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Abstract

Background: Personal sensing, leveraging data passively and near-continuously collected with wearables from patients in their
ecological environment, is a promising paradigm to monitor mood disorders (MDs), a major determinant of the worldwide disease
burden. However, collecting and annotating wearable data is resource intensive. Studies of this kind can thus typically afford to
recruit only a few dozen patients. This constitutes one of the major obstacles to applying modern supervised machine learning
techniques to MD detection.

Objective: In this paper, we overcame this data bottleneck and advanced the detection of acute MD episodes from wearables’
data on the back of recent advances in self-supervised learning (SSL). This approach leverages unlabeled data to learn representations
during pretraining, subsequently exploited for a supervised task.

Methods: We collected open access data sets recording with the Empatica E4 wristband spanning different, unrelated to MD
monitoring, personal sensing tasks—from emotion recognition in Super Mario players to stress detection in undergraduates—and
devised a preprocessing pipeline performing on-/off-body detection, sleep/wake detection, segmentation, and (optionally) feature
extraction. With 161 E4-recorded subjects, we introduced E4SelfLearning, the largest-to-date open access collection, and its
preprocessing pipeline. We developed a novel E4-tailored transformer (E4mer) architecture, serving as the blueprint for both
SSL and fully supervised learning; we assessed whether and under which conditions self-supervised pretraining led to an
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improvement over fully supervised baselines (ie, the fully supervised E4mer and pre–deep learning algorithms) in detecting acute
MD episodes from recording segments taken in 64 (n=32, 50%, acute, n=32, 50%, stable) patients.

Results: SSL significantly outperformed fully supervised pipelines using either our novel E4mer or extreme gradient boosting
(XGBoost): n=3353 (81.23%) against n=3110 (75.35%; E4mer) and n=2973 (72.02%; XGBoost) correctly classified recording
segments from a total of 4128 segments. SSL performance was strongly associated with the specific surrogate task used for
pretraining, as well as with unlabeled data availability.

Conclusions: We showed that SSL, a paradigm where a model is pretrained on unlabeled data with no need for human annotations
before deployment on the supervised target task of interest, helps overcome the annotation bottleneck; the choice of the pretraining
surrogate task and the size of unlabeled data for pretraining are key determinants of SSL success. We introduced E4mer, which
can be used for SSL, and shared the E4SelfLearning collection, along with its preprocessing pipeline, which can foster and
expedite future research into SSL for personal sensing.

(JMIR Mhealth Uhealth 2024;12:e55094) doi: 10.2196/55094
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Introduction

Mood disorders (MDs) are a group of mental health conditions
in the Diagnostic and Statistical Manual, Fifth Edition (DSM-5)
classification system [1]. They are chronic, recurrent disorders
featuring disturbances in emotions, energy, and thought,
standing out as a leading cause of worldwide disability [2,3]
and suicidality [4]. Timely recognition of MD episodes is critical
toward better outcomes [5]. However, this is challenging due
to generally limited patient insight [6], compounded with the
low availability of specialized care for MDs, with rising demand
straining current capacity [7,8].

Personal sensing, involving the use of machine learning (ML)
to harness data passively and near-continuously collected with
wearable devices from patients in their ecological environment,
has been attracting interest as a promising paradigm to address
this gap [9]. Indeed, some of the core MD clinical features (eg,
disturbance in mood and energy levels) translate into changes
in physiological parameters measurable with wearable devices
[10-12]. A major barrier to the development of clinical decision
support systems featuring personal sensing has been the scarcity
of labeled data, that is, data with annotations by clinicians about
the MD state (eg, diagnosis, disease phase, symptom severity).
Collecting and annotating data for personal sensing in MDs is,
indeed, an expensive and time-consuming enterprise; thus,
studies typically use samples running into only a few dozen
patients [13-20].

In this work, we took a different perspective and leveraged
unlabeled data collected with the Empatica E4 (hereafter E4)
wristband [21], a popular research-grade device for personal
sensing studies [22], as well as recent advancements in
self-supervised learning (SSL) techniques that can learn
meaningful representations from such unlabeled data.
Specifically, we took advantage of open access data sets that
record physiological data with the E4 across different settings
but do not address MDs and therefore do not provide
information about the mood state of the subjects involved.
Although each such data set has only a limited number of
subjects, our aggregated and preprocessed data set

E4SelfLearning can break the labeled data bottleneck for
personal sensing in MDs (Figure 1) [23-33].

Fully supervised systems require vast amounts of data to train,
thus limiting their application in different fields, such as health
care, where amassing large, high-quality data sets is demanding
in terms of time and human resources [34]. Although previous
studies on personal sensing for MDs have investigated different
tasks, including acute MD episode detection [13-16], regression
of a psychometric scale total score [17-19], and, more recently,
multitask inference of all items in 2 commonly used
psychometric scales [35], they all developed their models in a
fully supervised fashion (ie, they were trained on samples for
which ground-truth labels were available). As a result,
considering that obtaining clinical annotations from patients,
especially when on an acute MD episode, is a challenging and
expensive enterprise, the sample size is generally modest (eg,
N=52 in Côté-Allard et al [15], N=45 in Tazawa et al [13], and
N=31 in Pedrelli et al [18]).

