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Abstract
Background: ViSi Mobile has the capability of monitoring a patient’s posture continuously during hospitalization. Analysis
of ViSi telemetry data enables researchers and health care providers to quantify an individual patient’s movement and
investigate collective patterns of many patients. However, erroneous values can exist in routinely collected ViSi telemetry data.
Data must be scrutinized to remove erroneous records before statistical analysis.
Objective: The objectives of this study were to (1) develop a data cleaning procedure for a 1-year inpatient ViSi posture
dataset, (2) consolidate posture codes into categories, (3) derive concise summary statistics from the continuous monitoring
data, and (4) study types of patient posture habits using summary statistics of posture duration and transition frequency.
Methods: This study examined the 2019 inpatient ViSi posture records from Atrium Health Wake Forest Baptist Medical
Center. First, 2 types of errors, record overlap and time inconsistency, were identified. An automated procedure was designed
to search all records for these errors. A data cleaning procedure removed erroneous records. Second, data preprocessing was
conducted. Each patient’s categorical time series was simplified by consolidating the 185 ViSi codes into 5 categories (Lying,
Reclined, Upright, Unknown, User-defined). A majority vote process was applied to remove bursts of short duration. Third,
statistical analysis was conducted. For each patient, summary statistics were generated to measure average time duration of
each posture and rate of posture transitions during the whole day and separately during daytime and nighttime. A k-means
clustering analysis was performed to divide the patients into subgroups objectively.
Results: The analysis used a sample of 690 patients, with a median of 3 days of extensive ViSi monitoring per patient. The
median of posture durations was 10.2 hours/day for Lying, 8.0 hours/day for Reclined, and 2.5 hours/day for Upright. Lying
had similar percentages of patients in low and high durations. Reclined showed a decrease in patients for higher durations.
Upright had its peak at 0‐2 hours, with a decrease for higher durations. Scatter plots showed that patients could be divided
into several subgroups with different posture habits. This was reinforced by the k-means analysis, which identified an active
subgroup and two sedentary ones with different resting styles.
Conclusions: Using a 1-year ViSi dataset from routine inpatient monitoring, we derived summary statistics of posture
duration and posture transitions for each patient and analyzed the summary statistics to identify patterns in the patient
population. This analysis revealed several types of patient posture habits. Before analysis, we also developed methodology
to clean and preprocess routinely collected inpatient ViSi monitoring data, which is a major contribution of this study. The
procedure developed for data cleaning and preprocessing can have broad application to other monitoring systems used in
hospitals.
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Introduction
Monitoring the level of mobilization and its changes over
time provides critical health information on hospitalized
patients. For example, timing of resuming certain postures
after surgery can reflect the pace and quality of recov-
ery [1,2]. A traditional method for tracking posture is
direct observation, which can be done by a nurse who
directly observes and records the patient’s posture manually.
However, this is time-consuming and resource-intensive,
especially when the observers are tracking multiple patients
on a ward [3]. Other limitations of direct observation are
subjective reports and intermittent recordings, which may also
suffer from bias and random human error [1,4].

To overcome these limitations, some hospitals utilize
monitoring systems that use sensors (eg, accelerometer,
infrared, and radio frequency identification sensors) to collect
measurements for tracking a patient’s posture or movement
[1,3,5-7]. The collection of measurements by these sensors
is continuous and automated. A trained algorithm in the
device converts the collected sensor data to a patient’s posture
objectively. The output reports the patient’s postures and
activities instantaneously. These data can be used to derive
the amount of time a patient spends on bed rest. Moreover,
posture monitoring records before and after surgery could be
compared to identify whether a patient is having a smooth
recovery or a poor one that requires intervention.

Statistical analyses of large datasets collected from
many patients using these monitoring systems can further
reveal patterns in patients’ condition and behavior that can
be useful for medical research and operational guidance.
There have been preliminary results in connecting hospi-
tal sensor observations and patients’ condition statistically.
For example, recent accelerometer-based studies found that
inpatients with acute illness were highly inactive, spending
93%-98.8% of their stay sedentary [5]. Researchers have also
used posture monitoring to capture changes in a patient’s
mobility over the course of their hospital stay and use it
as an indicator of recovery rate. In a study of inpatients
aged 60 years or older admitted from the emergency room,
Theou et al found that those patients classified as less mobile
upon admission experienced an increase in their upright
time during their hospital stay, possibly corresponding to an
improvement in their health condition [8].

A real-time monitoring system that has demonstrated
promise in the hospital setting is ViSi Mobile (Sotera
Wireless) [9-12]. This device continuously monitors a
patient’s vital signs and posture. It can be used to capture
walking periods, as well as more subtle movements, such
as getting out of bed or changing posture in bed. To the
best of our knowledge, there are only 3 published studies
analyzing ViSi posture data of hospitalized patients. Restrepo
et al tested the accuracy of ViSi posture measurements by
comparing them to those from direct observation [3]. This

study found that ViSi can accurately classify certain static
postures, such as lying down and sitting. However, it can
have systematic errors in classifying the activity of walking.
In an analysis of 2 randomized trials with patients recovering
from abdominal surgery, Rivas et al examined the relation-
ship between self-reported pain score and ViSi-measured
mobility [1]. The authors estimated the decreasing rate of
change in mobility with increasing pain score, and they also
found that lower mobility was associated with more postoper-
ative complications. In a study of ViSi data from noncardiac
surgery patients, Turan et al found that increased mobility
in the 48 hours postoperation was associated with fewer
postoperative complications and shorter length of hospital
stay [13].

This study sought to characterize posture habits in a large
hospitalized patient population, including both surgery and
nonsurgery patients. Another purpose of the study was to
conduct quality control of the ViSi posture data because
the routine hospital measurements originally collected for
operational purposes contain different types of errors that
require careful treatment. Overall, the study objectives were
to (1) develop a data cleaning procedure for a large inpatient
ViSi posture monitoring dataset with a duration of 1 year, (2)
consolidate posture codes into categories, (3) derive concise
summary statistics from the continuous monitoring data, and
(4) study types of patient posture habits using summary
statistics of posture duration and transition frequency.

