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Abstract

Background: Climate change increasingly impacts health, particularly of rural populations in sub-Saharan Africa due to their
limited resources for adaptation. Understanding these impacts remains a challenge, as continuous monitoring of vital signs in
such populations is limited. Wearable devices (wearables) present a viable approach to studying these impacts on human health
in real time.

Objective: The aim of this study was to assess the feasibility and effectiveness of consumer-grade wearables in measuring the
health impacts of weather exposure on physiological responses (including activity, heart rate, body shell temperature, and sleep)
of rural populations in western Kenya and to identify the health impacts associated with the weather exposures.

Methods: We conducted an observational case study in western Kenya by utilizing wearables over a 3-week period to continuously
monitor various health metrics such as step count, sleep patterns, heart rate, and body shell temperature. Additionally, a local
weather station provided detailed data on environmental conditions such as rainfall and heat, with measurements taken every 15
minutes.

Results: Our cohort comprised 83 participants (42 women and 41 men), with an average age of 33 years. We observed a positive
correlation between step count and maximum wet bulb globe temperature (estimate 0.06, SE 0.02; P=.008). Although there was
a negative correlation between minimum nighttime temperatures and heat index with sleep duration, these were not statistically
significant. No significant correlations were found in other applied models. A cautionary heat index level was recorded on 194
(95.1%) of 204 days. Heavy rainfall (>20 mm/day) occurred on 16 (7.8%) out of 204 days. Despite 10 (21%) out of 47 devices
failing, data completeness was high for sleep and step count (mean 82.6%, SD 21.3% and mean 86.1%, SD 18.9%, respectively),
but low for heart rate (mean 7%, SD 14%), with adult women showing significantly higher data completeness for heart rate than
men (2-sided t test: P=.003; Mann-Whitney U test: P=.001). Body shell temperature data achieved 36.2% (SD 24.5%) completeness.

Conclusions: Our study provides a nuanced understanding of the health impacts of weather exposures in rural Kenya. Our
study’s application of wearables reveals a significant correlation between physical activity levels and high temperature stress,
contrasting with other studies suggesting decreased activity in hotter conditions. This discrepancy invites further investigation
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into the unique socioenvironmental dynamics at play, particularly in sub-Saharan African contexts. Moreover, the nonsignificant
trends observed in sleep disruption due to heat expose the need for localized climate change mitigation strategies, considering
the vital role of sleep in health. These findings emphasize the need for context-specific research to inform policy and practice in
regions susceptible to the adverse health effects of climate change.

(JMIR Mhealth Uhealth 2024;12:e54669) doi: 10.2196/54669
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Introduction

Climate Change and Health
Anthropogenic climate change has led to a mean global
temperature increase of approximately 1 °C from preindustrial
levels, with projections indicating a continued rise if substantial
reductions in greenhouse gas emissions are not achieved; this
warming trend poses profound health risks in low-and
middle-income countries (LMICs) due to limited resources for
environmental adaptation [1,2]. An emerging body of research
indicates that wearable devices (wearables)—compact,
noninvasive electronic devices capable of continuously
monitoring various health metrics—may offer valuable insights
into assessing the health impacts of climate change, especially
in LMICs, where data on climate change and health are limited
[3-5]. Climate change disproportionately affects regions such
as sub-Saharan Africa, where increased temperatures exacerbate
vulnerabilities, adversely impacting human health and
agricultural productivity [2,6]. Kenya, the focus of our study,
is increasingly vulnerable to climate change, with forecasts
anticipating higher temperatures and more frequent extreme
weather events; yet, there remains a lack of preparedness for
necessary adaptation measures [1,7].