SSL, in contrast, is a framework where the model creates proxy
supervisory signals within the data themselves, therefore
alleviating the annotation bottleneck and allowing us to
repurpose existing unlabeled data sets [36]. Specifically, SSL
derives supervisory signals from the data themselves, thanks to
pretext tasks, which are new supervised challenges, for example,
imputing occluded parts of the input data. Through such
preparatory pretext tasks, not requiring expert annotation, the
model learns useful representations, partial solutions to the
downstream target task of interest, for which only a
comparatively small amount of annotated data are available
[37]. On the back of the great success of SSL in computer vision
(CV) [37] and natural language processing (NLP) [38], and with
encouraging findings in other health care applications [39], we
extended pioneering SSL works on multivariate time series
[40-42] to personal sensing in MDs.

In this work, we made the following contributions:

• We gathered 11 open access data sets recording
physiological data with an E4 wristband and developed a
pipeline for preprocessing such data that performed
on-/off-body detection, sleep/wake detection, segmentation,
and (optionally) feature extraction. We made the
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preprocessing pipeline and the preprocessed data publicly
available. This collection (E4SelfLearning), with 161
subjects, is the biggest open access data set to date. We
believe that this effort can stimulate future research into
SSL with multivariate time-series sensory data by removing
2 barriers, preprocessing and data availability.

• We proposed a novel E4-tailored transformer (E4mer)
architecture (Figure 2) [43] and showed that SSL is a viable
paradigm, outperforming both fully supervised E4mer and
classical machine learning (CML) models using handcrafted
features in distinguishing acute MD episodes from clinical

stability (euthymia in psychiatric parlance), that is, a
time-series (binary) classification task.

• We investigated what makes SSL successful. Specifically,
we compared 2 main pretext task designs (ie, masked
prediction [MP] and transformation prediction [TP]) [44],
and for the best-performing routine, we studied its
sensitivity to the unlabeled data availability in ablation
analyses. We inspected learned embeddings and showed
that they capture meaningful semantics about the underlying
context (ie, sleep/wake status) and symptom severity.

Figure 1. A total of ∼6254 hours (261 days) of unlabeled recordings from 252 subjects while awake were used for self-supervised pretraining. Unlabeled
data comprised a collection of 11 open access data sets, whose aggregation we make publicly available (E4SelfLearning), along with part of the
TIMEBASE/INTREPIBD study that was not relevant for the target task under investigation (ie, acute episode vs euthymia classification). Unlabeled
data were passed through a model consisting of an encoder and a transform head for self-supervised pretraining; the pretrained encoder block was then
retained for the target task, while the transform head was replaced with a new, randomly initialized classification head. ∗The target task (labeled) training
set from the TIMEBASE/INTREPIBD study was also used during self-supervised pretraining. Further details on the data sets used in this study are
available in Table S1 in Multimedia Appendix 1. ADARP: Alcohol and Drug Abuse Research Program; PGG-DaLia: PPG Dataset for Motion
Compensation and Heart Rate Estimation in Daily Life Activities; TIMEBASE/INTREPIBD: Identifying Digital Biomarkers of Illness Activity in
Bipolar Disorder/Identifying Digital Biomarkers of Illness Activity and Treatment Response in Bipolar Disorder; UE4W: Unlabeled Empatica E4
Wristband; WEEE: Wearable Human Energy Expenditure Estimation; WESAD: Wearable Stress and Affect Detection; WESD: Wearable Exam Stress
Dataset.
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Figure 2. E4mer is a transformer model tailored to the Empatica E4 input data. E4mer consists of 3 sequential modules: (1) channel embeddings set
in parallel, 1 for each Empatica E4 raw input channel (ie, accelerationx, accelerationy, accelerationz, BVP, EDA, TEMP), extracting features and mapping
channels to tensors of dimensionality (B=batch size, N=time steps, F=number of filters) so that they can be conveniently concatenated along dimension
F; (2) RM learning contextual representations of the input time steps within the input segment, thanks to the multihead self-attention mechanism; (3)
classification head outputting probabilities for the 2 target classes (ie, acute MD episode and euthymia). SSL models used in our experiments featured
the same E4mer architecture described before, where, however, the classification head was replaced with a transform head projecting onto a label space
compatible with the pretext task at hand. BVP: blood volume pressure; E4mer: E4-tailored transformer; EDA: electrodermal activity; MD: mood
disorder; MLP: multilayer perceptron; RM: representation module; SSL: self-supervised learning; TEMP: temperature.