Methods
Ethical Considerations
This study used a deidentified dataset and was approved by
the Wake Forest School of Medicine Institutional Review
Board (IRB00051033). No patient consent was required. No
compensation was provided.
Data Description
Since 2015, real-time posture data have been collected
routinely using the ViSi Mobile System for patients on
postoperative surgical wards and acute medical inpatient
wards at Atrium Health Wake Forest Baptist Medical Center
in North Carolina, United States of America. The starting
point of ViSi monitoring is at admission to the hospital ward.
The ViSi device has a wrist module, upper arm module,
and chest module, each of which contains a 3-axis acceler-
ometer [14]. Posture is estimated using data collected by the
accelerometer sensors. In addition, other sensors on the ViSi
device simultaneously measure blood pressure, heart rate,
pulse rate, respiratory rate, and oxygen saturation.

This study focused on the ViSi posture data collected
at Atrium Health Wake Forest Baptist Medical Center in
2019 from both surgery and medicine services. The ViSi
Mobile system converts accelerometer measurements into 15
categories of posture using a proprietary algorithm developed
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by Sotera Wireless. Each category is presented by a code
(Multimedia Appendix 1). A code can describe a single
activity, such as walking (WLK). Some codes may combine
more than one position or situation into one posture cate-
gory. For instance, code U90 for upright can be sitting or
standing. Code U45, representing a reclined position, may
correspond to sitting in a reclined chair or lying when the bed
is in a reclined position. On the other hand, for lying down,
multiple codes are used to distinguish different postures,
such as supine (LSP), prone (LPR), right side (LRS), and
left side (LLS). FALL indicates that a patient may have
fallen (this code was not observed in the 2019 ViSi posture
dataset). UNK indicates that the patient’s posture could not be
determined by the proprietary algorithm and was categorized
as unknown. The ViSi Mobile system also allows the user
(patient, nurse, provider) to self-report the patient’s posture.
Self-reported posture follows the same code pattern, prefixed
by an “S-.” For instance, self-reported upright is “S-U90.”

The ViSi Mobile system outputs a posture recording every
15 seconds. A timestamp is used to identify the time of a
given recording. A recording can be a single posture code (eg,
“WLK”), or it can be a permutation of 2 or more codes (eg,
“U45 U90”) if the patient performed multiple postures during
the 15-second window. In the latter case, the permutation of
codes is listed in the order that the postures were performed.
For example, “U45 U90” indicates that the patient changed
their position from reclined to upright, which is an outcome
beyond the original 15 categories. Therefore, the permuta-
tion of 2 or more codes can generate many other possible
outcomes of a patient’s posture recording. In the dataset, there
were 185 different outcomes in the posture recordings.

A patient’s ViSi posture data are saved in several files.
All files for a given patient can be identified by the patient’s
medical record number (MRN). Each file usually contains
data from several ViSi devices because each device needs to
be charged daily and replaced with another one for contin-
uous observation [11,12]. Within each file, each posture
recording is labeled by its timestamp and the device serial
number. The files vary in length, including the number of
posture recordings and the number of ViSi devices.
Data Cleaning
The study team conducted a thorough check of the data,
which led to the identification of 2 problems. First, “overlap”
of posture data was noted for some patients. As described
previously, a given patient’s records are contained in several
files identified by their MRN. For some patients, some data

recordings contained in one file overlap with recordings
contained in another file. These overlapping recordings have
the same timestamps but different readings. They usually
come from ViSi devices with different serial numbers. We
call this the “overlap problem.” About 10% of patients in
the dataset exhibited this problem. The overlap period can
be long, up to days. Since a patient cannot wear multiple
ViSi devices at the same time, overlap should not occur.
We speculate that overlap could happen when a recharged
ViSi device is reassigned to another patient without updat-
ing the MRN. Therefore, when overlap occurs, some data
from another patient has likely been misassigned to the given
patient.

Second, we identified an inconsistency between the time
of hospital stay and the period of ViSi measurements for
some patients. For each patient, we compared the ViSi
posture data to the admission and discharge times to confirm
that the patient’s data fell within this time window. How-
ever, some patients had ViSi data before their admit time
or after their discharge time, which will be referred to as
the “inconsistency problem.” The mismatch could be large in
some cases, up to days. We believe that there are 3 possi-
ble reasons for mismatch. One possibility is that the admit
and discharge times are not exact. Another is that ViSi data
are sometimes collected before admission, resulting in data
before the admit time. A third possibility is that the data may
have come from another patient. The first 2 situations are
benign, while the third situation is problematic and needs to
be addressed. Based on the available information, it is not
possible to determine which situation has occurred.

The following strategies were used to address these 2
problems. For the overlap problem, all overlapping records
were flagged in all files for each individual patient. Data were
not immediately discarded, given that one of the data streams
could actually be correct. However, following discussion
with in-hospital data managers and the device provider, there
was no objective method to identify which data stream was
correct. Therefore, this study excludes all records flagged
as overlapping. A similar approach was used to address the
inconsistency problem. Any data before the admission time or
after the discharge time was flagged. The statistical analysis
in this paper does not include flagged data. Figure 1 shows
the sample size before and after we removed the flagged
records for the inconsistency and overlap problems. Overall,
the 2 procedures excluded 9.9% (132/1330) of patients and
27.6% (8,778,641/31,842,773) of posture recordings.
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Figure 1. Flow diagram of data cleaning procedure. Data cleaning included two stages: (1) corrections for the inconsistency problem, and (2)
corrections for the overlap problem. We show the number of patients and number of posture recordings remaining after each stage.