Need for Nuanced Understanding
In LMIC settings, a more nuanced understanding of individual
exposure to extreme weather events and the resulting health

outcomes is essential for creating tailored interventions and
allocating resources efficiently [2]. Wearable devices, given
their ability to monitor health metrics continuously and
noninvasively, provide valuable insights into the health risks
faced by vulnerable communities due to climate change [4,8].
Numerous large-scale studies in high-income settings have
explored the use of wearables in health care [9,10], highlighting
their potential as early warning systems for outbreaks of flu-like
illnesses, among other applications. Although wearables have
been utilized in studies within LMICs, notably in India [11],
there is a lack in research concerning their use in other LMICs,
particularly for assessing the impacts of climate change [3,4].

Objective of This Study
The primary aim of this study was to assess the feasibility and
effectiveness of wearable devices in continuously and
objectively monitoring the health impacts of weather exposures
on individuals, particularly in a rural setting in Siaya, Kenya
(Figure 1). We will integrate these technologies into routine
data collection methods of the Health and Demographic
Surveillance Systems (HDSS) in Siaya, Kenya, aiming to fill
the data void in LMICs by providing measured health metrics
that can approximate health impacts, thus offering
individual-level, objectively measured health responses to
weather exposures.
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Figure 1. Schematic overview of the observational case study. Reference values are according to Parsons [12] and the National Weather Service [13].
Wearables depiction provided by Withings and e-TakesCare. (A) Methodology involves 83 participants from rural Siaya Health and Demographic
Surveillance System, Kenya, equipped with wearables for a 3-week data collection period (total study duration: 9 weeks), coupled with local climate
monitoring via a state-of-the-art weather station. (B) Collected data include metrics such as sleep duration, step count, pulse rate, and body temperature,
as well as environmental data. (C) Results explore the reliability, completeness, and validity of data, with implications for climate change and health
research. HDSS: Health and Demographic Surveillance System; HR: heart rate; WBGT: wet bulb globe temperature.

Methods

Ethics Approval
Ethics approval was granted by the Kenya Medical Research
Institute (KEMRI/RES/7/3/1) and the ethics committee of the
University Hospital Heidelberg, Germany (S-294/2019). This
study is reported in accordance with the STROBE
(Strengthening the Reporting of Observational Studies in
Epidemiology) statement [14].

Study Design and Participants
This study employs an observational case study methodology
in Siaya, a rural county situated in western Kenya, conducted
from September 2021 to April 2022. For comprehensive details
on the study protocol and a related case study from Burkina
Faso, please refer to [15,16]. The Siaya county, about 40 km
from Kisumu and 1000 meters above the sea level, hosts the
Kenya Medical Research Institute–operated Siaya HDSS,
covering an area of 700 km² and serving a population of around
260,000 people [16,17]. The HDSS has over 20 years of
retrospective health and demographic data since 1990. Our
study’s sample population was stratified by gender, age, and
wearable type, with age categories of 6-16 years, 17-45 years,
and >45 years. Participants were assigned to either a group with
the Withings Pulse Heart Rate (WPHR) wearable or a group
using WPHR and the Tucky thermometer patch. Eligibility
criteria included age >6 years, living within 5 km of Wagai
health center, not planning to move during the study, and
providing informed consent. Recruitment methods varied by

age, with random selection for those older than 22 years and
snowball sampling for those aged 6-22 years.

Procedures
The study protocol required participants to provide demographic
and anthropometric data for wearable calibration, collected
during each 3-week study cycle at the Wagai health center.
Participants received a compensation of 200 Kenyan shillings
(US $1.82) for travel, a smartphone with mobile data for data
sync, and a battery pack for charging the wearables. Field
personnel conducted weekly visits for data synchronization.
Participants wore either the WPHR or both WPHR and a
thermometer patch, with WPHR monitoring activity, sleep, and
pulse rate, and the patch measuring body shell temperature at
night (for detailed information, see Multimedia Appendix 1
[18,19]). The initial inventory consisted of 22 WPHR and 25
thermometer patches. Before reuse, both devices were cleaned
and sanitized. This study also used a weather station in Wagai
to record various weather parameters. The wet bulb globe
temperature (WBGT), indicating heat strain, was calculated
using a specific formula incorporating wet bulb temperature,
global radiation, relative humidity, and air temperature [20]:

WBGT = (0.7*w) + (0.2*[0.009624*y – 0.00404*z
+ 1.102*x – 2.2776]) + (0.1*x)

where w represents wet bulb temperature, y represents global
radiation, x represents relative humidity, and z represents air
temperature.
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Statistical Analysis
Participants were categorized into 4 age groups: school children
(6-11 years), adolescents (12-18 years), young adults (19-45
years), and older adults (>45 years). BMI was classified as

underweight (<18.5 kg/m2), normal weight (18.5-24.9 kg/m2),

and overweight (>25 kg/m2), following World Health
Organization guidelines [21]. A descriptive analytical approach
was used for demographic details and participant dropouts. BMI
for adults was measured at recruitment. Wearable condition and
wear were tracked for reliability assessment, and community
interviewers’ implementation challenges and infrastructure
needs were thematically analyzed.

We analyzed 4 variables to ensure data quality: sleep duration,
total step count, heart rate, and body shell temperature. The
measured pulse rate was assumed to be equivalent to the
participant’s heart rate. We systematically excluded data that
showed significant bias or anomalies such as unusually high or
low heart rate readings (>expected maximum heart rate or <30
bpm) [22,23] and body shell temperature measurements
indicative of protein denaturation or hypothermia-triggered loss
of consciousness [24] (detailed criteria for data analysis can be
found in Multimedia Appendix 2). Expected maximum heart
rate was derived using the equation 208 – 0.7 × age [23]. Based
on literature and the WPHR user guide, sleep measurements
less than 3 hours (including naps) and those exceeding 13 hours
were excluded as nonvalid. Wake times recorded by the
wearable were not considered part of sleep duration [25,26].
Sleep episodes exceeding 3 hours were combined if the last
episode began before noon on the following day. Differences
across gender, study arm, and BMI for adult participants as well
as across age groups were analyzed using Welch 2-sided t test
and Mann-Whitney U test, with a 95% CI for error calculation.

To evaluate data completeness, we assessed the proportion of
study duration covered by the measurements of the 4 key
variables from wearables: sleep duration, step count, heart rate,
and body shell temperature. The criteria for data completeness
were based on existing literature (detailed in Multimedia
Appendix 2 [15,22-28]). For external data validity, we combined
individual measurements into a descriptive summary, including

data from participants with at least 50% completeness per
variable.

We descriptively analyzed the weather profile during the study
period and correlations between weather events and adult study
participant’s health metrics that had at least 50% data
completeness (sleep duration, step count, and body shell
temperature). The measurements of WBGT and heat index were
categorized using the reference values according to Parsons
[12] and the National Weather Service [13]. We employed
unadjusted linear regression and multilinear regression analyses
[4,8,29-32] considering factors such as maximum daily and
minimal nighttime heat and heavy rainfall. The multilinear
models further considered gender, age, and BMI as confounders.
This study did not account for within-subject trends or the
effects of prior day heat stress due to the limitations of the
21-day duration of wearable usage by each participant. Analyses
were conducted on R4.1.2 (RStudio version 4.1.2; PBC) with
stats3.6.2 for statistics and ggplot2 and car packages for

visualization, providing standard error and adjusted R2 for error
quantification and model assessment (see Multimedia Appendix
3 for variable plots and residual plots of the regression models).
Numerical values with final digits <5 were rounded down, while
numerical values with final digits >4 were rounded up.