Methods

Study Sample

The TIMEBASE/INTREPIBD Cohort
Our target task was to distinguish acute MD episodes from
euthymia using wearable data. We started from a data set for
which we had labeled samples, the TIMEBASE/INTREPIBD
(Identifying Digital Biomarkers of Illness Activity in Bipolar
Disorder/Identifying Digital Biomarkers of Illness Activity and
Treatment Response in Bipolar Disorder) cohort [45]. A detailed
description of the data collection campaign was given by
Anmella et al [45]. In brief, this was a prospective, exploratory,
observational study conducted at the Hospital Clìnic, Barcelona,
Spain. Patients with a DSM-5 diagnosis of either major
depressive disorder (MDD) or bipolar disorder (BD) were
enrolled either in the acute affective episode group (defined
according to the “Structured Clinical Interview” for DSM-5
disorder criteria) or in the euthymia group (score≤7 on the
Hamilton Depression Rating Scale-17 [46] and the Young Mania
Rating Scale [47] for at least 8 weeks [48], as confirmed with
weekly ambulatory assessments). The former group had
post–acute-phase follow-ups, which were, however, excluded
from all analyses presented here. At the time of conducting this
study, a total of 64 patients were available for the target task,
half in the acute affective episode group and half in the euthymia
group. Additionally, an extra 91 subjects (including healthy

controls, subjects with schizophrenia, and subjects with a
substance abuse disorder), whose status was not relevant to the
target task, were available from the TIMEBASE/INTREPIBD
cohort for self-supervised pretraining.

Patients were interviewed by a psychiatrist collecting clinical
demographics (Table 1 and Table S2 in Multimedia Appendix
1) and were required to wear on their nondominant wrist an E4
wristband until the battery ran out (~48 hours). The E4 records
3D acceleration (sampling rate 32 Hz), blood volume pressure
(BVP, sampling rate 64 Hz), electrodermal activity (EDA,
sampling rate 4 Hz), heart rate (HR, sampling rate 1 Hz),
interbeat interval (IBI, ie, the time between 2 consecutive heart
ventricular contractions), and skin temperature (TEMP, sampling
rate 1 Hz).

As shown in Table 1, MD episodes clinically lie on a spectrum,
with depression on one end and mania on the other; mixed
episodes, featuring symptoms from both polarities, are a bridge
between the 2 spectrum extremes. In this study, we considered
acute MD episodes of any polarity, and similarly, we considered
euthymia as a unique class, whether in the context of a BD or
an MDD diagnosis. Medication classes administered to the
cohort are shown in Table S2 in Multimedia Appendix 1;
Bonferroni-corrected chi-square tests found no significant
association between treatment status (being on a given drug
class or not) and target class (acute affective episode vs
euthymia).
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Table 1. Clinical-demographic features of the target task (acute affective episode vs euthymia classification) population (N=64).

Euthymia group (n=32)Acute affective episode group (n=32)Features

47.22 (16.06)50.56 (13.05)Age (years), means (SD)

14 (43.8%)15 (46.9%)Females, n (%)

MDE-BDa

—b9 (28.1)Patients, n (%)

—20.22 (6.34)HDRSc score, mean (SD)

—2.56 (3.94)YMRSd score, mean (SD)

MDE-MDDe

—7 (21.9)Patients, n (%)

—25.14 (4.78)HDRS score, mean (SD)

—1.86 (2.41)YMRS score, mean (SD)

MEf

—14 (43.8)Patients, n (%)

—5.67 (4.37)HDRS score, mean (SD)

—20.13 (6.28)YMRS score, mean (SD)

MXg

—2 (6.2)Patients, n (%)

—16 (4.24)HDRS score, mean (SD)

—13.5 (4.95)YMRS score, mean (SD)

BDh

26 (81.3)—Patients, n (%)

2.93 (1.73)—HDRS score, mean (SD)

1.3 (1.61)—YMRS score, mean (SD)

MDDi

6 (18.7)—Patients, n (%)

3.14 (1.95)—HDRS score, mean (SD)

0.29 (0.76)—YMRS score, mean (SD)

aMDE-BD: major depressive episode in bipolar disorder.
bNot applicable.
cHDRS: Hamilton Depression Rating Scale-17.
dYMRS: Young Mania Rating Scale.
eMDE-MDD: major depressive episode in major depressive disorder.
fME: manic episode.
gMX: mixed episode.
hBD: bipolar disorder.
iHDRS: Hamilton Depression Rating Scale-17.

E4SelfLearning
For self-supervised pretraining, we gathered 11 open access
data sets recording with an E4 [23-33]. Although they all used
the same hardware, software, and firmware, such data sets could
differ substantially for population, recording setting, and task:
from students taking exams [29] or attending classes [31] to
nurses carrying out their duty [30] and subjects performing
different physical activities [28] or playing Super Mario [27].

Subjects that were not part of the target classes from the
TIMEBASE/INTREPIBD study were also included in the
unlabeled data for SSL.