Data Preprocessing
Before data analysis, 2 steps of preprocessing were per-
formed to consolidate the possible posture outcomes and to
remove short inconsequential fluctuations. First, we con-
solidated the 185 possible posture outcomes into a more
manageable set of 5 groups. These five groups are Upright,
Reclined, Lying, User-defined, and Unknown. Compared to
the original 185 outcomes, we believe these 5 groups are
more easily interpretable and useful to clinicians and analysts.
In this consolidated system, each original posture recording
(single code or permutation of codes) falls into 1 of the
5 groups. Table 1 provides the definitions of the posture

groups, including their connections with the original posture
recordings. Essentially, any posture recording that includes
a self-reported code goes to the group User-defined. Any
recording that includes the UNK code is classified into group
Unknown. The group Lying contains posture recordings that
are composed of lying codes only (ie, codes beginning with
L). Of the remaining recordings, any that has a “WLK” or
“U90” is put in the group Upright. The rest of the recordings
must contain a “U45” and fall into the group Reclined. The
third column of Table 1 shows examples of posture record-
ings in each group.

Table 1. The 5 posture groups.a
Posture group Definition Example recordings in posture group
User-defined Any posture recording that includes “S - …” “UNK LSP S-LSP,” “UNK LSP S-U45,” “UNK S-LLS

LSP,” “UNK U90 S-U90,” “UNK U90 U45 LLS S-U90”
Unknown • Any posture recording that includes “UNK” (no “S -

…”).
• Posture recordings that were blank were also

classified as Unknown.

“UNK,” “UNK LSP”

Upright Any posture recording including “U90” or “WLK” (no “S -
…” or “UNK”)

“U90 U45,” “U90 U45 WLK,” “U90 U45 LLS,” “U90 U45
LLS WLK,” “U45 LSP WLK”

Reclined Any posture recording including “U45” (no “S - …,”
“UNK,” “U90,” or “WLK”)

“U45,” “U45 LLS,” “U45 LPR,” “U45 LPR LRS,” “U45
LRS,” “U45 LRS LLS,” “U45 LSP”

Lying “LLS,” “LRS,” “LPR,” “LSP,” or permutations of these “LLS,” “LPR,” “LPR LLS,” “LRS,” “LRS LLS,” “LSP,”
“LSP LRS”

aLLS: lying left side; LPR: lying prone; LRS: lying right side; LSP: lying supine; UNK: unknown; WLK: walking.

Note that the Upright group combines walking with sitting
and standing, rather than treating walking as a separate group.
This choice was made because the ViSi device may classify
the activity of walking as U90 (the same ViSi code for

sitting and standing) instead of WLK, the code for walk-
ing [3]. In addition, we set User-defined as its own group,
rather than assigning individual user-defined postures to their
corresponding categories (eg, “S-LSP” was not assigned to
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Lying). This was because it is difficult to determine whether
the user-defined postures were inputted intentionally. In the
rest of the paper, we focus on these 5 posture groups, instead
of the 185 posture outcomes. Hereafter, the term “posture”
indicates posture group.

After converting the raw posture recordings to posture
groups, data smoothing was performed to reduce noise. This
was the second step of data preprocessing. Here, noise is
defined as an isolated posture of 1 timestamp in between
2 timestamps with the same posture. For example, for a
sequence of 3 postures of Lying, Reclined, Lying, the middle
one is considered as noise. We removed noise through
data smoothing. For each timestamp, we used the following
majority vote process to remove the noise. A majority vote
was taken, considering the timestamp in question and the 2
adjacent timestamps (ie, 15 seconds before and 15 seconds
after). Based on the 3 votes, whichever posture appeared most
frequently would be the winner. For example, if there were
2 votes for Lying and 1 vote for Reclined, the posture at
the timestamp in question was taken to be Lying. If there
was no winner in the majority vote (eg, the three timestamps
all had different postures), then the posture at the timestamp
in question was left unchanged. This process is analogous

to taking a moving average using a sliding window with 3
consecutive timestamps [15], except the mode is taken instead
of the average.

Figure 2 presents 3 examples of cleaned and preprocessed
posture data, which illustrate how the patterns of posture can
vary from 1 patient to another. The first example (Figure 2A)
shows long periods of Lying, interspersed with short Reclined
and Upright segments. This patient is considered inactive.
The second example (Figure 2B) shows a patient who was in
the Upright and Reclined postures during the daytime hours
and the Lying posture during the nighttime hours. One may
infer that this patient was trying to maintain day/night routine
behavior during the hospital stay. Figure 2C plots data from
a cancer patient postsurgery. The patient spent days 1 and 2
mostly in the Lying posture. Increased activity was observed
from day 2 to 3, with more frequent Upright and Reclined
periods. On day 4, the patient stayed in Upright and Reclined
postures for longer periods than previous days. This shows
the patient’s process of postsurgery recovery.

The analyses described in the rest of the Methods section
used the cleaned and pre-processed data.
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Figure 2. Example cleaned and preprocessed data from 3 patients. The short yellow bars correspond to Lying. The taller orange bars correspond to
Reclined. The tallest red bars correspond to Upright. The light and dark blue bars correspond to Unknown and User-Defined, respectively.

Summary Statistics
In all, 20 summary statistics were calculated for each patient,
using their cleaned and preprocessed data. The purpose was
to translate the large amount of data into a concise set of

interpretable statistics. The 20 summary statistics can be
divided into 3 categories. The first category (data quantity)
examines the length of ViSi posture data available for the
patient. The second (posture duration) finds the patient’s
average time spent in each of the 5 postures. The third
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category (posture transitions) measures the frequency of
posture changes in the patient’s data.

For data quantity, 2 measures were generated. First, we
recorded the total number of days that the patient had any
ViSi posture data taken (total days). Total days includes days
with complete data (ie, all 24 hours), as well as days with
only a short data segment starting from a single recording.
Second, we counted the number of days where the patient
had extensive ViSi posture monitoring, defined as at least
22 hours of recordings per day, which we used for further
analysis. Hereafter, we refer to these days as analysis days.
Since ViSi provides 1 posture recording every 15 seconds,
each analysis day contains at least 5280 recordings. The
statistics for posture duration and posture transitions, which
are described below, were calculated using analysis days
only. Thus, any patients who did not have any analysis
days have been excluded from this analysis. Based on this
criterion, 508 of 1198 patients (42.4%) were excluded. There
are 690 patients included in this analysis.