Results

Demographics of the Participants
We initially enrolled 86 participants in our study; 3 withdrew
their consent, resulting in 83 participants for analysis (Figure
2). In the 2 study arms, 34 (41%) participants wore solely the
WPHR wearable, while the remaining 49 (59%) wore both the
WPHR and the thermometer patch. The mean age of the
participants was 33.3 (SD 19) years (range 6-83 years). A further
breakdown of this age distribution showed that our study
involved 14 school children (17%, age range 6-11 years), 7
adolescents (8%, age range 12-18 years), 41 young adults (49%,
age range 19-45 years), and 21 older adults (25%, age >45
years). Women comprised 51% (42/83) of the all the
participants. In the adult demographics, which accounted for
75% (62/83) of the participants, the average BMI calculated

was 23.8 (SD 4.7) kg/m2 (range 16.0-37.4 kg/m2).
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Figure 2. Participant stratification in this study.

Wearables’ Reliability
Of the 22 WPHRs and 25 thermometer patches initially
deployed, 7 (32%) WPHRs and 3 (12%) thermometer patches
malfunctioned, primarily from physical damage. Technical
issues, including data synchronization, were frequent initially
but reduced over the study’s duration. Physical damage was the
predominant reason for WPHR failures, causing 5 (23%) devices
to malfunction due to broken components or overall failure.
One WPHR and its charger (5% of the total) were lost. As for
thermometer patches, 2 (8%) had damaged charging ports, 1
(4%) was lost, and 2 (8%) had nonretrievable data, despite being
intact.

Data Completeness
Data quality varied across health metrics and participant
demographics. Accelerometer metrics such as step count and
sleep duration exhibited high completeness, registering 86.1%
(SD 18.9%) and 82.6% (SD 21.3%), respectively.
Photoplethysmography-based heart rate measurements lagged
behind at 7% (SD 14%), while body shell temperature recorded
36.2% (SD 24.5%) completeness. Data completeness was
calculated as percentage of study duration covered with
measurements in distinct intervals for all participants. Sleep
data completeness varied by age: younger adults (19-45 years;
n=41) recorded lower data completeness (79%) than older adults
(>45 years; n=21; data completeness 90%) (t test: P=.02; 95%
CI –0.20 to –0.02; Mann-Whitney U test [MWU] test: P=.03;
95% CI –0.14 to 0.00). Further, adult women (n=33) showed
less data missingness (87%) than adult men (n=29, 78%) (MWU

test: P=.03; 95% CI 0.00-0.14). Heart rate data completeness
in adult women (12%) was significantly higher than that in men
(2%) (t test: P=.003; 95% CI 0.04-0.17; MWU test: P=.001;
95% CI 0.01-0.04). Body shell temperature data completeness
for school children (6-11 years; data completeness 47%) was
higher than that for adolescents (12-18 years; data completeness
23%) (t test: P=.03; 95% CI 0.03-0.45; MWU test: P=.03; 95%
CI 0.05-0.48). After correcting for multiple tests using Holm
sequential Bonferroni method [33], only the difference in the
completeness of heart rate data between men and women
remained statistically significant (t test: P=.02; MWU: P=.004).
For detailed data measurements stratified by age, gender, study
arm, and BMI, as well as data completeness results corrected
for multiple testing, refer to Multimedia Appendix 4 [33].

Environmental Exposure
During the 204 days study, rainfall was recorded on 97 (47.6%)
days. Out of these, heavy rain (≥20 mm per day) was recorded
on 16 (7.8%) days. The average daily heat index and WBGT
were 22.1 (SD 1.1) °C and 20 (SD 0.7) °C, respectively. The
heat index caution limit (26.67 °C or 80 °F) was reached on 194
(95.1%) of 204 days, and the extreme caution limit (32.22 °C
or 90 °F) exceeded on only 2 (<1%) days. For the WBGT,
reference values for outdoor work with very high metabolic
rates were met on 197 (96.6%) days and for work with high
metabolic rates on 96 (47.1%) days. Figure 3 illustrates the
instances where individual reference values for WBGT, as
proposed by Parsons [12], and the heat index, as per the
standards of the National Weather Service [13], were exceeded
(Table 1).

