to predict a woman’s risk
of future PPD onset. These models would allow for the
prediction of PPD risk in advance.

Comparison With Prior Work
In general, previous investigations have adhered to conventional
ML strategies revolving around the development of a solitary
model. In this paradigm, a model is constructed using an
extensive patient data set encompassing individuals exhibiting
either continuous outcomes (for regression-based models) or
categorical outcomes. Subsequently, when a new patient is
introduced, the model generates predictions for the patient based
on their data and the pre-established model [83]. While this
approach carries advantages, it is beset by two primary
limitations: (1) reliance on an ample sample size and (2) neglect
to accommodate the diverse and heterogeneous spectrum of
depressive symptoms [16]. Hence, a captivating domain of
exploration has honed in on crafting intraindividual ML models.
This advancement tackles the constraints of conventional
approaches in 2 ways: first, it sidesteps the need for an extensive
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sample size given that the model is tailored to a single patient’s
data, and second, it conscientiously acknowledges the
heterogeneous spectrum of depressive symptoms through a
focused evaluation of the unique behaviors exhibited by that
specific patient.

The use of individualized models may serve as a superior
preference compared to those formulated using cohort-based
methodologies. For instance, a cross-sectional study using
traditional ML models from Fitbit data from healthy adults to
predict depression severity only showed a moderate area under
the receiver operating characteristic curve range of 0.51 to 0.66.
Moreover, while the results demonstrated commendable
specificity (0.98-1), sensitivity exhibited marked inadequacy
(0.03-0.13) [19]. Another study aimed to investigate the potential
of ML models using digital biomarkers in distinguishing
between patients with unipolar and bipolar depression against
healthy controls. However, the most successful model exhibited
an accuracy rate of 0.73 (73%) and a κ value of 0.44, which
does not indicate a notably high-performing model [84,85].
Additional investigations have also been conducted within a
cohort-based framework; nevertheless, these studies grapple
with a noteworthy drawback—they incorporated patient mood
as a predictive feature in their models. Considering that these
studies aimed to predict the severity of depression, it is
unsurprising that these models exhibited heightened performance
levels [13,86].

To effectively underscore the viability of personalized ML
models over cohort-based methods, our study directly juxtaposed
the performance of both approaches (individualized vs
cohort-based ML models) side by side. Notably, our findings
vividly showcased the superior performance achieved through
the personalized methodology for the PPD class in comparison
to conventional techniques with a cohort-based model leveraging
digital biomarkers from Fitbit for PPD detection (Table 5). This
outcome accentuated that individualized models present an
encouraging avenue for crafting ML models aimed at identifying
mood disorders.

Limitations
Although this study provides a strong foundation for using
digital biomarkers to classify PPD, it is not without limitations.
First, this study faced constraints due to the restricted number
of patients available, which hindered the implementation of
conventional ML techniques. However, due to the limited
sample size, we opted for an individualized approach, which
not only addressed the small sample size but also provided a
means to accommodate the inherent variability among
individuals [54]. Second, the process of phenotyping patients
with PPD relied on a PPD diagnosis or medication use, which
could potentially lack specificity in diagnostic codes and miss
undiagnosed cases. Third, our approach assumed a standard
pregnancy length of 9 months, which may not always align with
individual variations. Fourth, there are several layers of
confounding that occur during the different phases of pregnancy
that may indirectly influence digital biomarkers and ML models,
especially as it relates to PPD classification, such as (1)
significant hormonal changes that impact physical and mental

states; (2) metabolic changes that occur as a result of pregnancy;
(3) increased levels of stress during pregnancy and the
postpartum period; (4) modifications to one’s lifestyle, such as
food consumption during pregnancy and the postpartum period;
and (5) alterations in physical activity during the postpartum
period as a result of birthing complications [87-91]. This could
create a risk of model overfitting on general postpartum features
compared to those that are specific to the PPD period. In general,
to avoid overfitting of the training data, our method used 3
repetitions of 10-fold cross-validation, a strategy known to
reduce overfitting compared to a conventional train-test split
[92]. Fifth, this study excluded patients with chronic conditions
to mitigate the potential influence of those conditions on digital
biomarkers. Sixth, sleep data were absent in the AoURP data
set at the time of this analysis using Registered Tier v6 although
they might also hold predictive value for PPD. Seventh, there
is a possibility of false negatives in the non-PPD cohort given
the 1 in 7 prevalence of PPD. We attempted to identify women
in the non-PPD cohort with undiagnosed PPD by re-evaluating
individual model performance for the PPD-equivalent class,
where we counted approximately 10 women in the non-PPD
cohort who exhibited results with elevated model performance
(sensitivity≥0.78 [the average performance of the PPD class for
women in the PPD cohort]). However, estimating the prevalence
of undiagnosed PPD is difficult in itself; estimating undiagnosed
PPD in EHR data is additionally challenging. We suggest that
these exploratory findings require future model development,
including true negatives (ie, women who are definitely not
experiencing PPD) and false negatives for validation. Eighth,
there may be delays in PPD diagnosis due to health care–seeking
behavior. However, we observed no significant difference in
health care use during the postpartum period between the PPD
and non-PPD cohorts along with similar adherence to American
College of Obstetricians and Gynecologists postpartum visit
guidelines in the PPD and non-PPD cohorts. We posit that delays
in diagnosis due to health care–seeking behavior might be
minimal (Table S5 in Multimedia Appendix 2). These data
suggest that women in the PPD cohort exhibited a fairly normal
rate of health care use, which should minimize delay in
diagnosing PPD. Furthermore, it may be beneficial for
subsequent analyses to account for features such as seasonal
variation that may also indirectly influence behavior (which is
not possible using the Registered Tier of AoURP) in addition
to testing other ML algorithms, such as Extreme Gradient
Boosting [93,94].

Conclusions
Overall, the findings of this study suggest that it is feasible to
characterize PPD in addition to other periods of pregnancy using
passively collected digital biomarkers from consumer-grade
wearables. The development of individualized models allows
for a personalized approach to capture behavioral differences
in the form of digital biomarkers. This research lays a robust
foundation for forthcoming applications aimed at enhancing
the early detection of PPD, a condition that is often
underdiagnosed and undertreated. Moreover, on a broader scale,
it indicates the exciting potential for intraindividual ML models
to be extended to various health conditions.
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Calories BMR: calories burned during the basal metabolic rate
EHR: electronic health record
EPDS: Edinburgh Postnatal Depression Scale
GLM: generalized linear model
HR: heart rate
HSD: honest significant difference
ITSA: interrupted time-series analysis
KNN: k-nearest neighbor
mAUC: multiclass area under the receiver operating characteristic curve
ML: machine learning
PPD: postpartum depression
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SHAP: Shapley additive explanations
SVM: support vector machine
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