For each patient, the posture duration statistics were
defined as the average time spent in each of the 5 posture
groups for the whole day (WD), daytime (DT), and nighttime
(NT). Thus, there are 15 posture duration statistics from
the 5 posture groups for WD, DT, and NT. The unit of

measurement for the average time is hours per day. DT is
defined as the 12-hour window from 7:00 AM-6:59 PM and
NT as the opposite 12-hour window from 7:00 PM-6:59 AM.
These definitions match the shift schedule at Atrium Health
Wake Forest Baptist. The naming convention for the posture
duration statistics is summarized in the first row of Table
2. The WD statistics provide the average number of hours
per day that the patient spent in each posture. We calcula-
ted the WD statistics using the following procedure. Let k
denote the number of analysis days for the patient (k ≥ 1).
Consider a posture group (eg, Lying). On each analysis day,
we found the proportion of ViSi recordings that fell into the
given posture. The average proportion across the k days was
calculated, and the resulting value was multiplied by 24 to
convert it to the unit of hours per day. This procedure was
applied separately to each of the 5 posture groups, yielding
a set of 5 WD statistics. Next, we calculated 2 more sets of
statistics, one for DT and the other for NT. The purpose was
to examine diurnal changes of the patient’s posture pattern.
To calculate the DT and NT statistics, we applied the same
procedure described above to the data collected during the
specific 12-hour time block, except changing the conversion
factor from 24 to 12. In future work, DT and NT statistics,
along with WD statistics, could be used in prediction models
for patient outcomes.

Table 2. List of statistics for posture duration and posture transitions.
Whole day (WD) Daytime (DT) Nighttime (NT)

Posture duration • Lying-WD
• Reclined-WD
• Upright-WD
• Unknown-WD
• UserDefined-WD

• Lying-DT
• Reclined-DT
• Upright-DT
• Unknown-DT
• UserDefined-DT

• Lying-NT
• Reclined-NT
• Upright-NT
• Unknown-NT
• UserDefined-NT

Posture transitions    FPT-WDa    FPT-DT    FPT-NT
aFPT: frequency of posture transitions.

The third group, posture transitions, provides the frequency of
posture transitions (FPT). We define that a posture transition
occurs when a patient’s posture group changes from one
timestamp to the next. The change is also limited among
Lying, Reclined, and Upright only. Based on this defini-
tion, there are 6 types of transitions: Lying to Reclined,
Lying to Upright, Reclined to Upright, and vice versa.
Neither Unknown nor User-defined are considered in posture
transitions. This is because whether a physical transition
occurs in this case is not clear. The FPT measures the rate of
posture transitions including all 6 types described above, with
the unit of transitions per hour (tph). As before, we calculated
FPT for WD, DT, and NT separately. The naming convention
of the statistics is shown in the bottom row of Table 2. The
calculation of the FPT-WD statistic is as follows. For each
analysis day of the patient, we tallied the number of transi-
tions present and divided this count by the actual number of
hours of data in that day. This provided a rate of tph for
this specific analysis day. The FPT-WD is the average tph
across all k analysis days. The calculation of FPT-DT (or
FPT-NT) uses the same procedure, except that the number of
transitions and their corresponding hours are from the DT (or
NT) window. Overall, 3 statistics are obtained on FPT.

Cluster Analyses
We sought to identify the distinct subtypes of posture habits
present in the dataset. For this purpose, a cluster analysis was
conducted in which the patients were divided into nono-
verlapping clusters, using the posture duration and posture
transition statistics. These clusters can be used to identify
the different subtypes of posture habits objectively. The
cluster analysis was performed using the k-means cluster-
ing algorithm [16,17]. The number of clusters, k, must be
specified a priori. We tested a range of values for k from 2
to 10 and selected the value of k that maximized the average
silhouette width [18,19]. In total, 4 sets of cluster analyses
were performed, with different input data. The first set,
which we call WD cluster, used the WD statistics (Table 2,
column 2). The second set (DT cluster) used the DT statistics
(Table 2, column 3). The third set (NT cluster) used the
NT statistics (Table 2, column 4). The fourth set (combined
cluster) used the combined DT and NT statistics, which
doubles the inputted data sample. In the 4 sets, we excluded
posture duration statistics corresponding to the User-defined
category because patients’ values for these statistics were all
approximately 0, so they were not useful for differentiating
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between patients. Before applying the k-means algorithm,
each statistic was standardized to have mean 0 and SD 1. For
each of the 4 cluster analyses, average silhouette scores were
computed across all patients and separately within each of thek clusters.

Analyses were performed using the R programming
language (version 4.2.2; R Foundation for Statistical
Computing).

Results
Summary Statistics
Table 3 shows the age and sex distributions of the original
1330 patients before data exclusion, and the 690 patients
after data exclusion. The age and sex distributions showed
little change before versus after data exclusion (Table 3).
The number of patients included in the analysis was 690,
comprising 407 males and 283 females, with an average age
of 60 years.

Table 3. Age and sex distributions before and after data exclusion.
Before data exclusion (n=1330) After data exclusion (n=690)

Agea (years)
  Mean (SD) 60.5 (15.5) 60.3 (15.0)
  Median (IQR) 62.5 (52.0-71.8) 62.4 (52.0-71.4)
Sex
  Male, n (%) 772 (58) 407 (59)
  Female, n (%) 557 (41.9) 283 (41)
  Unknown, n (%) 1 (0.1) 0 (0)

aAge is the subject’s age on January 1, 2019.