Data Preprocessing
Our preprocessing encompassed the following sequential stages:
on-/off-body detection, sleep/wake detection, segmentation,
and (when preparing data for CML models) feature extraction.

JMIR Mhealth Uhealth 2024 | vol. 12 | e55094 | p. 5https://mhealth.jmir.org/2024/1/e55094
(page number not for citation purposes)

Corponi et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


During free-living wear, subjects might remove their device or
contact with the wrist might be suboptimal. As a result, off-body
periods can be erroneously mistaken for periods of sleep or
sedentary behavior, due to the shared feature of an absence of
movement. Signal discontinuity in biopotentials, such as EDA,
due to a lack of skin contact can be reliably leveraged to detect
nonwear periods. As shown by Vieluf et al [49] and Nasseri et
al [50], we considered measurements less than 0.05 µS as
indicative of off-body status. Furthermore, as we noticed
occurrences of values greater than the EDA sensor range (ie,
100 µS [51]), as well as instances of TEMP values outside the
physiological range (30°C-40°C), we set both to off-body.

As physiological data vary wildly across sleep and wake
statuses, we used sleep/wake detection as a form of data cleaning
to reduce the variance in the signal and considered only the
wake time in our analyses, especially as most publicly available
data sets are recorded in wake conditions. We opted for the
algorithm developed by Van Hees et al (Van Hees) [52], which
was reported as the best-performing algorithm in a recent
benchmark study on sleep/wake detection (average
F1-score=79.1) [53]. Like most nonproprietary algorithms, Van
Hees uses triaxial acceleration and, specifically, relies on a
simple heuristic defining sleep with the absence of a change in
the arm angle >5° for 5 minutes or more. To accommodate this
rule, wherever on-body sampling cycles did not constitute
unbroken sequences of at least a 5-minute duration, all the
measurements in that period were considered as off-body and
discarded from further analysis.

The wake time from each recording was then segmented with
a sliding window, whose segment length (ω) and step size (∆ω)
were set to 512 and 128 seconds, respectively. This approach,
also referred to as window slicing [54], is a common form of
data augmentation in time-series classification as multiple
segments are produced from a single recording, each one marked
with the same label, and is common in personal sensing for
MDs. Previous relevant works [15,18,55] have defined ω (∆ω)
based on clinical intuition and convenience concerning the
available data. Another work [35] investigating the regression
of HDRS and the YMRS items found the optimal ω through
tuning, a computationally expensive approach in our setting;
however, it showed that ω was not among the most important
hyperparameters for the task at hand. Here, we opted for 512
seconds (~8.5 minutes, conveniently a power of 2 for
computational efficiency in binary computers), similar to the
5-minute intervals used by Panagiotou et al [55] for training
neural autoencoder architectures on anomaly detection by
reconstruction error estimation. Our choice was a trade-off
between clinical insight and technical constraints. Clinical
intuition suggests that too small a value of ω may be ill suited
to capture enough information toward acute affective episode
versus euthymia discrimination. However, unlabeled data sets
used for self-supervised pretraining recorded relatively short
sessions (eg 1 hour [26]). As both CML and deep learning
models are trained on individual segments and too long a
segment length equates to fewer training data points, a
512-second-long segment allowed us to have enough data for
developing ML models [55].

Recording segments constituted our basic unit of analysis, and
for the target task, segments from the same recording all shared
the same ground-truth label (ie, either acute affective episode
or euthymia). When fed to deep learning models, segments were
channel-wise standardized by subtracting the mean and dividing
by the SD. Such statistics were learned from the target task
training set or, in the case of SSL, its aggregation with unlabeled
data. Acceleration, the BVP, EDA, and TEMP were considered
in deep learning models, while the HR and the IBI, as features
derived from the BVP through a proprietary algorithm, were
excluded from the deep learning experiments shown here (see
Multimedia Appendix 1). However, when using CML,
handcrafted features were extracted from segments using FLIRT
[56], a popular open access feature extraction toolkit for the E4.
Note that a single row of features per segment was extracted;
in other words, the window size parameter in FLIRT was set
equal to ω. We used all features available through this package,
derived with the flirt.acc.get_acc_features (eg, acceleration
entropy), flirt.eda.get_eda_features (eg, tonic and phasic EDA
components), and flirt.hrv.get_hrv_features (eg, HR and HR
variability measures) functions. As FLIRT does provide built-in
functions for TEMP, we also extracted the segment mean (SD)
for this channel. Any missing value was handled with mean
imputation. The percentage rate of missing values had a range
of 0-37.31, with a mean of 10.44 (SD 16.78).