JMIR Mhealth Uhealth 2024 | vol. 12 | e54669 | p. 5https://mhealth.jmir.org/2024/1/e54669
(page number not for citation purposes)

Matzke et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Average daily wet bulb globe temperature in °C (dark blue line) and average daily heat index in °C (orange line) with daily ranges (daily
wet bulb globe temperature range in blue ribbon; daily heat index range in orange ribbon). WBGT: wet bulb globe temperature.

Table 1. Allocation of the respective reference values for wet bulb globe temperature and heat index to the individual risk levels for heat-related diseases
depending on the type of work performed and listing of the proportion of days in the observed study period in which these reference values were
exceeded. Reference values are according to Parsons [12] and the National Weather Service [13].

Days with exceedance (n=204), n (%)Reference

Wet bulb globe temperature reference [12]

197 (96.6)Limit for work with a very high metabolic rate (metabolic rate>260 W/m2)

96 (47.1)Limit for work with a high metabolic rate (200 W/m2<metabolic rate<260 W/m2)

0 (0)Limit for work with a medium metabolic rate (130 W/m2<metabolic rate<200 W/m2)

Heat index reference [13]

194 (95.1)Caution limit (26.67 °C/80 °F)

2 (0.1)Extreme caution limit (32.22 °C/90 °F)

0 (0)Danger limit (39.44 °C/103 °F)

Data Applicability: Heat Exposure and Health
Outcomes
The unadjusted regression analysis for daily step count indicated
a significant positive correlation with maximal daily WBGT
and heat index (WBGT: estimate 974.4, SE 242.3; P<.001; heat

index: estimate 317.6, SE 152.4; P=.04) with a low R2 value

(WBGT: R2=0.014; heat index: R2=0.003). On days without
heavy rainfall, a similar positive yet nonsignificant correlation
was observed for daily step count (estimate 1466.2, SE 852.9;

P=.09; R2=0.002). The analysis for daily maximal temperature

did not demonstrate any predictive power for step count

(R2=–0.001; estimate 87.54, SE 145.08; P=.55). After a
logarithmic transformation of the dependent variable (step count)
due to a funnel shape observed in residuals, the
confounder-adjusted models revealed a significant positive
relationship with the maximum WBGT (estimate 0.06, SE 0.02;

P=.008; R2=0.248) (see Figure 4 for details). Other heat
indicators showed positive yet nonsignificant associations with
daily step count. Age and BMI emerged as significant predictors
of daily step count (P<.001).
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Figure 4. (A) Mean daily step count of adult participants per day and season, wherein dry season is highlighted in orange and rainy season is highlighted
in blue. (B) Mean daily sleep duration per adult participant per day and season. Trend lines are added using locally weighted scatterplot smoothing;
seasons are classified according to Odhiambo et al [17].

For sleep duration in minutes, the linear regression model
revealed a negative, however nonsignificant, correlation with
minimal nighttime temperature and heat index at small P values,
but with low predictive power (temperature: estimate –5.61, SE

3.24; P=.08, R2=0.002; heat index: estimate –4.77, SE 2.91;

P=.10; R2=0.002). For minimal nighttime WBGT and sleep
duration, simple linear regression had no explanatory power

(R2=–0.001, estimate –0.67, SE 2.98; P=.82). Similarly, the
multiple linear regression analysis indicated that an increase in
minimum nighttime temperatures and nightly minimal heat
index corresponded with nonsignificant reductions in sleep
duration, that is, by 5.56 minutes per °C increase (P=.09; SE

3.234; R2=0.006) and 4.50 minutes per °C increase (P=.12; SE

2.905; R2=0.006), respectively. We did not detect a significant
relationship between nightly minimum WBGT and sleep

duration (estimate 0.07 minutes; P=.98; SE 2.985; R2=0.003).
Age proved to be a significant determinant of sleep duration
across all models (P=.03).