The univariate distribution of each summary statistic was
analyzed for the sample of 690 patients. Figure 3 shows
the histograms of total days and analysis days, the sum-
mary statistics for data quantity. Both measures exhibit
right-skewed distributions, with a higher range for total days
than analysis days. The median (red dashed line) was 5 total

days per subject and 3 analysis days per subject. The 2
measures are highly correlated with one another (Figure 3C).
The scatter plot shows a linear relationship between total days
and analysis days, estimated as:

Analysis Days = − 1.14 + 0.74 Total Days
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Figure 3. Data quantity. (A) The histogram for total days per subject. (B) The histogram for analysis days. In both (A) and (B), the dotted red line is
the median of the distribution. (C) A scatter plot of total days versus analysis days. A linear regression fit is overlaid on the points (solid blue). For
comparison, the identity line (y=x) is provided (dotted red), which represents the ideal scenario that analysis days=total days. To allow visibility of
overlapping points, random noise from a uniform distribution has been added to each point in the horizontal and vertical directions.

As described in the Methods section, only analysis days were
considered when calculating the other summary statistics
reported hereafter. Approximately 85% (586/690) of patients
had between 1 and 7 analysis days, including 27% (187/690)
with 1 analysis day, 34% (236/690) with 2‐3, and 24%
(163/690) with 4‐7 analysis days. The other 15% (104/690)
had more than 7 analysis days. The maximum number of
analysis days was 35.

Figure 4 presents histograms of the WD statistics for
posture duration, including Lying, Upright, Reclined, and
Unknown. Table 4 provides the quartiles of the posture
duration statistics. The histogram of User-defined is not
presented in Figure 4 since it is concentrated as an isolated

peak at near 0 hours/day, consistent with the median of 0.008
hours/day (Table 4). This indicates a very small fraction of
User-defined posture among all patients. The distribution of
Lying-WD (Figure 4A) is approximately uniform from 2-20
hours near the 9% level, with a decline after 20 hours to
2.5%. There is also a peak from 0-2 hours at 15%. This shows
a wide range of time duration spent in Lying across patients.
The median for Lying-WD is 10.2 hours/day. Reclined-WD
shows a roughly uniform distribution from 0-14 hours at
around 12%. The distribution then tapers off on the right
side (Figure 4B). The median is 8.0 hours/day (Table 4).
In contrast, the distribution of Upright-WD (Figure 4C) is
highly right skewed, with a peak at 0‐2 hours/day accounting
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for about 45% (305/690) of patients. The interval from 2‐4
hours/day includes 25% (175/690) of patients. Thus, 70%
(480/690) of patients spent between 0‐4 hours/day Upright.
The median is 2.5 hours/day. Unknown-WD (Figure 4D) also
shows a right-skewed distribution but with a sharp peak at

0‐2 hours, accounting for about 80% (548/690) of patients.
The median is 0.6 hours/day. This suggests that only a
small fraction of patients were characterized in the Unknown
category.

Figure 4. Posture duration for whole day. The histograms of the posture duration statistics are shown for whole day. The columns indicate the
posture: (A) Lying, (B) Reclined, (C) Upright, and (D) Unknown. User-defined is not shown because this category was rarely observed. In each
histogram, the x-axis ranges from 0 to 24 hours, and the y-axis shows the percentage of patients. The red dotted line indicates the median.

Table 4. Quartiles for posture duration and posture transition statistics.
Posture duration Frequency of

posture transitions
(transitions/hour)

Lying (hours/
day)

Reclined (hours/
day)

Upright (hours/
day)

Unknown
(hours/day)

User-defined (hours/
day)

Whole day, median (IQR) 10.2 (4.5‐15.6) 8.0 (4.1‐12.7) 2.5 (1.1‐4.7) 0.6 (0.2‐1.6) 0.008 (0.007‐0.009) 2.8 (1.9‐4.3)
Daytime, median (IQR) 3.3 (1.1‐6.4) 4.5 (2.4‐6.7) 1.7 (0.8‐3.4) 0.3 (0.1‐0.9) 0.004 (0.004‐0.005) 3.5 (2.3‐5.3)
Nighttime, median (IQR) 6.6 (3.1‐9.6) 3.3 (1.1‐6.3) 0.6 (0.3‐1.3) 0.2 (0.04‐0.6) 0.004 (0.003‐0.004) 2.1 (1.3‐3.5)

Figure 5 presents histograms of the DT and NT statistics
for posture duration. Table 4 shows the quartiles of these
statistics. For the Lying posture, both the DT and NT
distributions were substantially different from the pattern of
the WD distribution, signifying the diurnal changes of this
posture. The DT distribution (Figure 5A) peaked at 0 hours at
the 25% level, and then decreased monotonically from 0-12
hours. In contrast, the NT histogram (Figure 5E) increased
from 1-11 hours. As expected, there is a substantially higher
percentage of patients with longer Lying times during NT
than during DT. Consequently, the median for NT (6.6 hours)
is higher than that for DT (3.3 hours), as shown in Table
4. However, there is a noticeable peak at 0‐1 hours for NT,
comprising about 13% (91/690) of patients. The Reclined
distributions showed a diurnal change from roughly symmet-
ric in DT (Figure 5B) to strongly right skewed in NT (Figure
5F). Although they had different shapes in their distribution,

the median of DT (4.5 hours) was only slightly higher than
that of NT (3.3 hours). The diurnal change could be explained
by a certain percentage of patients changing their posture
from Reclined in DT to Lying in NT, but there remained
some patients who continued in Reclined from DT to NT.
For Upright, the distributions for DT and NT, like that of
WD, were right skewed with a peak starting at the left end.
The distribution for DT has its peak of 31% at 0‐1 hours,
followed by a slow decrease (Figure 5C). In comparison, the
distribution of NT started from a higher peak of 66% at 0‐1
hours, followed by a sharp decrease (Figure 5G). A noticea-
ble proportion of people spent a substantial amount of time
Upright in DT. For example, 18% (123/690) of patients spent
between 4‐8 hours Upright in DT, compared to 5% (32/690)
in NT. The medians for DT and NT were 1.7 hours and 0.6
hours, respectively. The Unknown posture did not show a
significant diurnal change.
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Figure 5. Posture duration for daytime and nighttime. This figure presents histograms of the posture duration statistics for (A-D) DT and (E-H) NT.
The rows give the time of day as DT or NT. The columns indicate the posture (Lying, Reclined, Upright, Unknown). For any given row and column
pair, the histogram shows the distribution of the average number of hours in the given posture during the given time of day, across the 690 patients.
The x-axis of each histogram ranges from 0-12 hours. DT: daytime; NT: nighttime.