Data Splits and Metrics
In SSL experiments, we split unlabeled data in a ratio of 85:15
into train and validation sets, partitioning recordings across the
2 sets. For the target task, we investigated a time-split scenario,
therefore splitting each recording into train, validation, and test
sets again in a ratio of 70:15:15 along the recording time, thus
testing generalization across future time points. We made sure
that segments with overlapping motifs at the border between
target task splits (resulting from using a sliding window with
∆ω<ω) were confined to 1 split only, thus ultimately producing
18896, 3904, and 4128 segments for the train, validation, and
test sets. The target task validation set doubled as a test set for
estimating generalization performance on the SSL pretext task.
The time-split scenario is common in personal sensing for MDs
(eg, [18,35]), and indeed, despite efforts toward learning
subject-invariant representations [57,58], cross-subject
generalization remains an unsolved challenge, so personal
sensing systems typically require access to each subject’s
physiological data distribution at training time [59].

The target task was a time-series binary classification. As
expected in free-living wear, the total wear time and the off-body
and wake times varies across subjects (and, as a result, so did
the number of segments). Two-tailed t tests were performed to
verify significant mean differences in off-body and wake times
across individuals from the 2 target classes (acute affective
episode and euthymia) but yielded a Bonferroni-corrected P
value of >.05 (P=.56 for off-body time and P=.82 for wake
time). An equal number of segments from each class was
extracted for the target task. To that end, we found the pairing
of euthymia and acute affective episode recordings that
minimized the pairwise difference between the number of
segments available per participant; next, within each pair, the
first n segments were retained, where n is the number of
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segments of the shortest recording in the pair. We optimized
models on the target task for segment-level accuracy
(ACCsegment). Second, to provide a subject-level perspective,
we reported the subject ACC:

where ys is the ground-truth mood state of the s-th subject, which
is constant across all the s-th subject’s recording segments, and

is a majority vote on the s-th subject, corresponding to the
majority predicted class across the s-th subject’s recording
segments.

Machine Learning Models
We developed 2 types of baselines for the target task: (1) an
E4-tailored deep learning pipeline inputting raw recording
segments (E4mer) and (2) CML models using handcrafted
features extracted with FLIRT from recording segments. We
then assessed what boost in performance, if any, a
self-supervised pretraining phase might deliver, where the SSL
models shared the same building blocks as E4mer.

Baseline Models

E4-Tailored Transformer

E4mer is an artificial neural network discriminative classifier
modeling the probability of an acute MD episode, given a
recording segment. As shown in Figure 2, E4mer has 3
sequential blocks: (1) channel embeddings (CEs) set in parallel,
consisting of the same 1D convolutions with a kernel size equal
to the channel sampling frequency, followed by Gaussian error
linear unit (Gelu) activation, 1D BatchNorm, and 1D
MaxPooling using the channel sampling frequency as both
kernel size and step size, so each CE output has the same
dimensionality and can be conveniently concatenated with the
others before being passed onto (2) a transformer [43]
representation module (RM), and (3) a multilayer perceptron
(MLP) classification head (Hsl). The CEs extract features from
the input E4 channels and are designed to handle channels
sampled at different frequencies; the RM, powered by multihead
self-attention, learns contextual representations of the input
tokens (timestamps in our case) within a recording segment;
lastly, the Hsl maps such representations onto a label space
appropriate for a binary classification. E4mer was trained to
minimize the binary cross-entropy (BCE) loss between acute
affective episode/euthymia predictions and the corresponding
ground truth.

Classical Machine Learning

We experimented with the following algorithms, given their
popularity and state-of-the-art performance in biomedical
applications [60], including personal sensing [13,14]: elastic
net logistic regression (ENET), K-nearest neighbor (KNN),
support vector machine (SVM), and extreme gradient boosting
(XGBoost).

Self-Supervised Learning Schemes
SSL schemes rely on devising a pretext task, for which a
(relatively) large amount of unlabeled data is available,

conducive to learning, during a pretraining phase,
representations useful to solve the downstream target task [44].
What defines an SSL paradigm is thus its pretext task, consisting
of a process, P, to generate pseudo labels and an objective to
guide the pretraining. An SSL model typically consists of (1)
an encoder EN(x;θ): X->V, learning a mapping from input

views to a representation vector , and (2) a
transform head Hssl(υ;ξ): V-> Z, projecting the feature

embedding into a label space compatible with the pretext
task at hand. When solving the target task, the pretrained
encoder EN is retained as a partial solution to the target problem,
whereas the pretrained transform head Hssl is discarded and
replaced with a new one, Hsl. Next, EN’s parameter θ may be
kept fixed and only Hsl’s parameters may be learned on the
target task. This approach, often referred to as linear readout
(LR), amounts to treating EN as a frozen feature extractor.
Alternatively, instead of just training a new head, the entire
network may be retrained on the target task, initializing EN’s
parameter θ to the values learned during self-supervised
pretraining, a paradigm known as fine-tuning (FT). Our SSL
models used the same architecture as E4mer, that is, an encoder
EN, consisting of convolutional CEs, followed by a transformer
RM, and an MLP for the transform head Hssl. The success of
SSL methods largely comes from designing appropriate pretext
tasks that produce representations useful for the downstream
target task. This usually involves domain knowledge of the
target task. We investigated how different pretext tasks affected
downstream performance, experimenting with 2 popular SSL
routines that have shown success in other applications: MP and
TP.