Unadjusted linear regression analysis of body shell temperature
and minimal nighttime heat had no explanatory power giving

their negative adjusted R2 of –0.003 across all heat indicators
(temperature: estimate 0.05, SE 0.07; P=.51; WBGT: estimate
0.05, SE 0.07; P=.51; heat index: estimate 0.04, SE 0.07; P=.53).
The multiple linear regression models of nightly body shell
temperature did not show significant results either, however at

relatively high explanatory power, as indicated by their R2 values
(0.168, 0.170, and 0.170, respectively; temperature: estimate
0.03, SE 0.07; P=.63; WBGT: estimate 0.05, SE 0.07; P=.42;
heat index: estimate 0.05, SE 0.06; P=.41, respectively). Gender
(P<.001) and BMI (P=.04) were significant predictors in all 3
models.

The additional analysis incorporating the temporal confounder
of weekday or weekend, detailed in Multimedia Appendix 5,
did not reveal any significant impact in the models. Regression
models were not applied to heart rate measurements, as only
the data sets of the 3 participants met the required 50%
completeness. A summary of all the multiple regression models,
including estimates, standard errors, P values, and other
considered confounders for each health parameter and the
associated extreme weather indicators is provided in Table 2.
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Table 2. Regression analysis results for health parameters.a

Precipitation <20 mmHeat indexWBGTbTemperatureHealth parameter, variable

P valueEstimate (SE)P valueEstimate (SE)P valueEstimate (SE)P valueEstimate (SE)

Step count

<.00110.79 (0.16)<.00110.12 (0.45)<.0019.26 (0.62)<.00110.47 (0.41)Intercept

.250.06 (0.05).270.06 (0.05).280.05 (0.05).250.06 (0.05)Gender (men)

<.001–0.02 (0.00)<.001–0.02 (0.00)<.001–0.02 (0.00)<.001–0.02 (0.00)Age

.360.07 (0.08).080.03 (0.01).0080.06 (0.02).330.01 (0.01)Maximal daily weather measure-
ment

<.001–0.03 (0.01)<.001–0.03 (0.01)<.001–0.03 (0.01)<.001–0.03 (0.01)BMI

Sleep duration

——c<.001520.52 (54.42)<.001438.98 (52.84)<.001537.52 (58.98)Intercept

——.831.32 (6.01).880.93 (6.01).811.42 (6.01)Gender (men)

——.03–0.38 (0.17).03–0.38 (0.18).03–0.39 (0.17)Age

——.12–4.50 (2.91).980.07 (2.99).09–5.56 (3.23)Minimal nightly weather measure-
ment

——.101.00 (0.61).091.03 (0.61).091.02 (0.61)BMI

Body shell temperature

——<.00136.02 (1.19)<.00135.98 (1.25)<.00136.31 (1.34)Intercept

——<.001–0.72 (0.12)<.001–0.72 (0.12)<.001–0.72 (0.12)Gender (men)

——.410.05 (0.06).420.05 (0.07).630.03 (0.07)Minimum nightly weather measure-
ment

——.400.00 (0.01).440.00 (0.01).410.00 (0.01)Age

——.04–0.04 (0.02).04–0.03 (0.02).04–0.03 (0.02)BMI

aThis is a logarithmically transformed model for step count and standard models for sleep duration and body temperature. The table includes estimates,
standard errors, and P values for each health parameter—sleep duration, step count, and body temperature—along with their associated extreme weather
indicators. Health parameters were included of adult participants having at least 50% data completeness for the respective health parameter. Depending
on the model, the weather indicators considered were temperature, heat index, wet bulb globe temperature, and precipitation. Additionally, the multiple
linear regression models incorporated gender, age, and BMI, as the data validity analysis demonstrated the significance of these confounders.
bWBGT: wet bulb globe temperature.
cNot available.