Interconnections between the summary statistics were also
studied. Figure 6A presents a scatter plot of Reclined-DT
versus Lying-DT. All points are contained inside the lower
triangle of the square plot because the length of daytime is
12 hours and thus Lying-DT + Reclined-DT ≤ 12. The red
dotted line (Lying-DT + Reclined-DT = 12) is the upper
boundary of the triangle. Inside the triangle, points are spread
out across the domain, but with a concentration at the strip
between the upper boundary and lower boundary (blue dotted
line) at Lying-DT + Reclined-DT = 8. This strip represents
the subgroup that spends at least 8 hours Lying or Reclined
during daytime. Another subarea of concentrated samples is
the yellow triangle with vertices at (5, 3), (2, 0), and (8, 0).
This represents a subgroup that mainly takes the Reclined
posture for rest. Their total resting time is less than those

in the strip. They are likely the group with more activities
in daytime. Last, the subgroup in the lower left corner is
sparser, with only isolated points scattered around. Figure
6B gives the scatter plot of Reclined-NT versus Lying-NT,
also with a red dotted line at the upper boundary. It shows a
marked change in the relationship between these two postures
from daytime to nighttime. Specifically, the strip near the
upper boundary of the triangle described in daytime (Figure
6A) narrows during nighttime (Figure 6B), with the lower
boundary moving upward to 10 hours (blue dotted line). Most
of the study population was concentrated in this strip, and the
triangle mentioned previously disappeared. This is consistent
with the general behavior that most people rest during the
night.
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Figure 6. (A) Daytime: Reclined versus Lying. (B) Nighttime: Reclined versus Lying. (C) Daytime: Upright versus Rest. (D) Nighttime: Upright
versus Rest. Scatter plots of time spent Lying versus Reclined (first row) and time spent Upright versus in Rest (second row). The left (right) column
is for daytime (nighttime). Rest is defined as the sum of Lying and Reclined.
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For a more simplified view, Reclined and Lying can be
combined into a single category called Rest, defined as the
sum of these 2 postures. Figure 6C and D show the relation-
ship between Rest and Upright in DT and NT, respectively.
Most of the points are near the upper boundary (red dotted
line) because patients spend most of the time in either Rest
or Upright postures. In both plots, points are concentrated in
the upper left corner of the triangle. The majority are in an
Upright posture between 0‐4 hours and at Rest between 8‐12
hours. A diurnal change occurs since there is a concentration
of points near the upper boundary with Upright between 4‐8
hours in DT (Figure 6C), while this largely disappears at NT
(Figure 6D). In both plots, a small subgroup is well below
the upper boundary. These points correspond to patients with
higher levels of Unknown, previously shown in the right tail
of Figure 5D and H.

Posture transitions were analyzed in addition to posture
duration. Figure 7 shows histograms of the FPT for WD, DT,
and NT. Table 4 provides the quartiles of each FPT statistic.

The distribution of FPT-WD showed a prominent peak at
2 transitions per hour, accounting for 26.7% (184/690) of
patients (Figure 7A). The distribution decayed quickly on
both sides but with a skew to the right, shown by the long
right tail extending to 15 transitions per hour. The distri-
butions of FPT-DT (Figure 7B) and FPT-NT (Figure 7C)
were also right-skewed, but showed different characteristics,
reflecting a distinct diurnal change of FPT. In comparison
to DT, NT had a sharper peak near 27% shifted closer to 0.
About 50% (345/690) of people had 1 or 2 transitions per
hour in NT. For DT, the peak was at a lower level of 20%
and it decayed slower on both sides. About 35% (233/690)
of people had 1 or 2 transitions per hour in DT. Moreover,
the percentage of patients with higher transition rates (5‐10
transitions per hour) decreased substantially from DT to NT,
demonstrated by the higher weight in the range from 5 to 10
transitions per hour in DT. Both factors contributed to the
higher median for FPT-DT compared to FPT-NT (Table 4).
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Figure 7. Posture transitions. (A) Histogram for FPT-WD. (B) Histogram for FPT-DT. (C) Histogram for FPT-NT. In each plot, the dotted red
line indicates the median for the corresponding statistic. The unit of measurement for the FPT variable is transitions per hour. DT: daytime; FPT:
frequency of posture transitions; NT: nighttime; WD: whole day.

Cluster Analyses
Each of the four cluster analyses divided the 690 patients into
a small number of clusters. Using the criterion of average
silhouette width, the number of clusters k was selected to be 5
for DT, and 4 for WD, NT, and combined. Table 5 gives the

cluster averages and number of patients per cluster for WD,
DT, and NT. Multimedia Appendix 2 provides the average
silhouette scores across all patients and within each cluster,
individually for each cluster analysis.

Table 5. Cluster analyses using the k-means clustering algorithm for WD cluster, DT cluster, and NT cluster. The first k rows for each cluster
analysis show the k clusters in order from the largest cluster to the smallest cluster. The last column indicates the number and percentage of patients
assigned to the given cluster. The other columns provide the cluster averages for the summary statistics. The last row for each cluster analysis shows
the average values across all 690 patients to provide a reference point for comparing the cluster-specific means.