Masked Prediction
This family of SSL methods is characterized by training the
model to impute data that have been removed or corrupted by
P. It relies on the assumption that context can be used to infer
some types of missing information in the data if the domain is
well modeled. This strategy was popularized by the huge success
of bidirectional encoder representations from transformers
(BERT) [38] in NLP applications, and 1 of the first adaptations
to multivariate time-series classification was proposed by
Zerveas et al [41]. Similar to their implementation, for each
segment channel, we sampled a Boolean mask where the
sequences of 0s and 1s were sampled from geometric
distributions with means of l0 and l1, respectively, with:

where r is the masking ratio. As shown by Zerveas et al [41],
the average length of the 0 sequences (lm) and the proportion
of masked values (r) were set to 3 seconds and 0.15,
respectively. Each segment channel was then multiplied by its
corresponding mask, effectively setting to 0 some of the
channel-recorded measurements, and inputted to a model that
was tasked to recover the original channel values. This was
done by minimizing the root mean square error (RMSE) between
the masked original value x(t, c) and its reconstruction outputted

by the network :

JMIR Mhealth Uhealth 2024 | vol. 12 | e55094 | p. 7https://mhealth.jmir.org/2024/1/e55094
(page number not for citation purposes)

Corponi et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


where c and t, respectively, index the channels, and the
timestamps of the 0 values in the masks M and |M| are the total
number of 0s sampled (ie, the masks’ cardinality).

Transformation Prediction
We followed the implementation shown by Wu et al [42], which
used SSL for a target task of emotion recognition with E4
recordings. In brief, for each channel, 1 of 6 transformations
(ie, identity, Gaussian noise addition, magnitude warping,
permutation, time warping, and cropping) was sampled
uniformly at random and then applied. The transformed segment
was then inputted into a model, which was tasked to guess, for
each channel, which of the 6 transformations was applied. This
amounted to a multitask, multiclass classification, where the
model was trained to minimize channel average categorical
cross-entropy (CCE):

where c indexes the channels and j the transformations, 1i,j is
an indicator taking value 1 when j is the correct transformation
for channel c and 0 otherwise, and pc,j denotes the predicted
probability that transformation j was applied to channel c. By
solving this task, Wu et al [42] argued that the model learns
representations robust to disturbances in the magnitude and time
domains.

Tuning
A hyperparameter search for all models was carried out with
hyperband Bayesian optimization [61]. For the target task, we
selected the setting yielding the highest ACCsegment in the
validation set, whereas in self-supervised pretraining, we
selected hyperparameters associated with the lowest relevant
loss in the validation pretraining set. Multimedia Appendix 1
shows the hyperparameter search space and the best
configuration across all models. Deep learning models were
trained with the AdamW optimizer for a maximum of 300
epochs, with a batch size of 256. Moreover, to speed up the
training and search procedure, we used an early stopping
learning rate scheduler: we reduced the learning rate αLR by a
factor of 0.3 if the model did not improve in its validation
performance after 10 consecutive epochs, and we terminated
the training procedure if the model did not improve after 2
learning rate reductions. Dropout [62] and weight decay were
added to prevent overfitting.

Post hoc Analyses
Toward elucidating key contributors to the viability of SSL, in
addition to comparing different pretext task designs, we studied
how (1) progressively downsampling unlabeled data sets or (2)
removing each data set in turn from the unlabeled collection
might impact the performance of our best SSL model. Thus,
using the most performative self-supervised scheme, we
retrained the SSL model from scratch under configurations (1)

and (2) and then tested it on the target task. Note that in both
settings, the entire target task training set was kept for
pretraining; this is because pretraining on the training set can
be always performed at no extra cost in terms of data acquisition.
Lastly, we conducted statistical tests to better appreciate how
the self-supervised E4mer compared against its fully supervised
counterpart and the best-performing CML algorithm and how
it was affected by different ablations. Based on whether we
considered either (1) recording segments or (2) subjects as our
basic analysis units, we had 2 different hypotheses. In (1), we
used a linear mixed effects (LME) model to analyze the
difference in correct class probabilities between the SSL model
and each comparator, considering subjects as a random effect.
This accounted for the nested structure of the data, where
segments were sampled from individual subjects. A fixed effects
intercept was included to test a 0 mean difference between the
classifiers at the population level. Additionally, as the ML
models we implemented, like most state-of-the-art algorithms
[63], effectively treat segments as independent and identically
distributed, we used a 2-tailed paired t test to assess whether a
0 mean difference in the probability assigned to the correct class
was 0. In (2), we checked with a 2-tailed paired t test whether
the between-classifiers mean difference in the ACCsegment by
subject was different from 0. To account for multiple testing,
within both (1) and (2), a Bonferroni correction was applied.
The number of tests was 19, that is, 17 different ablation settings
plus 2 tests comparing the best baselines (fully supervised E4mer
and the best CML) to SSL.