Discussion

Principal Results
The findings of our study highlight the advantages and
challenges associated with the use of wearable devices for the
continuous monitoring of vital signs in rural sub-Saharan
populations. We found using wearables a pertinent approach
for understanding individual impacts of weather exposures. Our
research emphasizes the feasibility and effectiveness of
integrating wearable technology into health research, in
particular, to understand individual exposures and activity
patterns such as daily steps and sleep duration. We identified a
correlation between weather exposures and various health
metrics. Notably, there is a positive relationship between daily
step count and the maximum WBGT as well as a potential
negative association between nighttime temperatures and sleep
duration. These findings contribute to our understanding of the
possible health impacts of climate change, with a particular
focus on rural regions in western Kenya.

Comparison With Prior Work
Our study shows environmental exposures such as frequent
heavy rainfall and extreme heat, with approximately 20.7%
(4044/19,576) of our weather station readings surpassing the
heat index caution threshold [13]—a pattern consistent with
WBGT findings. We found a strong positive correlation between
daily step count and maximum WBGT across both models.
Additionally, a positive relationship with the heat index was
observed in the unadjusted model. Although many studies
indicate a negative link between heat and physical activity [30],
the relationship between temperature and activity levels remains
inconsistent. This discrepancy necessitates further investigation.
For instance, a study [34] conducted in Qatar utilizing wearable
pedometers discovered negative correlations between daily step
count and both precipitation and temperature. However, that
study reported varying associations with WBGT depending on
the analytical model employed. Our findings emphasize the
need for deeper investigation into this relationship [4]. External
factors such as seasonal farming activities illustrated in Figure
4 or specific mitigation practices might significantly influence
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this correlation and therefore merit additional investigation [17],
especially given the scarcity of objectively generated data on
activity levels and physical activity profiles in rural sub-Saharan
African populations [35].

In our study, we observed a negative trend between minimum
nighttime temperature and sleep duration as well as between
the minimal nighttime heat index and sleep duration, but these
relationships were not statistically significant in either model.
However, this trend aligns with previous research that has linked
warmer nights to shorter sleep durations, suggesting that climate
change could significantly affect sleep health [4,8,32]. For
example, a comprehensive study by Minor et al [8] utilizing
sleep data of 47,628 participants across 68 countries found a
correlation between shorter sleep duration and warmer nights.
In line with these findings, all studies in the scoping review of
Koch et al [4] reported a negative correlation between sleep
duration and heat. These studies underscore the risk of
insufficient sleep, in light of the expected impact of global
warming due to climate change on local heat exposure [8]. The
review of Caddick et al [36] suggests that optimal ambient
temperatures for sleep lie between 17 °C and 28 °C, with
40%-60% humidity, although this may vary based on other
factors. Insufficient sleep, whether due to short duration or
disruptions, can negatively affect human health, potentially
compromising the immune system [37] and increasing
cardiovascular risk [38].

Regarding body shell temperature, our study did not find
significant associations with average nightly body shell
temperature and heat. However, previous studies [4,31] have
suggested a possible connection. In our analysis, gender and
age emerged as critical factors in all 3 models, emphasizing the
importance of demographic and physiological factors in body
temperature regulation. The inconclusive results in our study
might be attributed to the limited sample size and issues with
data integrity. Furthermore, natural thermoregulatory processes
such as evaporation and the thermoregulatory behaviors of
participants should be considered when evaluating body shell
temperature [24].

Our study shows improved data completeness compared to
previous research in Burkina Faso [15] and the United States
[27], especially in thermometer patch data, likely due to
enhanced adhesion using medical tape [15]. However, heart rate
data showed lower completeness, which may have been affected
by technical factors such as the proximity of the sensors to the
skin, the impact of motion, and potential device errors. Similar
studies using certain wearable devices reported data loss due to
wearable malfunctions such as connection issues [39]. Other
factors such as blood vessel thickness, skin thickness, obesity,
and age might also affect measurement quality and
completeness, potentially explaining the gender-specific
differences observed in our data, where factors such as thinner
skin in women or older populations or thicker blood vessels in
men could enhance photoplethysmography signals [40,41].
Other factors that have been mentioned in the scientific literature
are the skin pigmentations of the participants; several studies
have noted a correlation between the Fitz-Patrick skin scale and
heart rate measurements via photoplethysmography, suggesting
reduced heart rate measurement accuracy in individuals with