Lying (hours) Reclined (hours) Upright (hours) Unknown (hours)

Frequency of
posture transitions
(transitions/hour)

Participants (n=690),
n (%)

WD cluster
  W1 16.7 4.3 1.7 1.3 2.5 287 (42)
  W2 5.3 14.7 2.9 1.1 2.8 219 (32)
  W3 6.3 9.0 7.6 1.1 5.7 161 (23)
  W4 3.5 2.9 1.6 16.0 1.3 23 (3)
  Average 10.2 8.6 3.5 1.7 3.3 —a

DT cluster
  D1 2.2 7.4 1.8 0.6 3.5 241 (35)
  D2 7.8 2.4 1.0 0.7 3.0 226 (33)
  D3 2.8 5.0 3.6 0.5 8.3 99 (14)
  D4 1.0 3.8 6.7 0.6 4.1 95 (14)
  D5 1.7 1.5 0.9 7.9 1.1 29 (4)
  Average 3.9 4.7 2.4 0.9 4.0 —
NT cluster
  N1 9.2 1.8 0.5 0.4 1.9 358 (52)
  N2 2.6 8.0 0.9 0.5 2.3 190 (28)
  N3 3.9 4.6 3.1 0.4 5.4 116 (17)
  N4 2.2 1.2 0.6 8.0 1.2 26 (4)
  Average 6.3 4.0 1.1 0.7 2.6 —

aNot applicable.
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In the WD cluster (Table 5), the two largest clusters (W1 and
W2) spend most of the day in Rest and have low Upright
time. W1 prefers the Lying posture for Rest, while W2 prefers
Reclined. In both clusters, the average FPT is between 2‐3
transitions per hour. On the other hand, W3 is the most active,
with the highest average Upright time (7.6 hours) and posture
transition frequency (5.7 transitions per hour) among the
clusters. W4 is the smallest cluster, comprising 3% (23/690)
of the patients. Unknown is the dominant category in W4,
with 16 hours/day Unknown on average.

The DT cluster (Table 5) identified 5 clusters using the
DT statistics. Clusters D1 and D2 spend the daytime hours
in Rest. D1 takes Rest mostly through Reclined at 7.4 hours
on average, while D2 takes Rest mostly through Lying at
7.8 hours on average. D1 and D2 both have low levels of
Upright, at 1.8 and 1.0 hours on average, respectively. D1 and
D2 are close in size, accounting for 35% (241/690) and 33%
(226/690) of patients, respectively. In comparison, D3 and D4
are more active during DT. D3 has an average Upright time of
3.6 hours, and it prefers Reclined (5.0 hours) over Lying (2.8
hours). D4 has a higher average Upright time (6.7 hours). It
also spends more time in Reclined (3.8 hours) than Lying (1.0
hours). D3 and D4 each account for 14% of patients (99/690
and 95/690, respectively). D5 has Unknown as its dominant
category and includes 4% (29/690) of patients.

The NT cluster (Table 5) found 4 clusters using the NT
statistics. N1 and N2 are the two largest clusters, account-
ing for 52% (358/690) and 28% (190/690) of the patients,
respectively. N1 has Lying as the dominant nighttime posture
at 9.2 hours on average, followed by Reclined (1.8 hours).
N2 prefers Reclined (8.0 hours) over Lying (2.6 hours) at
nighttime. N3 has an average Upright time of 3.1 hours,
which is higher than the other clusters. It also has a higher
average FPT of 5.4 transitions per hour. N3 accounts for 17%
(116/690) of patients. N4 has mostly Unknown posture of 8.0
hours on average.

In the combined cluster (Table 6), the traits of the clusters
resemble those from the WD cluster. C1 prefers Lying, C2
favors Reclined, C3 is active in daytime, and C4 is domi-
nated by Unknown. The sizes of C1, C2, C3, and C4 are
also similar to the sizes of W1, W2, W3, and W4, respec-
tively. Unlike the WD cluster, the combined cluster analy-
sis revealed further details about changes in the patients’
behaviors from daytime to nighttime. For example, cluster C1
spends most of the daytime in Lying (7.0 hours), followed by
Reclined (2.9 hours) then Upright (1.3 hours). At nighttime,
Lying becomes more dominant (9.6 hours), with less time
spent in Reclined (1.4 hours) and Upright (0.5 hours).

Table 6. Cluster analyses using the k-means clustering algorithm for the combined cluster.

Lying (hours) Reclined (hours) Upright (hours) Unknown (hours)
Frequency of posture transitions
(transitions/hour)

Participants
(n=690), n (%)

DTa NTb DT NT DT NT DT NT DT NT
C1 7 9.6 2.9 1.4 1.3 0.5 0.8 0.5 3.2 1.8 291 (42)
C2 1.6 3.7 7.4 7 2.4 0.8 0.6 0.5 3.6 2.2 235 (34)
C3 1.9 4.2 4.2 4.6 5.2 2.8 0.6 0.4 6.8 5.1 141 (20)
C4 1.4 2.1 1.8 1.1 1.1 0.5 7.7 8.3 1.4 1.2 23 (3)
Average 3.9 6.3 4.7 4 2.4 1.1 0.9 0.7 4 2.6 —c

aDT: daytime.
bNT: nighttime.
cNot applicable.

Discussion
Principal Results
This study examined a year-long, routine hospital ViSi
posture dataset to study patterns in patient posture habits,
with the following results. The dataset required substantial
preprocessing before statistical analysis. Two errors in the
dataset were identified: overlap and inconsistency. Overlap
was highlighted because it mixes data from multiple patients,
which can alter the derived summary statistics. This problem
could be easily overlooked in analyses of massive amounts
of data. Overlap may have resulted from shared use of a
ViSi monitoring device between multiple patients and lack of
reliable timestamps of device handoff. In data preprocessing,
we also consolidated the ViSi posture codes to target the
most meaningful postures of Lying, Reclined, and Upright,

and removed high frequency noise from the posture record-
ings. The preprocessing treatments improved the data quality,
manageability of the data, and interpretation of results.