Code Used
Python 3.10 programming language was used where deep
learning and CML models were implemented in PyTorch [64]
and Scikit-learn [65]/XGBoost [66] respectively, while
hyperparameter tuning was performed in both cases with weights
and biases [67]. The best hyperparameter setting found during
tuning for each model is reported in Multimedia Appendix 1.
All deep learning models were trained on a single Nvidia A100
graphical processing unit (GPU).

Ethical Considerations
The TIMEBASE/INTREPIBD study was conducted in
accordance with the ethical principles of the Declaration of
Helsinki and Good Clinical Practice and the Hospital Clinic
Ethics and Research Board (HCB/2021/104). All participants
provided written informed consent prior to their inclusion in
the study. All data were collected anonymously and stored
encrypted in servers complying with the General Data Protection
Regulation (GDPR) and the Health Insurance Portability and
Accountability Act (HIPAA). Regarding other studies included
in this work, we referred to relevant publications.

Results

Surrogate Tasks Used in Self-Supervised Pretraining
The same model, using the E4mer architecture (Figure 2), was
used across different pretext tasks. Figure 3 illustrates the
surrogate tasks we experimented with. In MP (Figure 3a), parts
of the input segments were zeroed out by multiplication with a
Boolean mask sampled, as shown by Zerveas et al [41], and the
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model was trained to recover the original input segments.
Although the model output entire segments, only the masked
values were considered toward the loss computation, that is,
the RMSE. The assumption was that the model acquires good
representations of the underlying structure of the data when
learning to solve this task. Our best model had an error of 0.1347
on the test set (notice that input segments were channel-wise
standardized).

In TP (Figure 3b), 1 transformation was sampled from a set and
applied to each channel independently, and the model learned
which transformation each channel underwent, minimizing the
channel average CCE. We used the same transformations as
Wu et al [42], who experimented with an E4 for a downstream
task of emotion recognition. The rationale was to encourage
robustness against signal disturbances introduced with the
transformations. The test loss of the selected model was 0.5000.

Figure 3.
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Target Task Performance Comparison
Table 2 illustrates the performance under each model we
developed. Although they were all optimized for segment ACC,
we also reported subject ACC since in a clinical scenario, a
decision needs to be made at the subject level. Note that
although ACC was a suitable metric in our use case as data were
perfectly balanced, we also provided complementary metrics
(precision, recall, F1-score, and area under the receiver operating

characteristic curve [AUROC]), both at the segment and at the
patient level. At the subject level, the predicted class was the
result of a majority vote over that subject’s segments, while the
predicted probabilities under each class were derived by
summing segments’ predicted probabilities for that subject and
normalizing by the corresponding segment number. MP
self-supervised pretraining comfortably outperformed end-to-end
SSL, while also surpassing other self-supervised approaches.

Table 2. Performance in differentiating an acute MDa episode from euthymia across different models.

AUROCcF1 scoreRecallPrecisionACCbModel

SubjectSegmentSubjectSegmentSubjectSegmentSubjectSegmentSubjectSegment

SLd

82.2572.247066.5465.6366.867566.2271.8866.38ENETe

83.2673.2780.671.3481.273.748069.0982.8170.37KNNf

83.2173.4478.8171.6377.6571.408071.8781.2571.25SVMg

83.1772.4482.0371.7281.172.118371.3382.8172.02XGBoosth

82.2275.6881.3374.3982.1475.3480.5573.4681.2575.35E4meri

SSLj

89.278.0288.377.878877.4188.678.3487.577.53MPk (LRl)

93.11n82.02n91.47n81.45n92.87n82.00n90.11n80.91n90.63n81.23nMP (FTm)

84.1271.8982.3772.0682.3172.0182.4472.1281.2571.16TPo (LR)

84.2375.218375.183.974.7982.1175.4184.3875.69TP (FT)

aMD: mood disorder.
bACC: accuracy.
cAUROC: area under the receiver operating characteristic curve.
dSL: supervised learning.
eENET: elastic net logistic regression.
fKNN: K-nearest neighbor.
gSVM: support vector machine.
hXGBoost: extreme gradient boosting.
iE4mer: E4-tailored transformer.
jSSL: self-supervised learning
kMP: masked prediction.
lLR: linear readout.
mFT: fine-tuning.
nThe best results.
oTP: transformation prediction.

The E4mer and CML baselines performed to a similar level:
although E4mer was superior to XGBoost in terms of ACCsegment

(75.35 vs 72.02), it was trumped by CML on ACCsubject (82.81
vs 81.25). Other CML baselines fared worse than XGBoost.
MP pretraining led to a target task performance, substantially
higher than the baselines, under both metrics. Although both
LR and FT dominated over supervised learning (SL), the latter
scored the highest performance with ACCsegment and ACCsubject

of 0.8123 and 0.9063, respectively. However, TP led to only
modest improvement over E4mer. Statistical tests comparing

the best SSL scheme (ie, MP with FT) against the fully
supervised E4mer and XGBoost were significant at both the
segment and the subject level. In particular, comparison with
E4mer yielded PBonferroni values of .03 for the LME model and
<.001 and .02 for the t test at the segment and the subject level,
respectively. For XGBoost, PBonferroni values were .04 for the
LME model and <.01 and .01 for the t test at the segment and
the subject level, respectively.