higher Fitz-Patrick scale values [40,42], although some studies
[43] did not find this correlation. To mitigate this, wearables
are starting to implement enhanced photoplethysmography
sensors or infrared measurements [42]. Moreover, gender may
present contradictory effects on the data collection [40]. The
influence of BMI on signal quality remains uncertain [40], with
additional variables such as blood vessel dilation during physical
activity also playing a role [40]. Participant adherence challenges
were also observed, as some felt uncomfortable wearing the
device continuously, especially at night.

Our research aligns with previous studies on average daily
activity and sleep duration, particularly regarding the influence
of age [15,32,34]. Although body shell temperature readings
aligned with physiological norms, indicating their usefulness
in identifying individual anomalies [24], they were notably low,
suggesting potential nighttime evaporation processes [24]. As
with prior research, factors such as gender and BMI affected
body shell temperature [4,24], necessitating further research to
comprehensively grasp temperature impacts.

Limitations
The internal validity of the wearables used in this study was not
evaluated; however, models older than the WPHR used here,
some requiring manual sleep initiation, have shown largely
satisfactory results. Gruwez et al [44] identified a significant
correlation between Withings wearables and a research-grade
actigraph for step count during daily activities. However, a
review by Fuller et al [45] revealed an underestimation of step
count in Withings wearables in most examined studies.
Comparisons of Withings wearables to polysomnography
revealed no significant differences in sleep duration
measurements [39], and various studies have noted consistent
correlations with polysomnography-recorded total sleep duration
[39,44]. Regulatory constraints restricted the recruitment of
younger participants in our study, affecting its generalizability.
Furthermore, smartphone usage restrictions in Kenyan boarding
schools, especially pertinent to the substantial under-15 years
demographic, could pose challenges for future research [17].
In addition, as explained in the methods section, only the data
sets of the adult participants were analyzed with regard to
weather effects. Our study has other limitations such as
uncorrected multiple testing and potential influences of the
COVID-19 pandemic on data. In Kenya, the COVID-19
pandemic caused governmental restrictions on public life such
as nighttime curfew until October 20, 2021, which affected 22
(26.5%) participants during their study participation—likely
influencing the data collected [46]. Research during the 2020
COVID lockdowns reported reduced total sleep duration and
increased napping [47], and a South African study observed
decreased mobility, particularly on weekends [48]. Future
research should consider a wider range of variables, account
for the carryover effects of prior day heat strain [49], and address
technical challenges such as inaccessible raw data, software
issues, high data missingness for heart rate due to factors such
as skin type [40], and possible algorithmic biases. Our study
does not account for factors such as clothing, air circulation,
bedding, and individual differences such as gender, which can
influence the relationship between heat and sleep duration [36].
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Conclusions
Our study shows the potential of wearable devices to monitor
vital signs and assess the impact of environmental exposures
on health in rural sub-Saharan settings, with implications for
understanding the nuanced effects of climate change. Despite
a robust data set, our findings indicate the need for improved
wearable technology to ensure data completeness across diverse
demographic groups, acknowledging the impact of factors such
as age, gender, and BMI. The positive correlation between
physical activity levels and high WBGT offers new insights
into behavior during extreme weather conditions, while the

nonsignificant trends in sleep duration in relation to temperature
call for further investigation. These observations are crucial for
public health strategies in climate-vulnerable regions, guiding
the integration of wearables in longitudinal health monitoring
and climate resilience research. Future studies should expand
on the relationship between weather and health outcomes,
including a broader demographic and addressing technical
challenges identified in wearable data collection. This research
contributes to a growing body of knowledge that will inform
both technological innovation in health monitoring and the
development of interventions to mitigate the health impacts of
global climate dynamics.
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