Using the preprocessed dataset, summary statistics were
generated for each patient and probability distributions of the
summary statistics were constructed using all 690 patients.
This analysis showed that the 3 main postures (Lying,
Reclined, Upright) had distinctive distribution patterns. For
the whole day statistics, Lying had a flatter distribution, while
Reclined showed a decrease in the longer hours. Upright
had its peak at 0‐2 hours, with a quick monotonic decrease.
Thus, Lying and Reclined are more dominant postures. These
findings are consistent with known clinical observations of
inpatients. Pattern changes from daytime to nighttime were
observed for Lying, Reclined, and Upright. The distribution
of Lying was decreasing during daytime but relatively flat
with a slow increase during nighttime. Although this pattern
change may be partly explained by the fact that more patients
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take longer Lying periods during night, the flat distribution
during nighttime still needs explanation. Combined with the
similarity of the daytime Lying and nighttime Reclined, we
speculate that a certain number of patients take Reclined
as their resting posture at night. It is also noted that over
one-third of patients show a preferred duration of 3‐6 hours
for Reclined posture during daytime. As expected, Upright
shows a sharper decrease from daytime to nighttime.

Last, k-means clustering analyses were performed to
objectively identify subtypes of patient posture habits. We
found that 3 of the 4 analyses each identified 4 unique
subtypes. These subtypes included 2 sedentary subgroups
with different resting styles, one that prefers Lying and the
other Reclined. There is an active subgroup that spends
relatively more time Upright and has more frequent posture
transitions. The fourth subtype includes a small percentage of
patients that have Unknown as the dominant ViSi-measured
posture during their hospital stay.
Limitations
This study has the following limitations. First, there may
still be some irreversible errors left in the data (eg, incorrect
placement of ViSi device on the body, battery failure causing
discontinuity), which are beyond the scope of this analysis.
The postures from the ViSi device can also differ from the
ground-truth postures because the ViSi postures are estimated
from accelerometer data. We did our best to mitigate the issue
of inaccurate posture recognition. For example, because ViSi
may classify walking as U90 instead of WLK, the activities
of walking, standing, and sitting were combined into the
same category of Upright [3]. The difficulty in classifying
walking is possibly because the ViSi algorithm, previously
trained from certain data, may not fit individual patients’
mobility well. This implies that the ViSi algorithm needs to
be calibrated to the individual patient, or more customized
algorithms can be used to improve the accuracy of walking
(eg, [20]). Second, our study does not consider postoperative
pain or postoperative medications, but these two factors could
affect a patient’s posture after surgery. An area of future work
is to examine the effect of postoperative pain and medications
on ViSi posture statistics for various types of surgery.

Third, the amount of data excluded due to overlap
or inconsistency was substantial, accounting for 9.9%
(132/1330) of patients and 27.6% (8,778,641/31,842,773) of
posture recordings. Our study took a conservative approach
of dropping suspicious data that exhibited the overlap or
inconsistency problems. Although this reduced the available
sample size, the number of patients included in the analy-
sis remained high (n=690). We believe that the overlap and
inconsistency problems occur randomly instead of systemati-
cally for certain types of patients. Thus, the data cleaning
procedure, which removed these problems, should not cause
bias. The data problems that we faced are associated with data
collection, storage, and integration with the medical record.
The current ViSi system is designed to provide real-time data
for the nurse and clinician, rather than for long-term use.
Therefore, data cleaning is an inevitable step for retrospective

analyses of routinely collected ViSi data. However, some
further improvements of the system could make the data more
accessible for retrospective analyses. This could be done
by creating standardized data models and specifications for
measuring patient movement.
Conclusions
Using ViSi posture data collected from routine inpatient
monitoring, we derived summary statistics for each patient
and analyzed the summary statistics to find patterns in the
patient population. Probability distributions, generated from
the large sample size of 690 patients, provided quantitative
measures of posture durations and transitions, with respect
to their median and interquartile range. We considered both
surgery and nonsurgery patients in the dataset to provide a
baseline measure of these quantities, which sets a basis to
study more specific clinical situations. In future work, we
will build on this work to study distributions for patients with
specific types of disease, as well as distributions of patients
before versus after surgery. After these distributions are
established, they can serve as useful reference distributions
to measure a future patient’s recovery trajectory or condition.

ViSi data collection increases work efficiency in the
hospital. For the 690 patients analyzed in this study, the
cumulative hours of ViSi posture collection amounted to
90,308 hours taken over 4847 patient-days. As an alterna-
tive, direct observation requires a nurse spending 2 hours
per patient-day to conduct posture monitoring and documen-
tation at a 30-minute frequency. Therefore, ViSi monitoring
saved 9694 hours (4847 × 2) of nurses’ effort, which could
be devoted to other more pressing clinical responsibilities.
This corresponds to a saving of labor cost of US $401,138,
based on the median hourly rate of US $41.38 per hour
for registered nurses, according to the US Bureau of Labor
Statistics [21]. Moreover, the digitized inpatient measure-
ments with automated collection and storage provide a vast
and valuable database for retrospective analysis, which has
not been fully tapped by clinical researchers.

A major contribution of this study is development of
methodology to clean and preprocess routinely collected
inpatient ViSi monitoring data. The procedure we used for
cleaning the ViSi posture data can have broader application
in cleaning other routine hospital datasets. The preprocess-
ing treatments for consolidating posture codes and removing
high-frequency noise can also improve manageability and
interpretability of ViSi posture data. Thus, this study lays
groundwork for future studies on examining the associations
of clinical data with posture statistics derived from cleaned,
preprocessed ViSi data. In future studies, we plan to study
the associations of patients’ medical condition and treat-
ment (including diagnosis, surgical procedure, medications,
sedatives, and pain level) with posture duration and posture
transitions. Based on our experience with ViSi analysis, we
believe that examining data quality will be the first step
to ensure that clinical variables are accurately linked to the
cleaned ViSi data records for each patient.
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