Comparison of the best SSL with its SL counterpart in terms of
ACCsegment by subject (Figure 4) suggested that only 2 (3.1%)
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patients with euthymia were misclassified by SSL but correctly
classified by the supervised E4mer. However, SL mispredicted
8 (12.5%) individuals that SSL got right. Patients on an acute
MD episode are shown as dots with a color gradient proportional
to their total score on the HDRS [46] (left half) and the YMRS
[47] (right half), 2 clinician-administered questionnaires tracking

depression and mania severity, respectively. Subjects on an
acute MD episode misclassified by SL included patients with
severe depressive (or manic) symptomatology. Notably, both
SSL and SL failed in the case of 4 (6.3%) subjects, including
3 (75%) patients on an acute MD episode with relatively
moderate severity.

Figure 4. SSL beats SL by 4 (9.4%) more correctly classified subjects. ACCsegment under SSL and SL (E4mer) within each subject’s test segments:
subjects in the euthymia group are represented as triangles, while subjects on an acute affective episode are shown as circles with the left half colored
in blue and the right half in red, with a gradient proportional to the total sum on the HDRS and the YMRS, respectively. Subjects’ position on the x and
y axes corresponds to their proportion of recording segments correctly classified by SL and SSL, respectively. Note that a subject’s majority vote over
their segments is in agreement with the subject’s true mood state when the proportion of correctly classified segments from that subject is greater than
0.5. The HDRS and the YMRS range shown on the color bar refer to values scored in the TIMEBASE/INTREPIBD sample, while the total score, in
general, range is 0-52 and 0-60, respectively. ACCsegment: segment accuracy; E4mer: E4-tailored transformer; HDRS: Hamilton Depression Rating
Scale-17; SL: supervised learning; SSL: self-supervised learning; TIMEBASE/INTREPIBD: Identifying Digital Biomarkers of Illness Activity in
Bipolar Disorder/Identifying Digital Biomarkers of Illness Activity and Treatment Response in Bipolar Disorder.

Ablation Analyses and Learned Representations
Tables 3 and 4 show the difference in the target task ACCsegment

and ACCsubject resulting from pretraining the best SSL on parts
of the unlabeled data collection and then FT it onto the target
task. Ablation analyses showed a positive trend between
unlabeled data availability and target task performance, but data
set–specific unobserved factors likely played a role. The
difference in ACCsegment and ACCsubject from pretraining on just
parts of the entire unlabeled data collection is shown in the
tables. An LME model and a 2-tailed paired t test assessed

whether the mean difference in predicted probabilities for the
segment’s correct class differed from 0, with the former
correcting for subjects as a random effect. A 2-tailed paired t
test assessed whether the mean difference in the number of
correctly classified segments by subject differed from 0. In each
test, the comparator was the best-performing self-supervised
model. P values are corrected with Bonferroni’s method. Note
that a majority vote over a subject’s segments was used to issue
subject-level predictions, and ACCsubject was simply the fraction
of correct majority votes in the test set. ACCsubject, therefore,
did not consider the proportion of votes over a subject’s
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segments in favor of the subject’s correct class but just whether
a majority, no matter how small or large, was reached in
agreement with the correct class. However, the t test (subject)
assessed a 0 mean difference in the proportion of votes, within
subjects, for the correct class. As shown in Table 3,
self-supervised pretraining, preceding FT on the target task,
therefore used only a fraction of the total unlabeled collection.
A resampling ratio of 0% meant that self-supervised pretraining
was performed on the target training set only.

The Pearson correlation coefficient (PCC) between unlabeled
data downsampling ratios and the difference in ACCsegment and
ACCsubject was 0.9401 and 0.9449, respectively, indicating a
strong dependence between performance and unlabeled data
availability. Similarly, excluding individual data sets from
pretraining impacted ACCsegment and ACCsubject proportionally
to their relative size (PCC=–0.8185 and –0.4083, respectively).
Notably, however, TIMEBASE/INTREPIBD, despite being
collected at the same site as the target task data and making up
the largest share of the unlabeled data collection, did not leave
the largest dent in performance when excluded from training.
Furthermore, excluding some data sets resulted in performance
improvement. Differences in ACCsegment and ACCsubject did not
always have the same sign because of the way they were
defined. Indeed, it is, for example, possible that the absolute
number of correctly classified segments decreased but enough
previously misclassified segments within a subject were now
correctly classified so that the majority vote for that subject
flipped. Statistical analyses showed that the ablation of a single
data set was associated with nonsignificantly different
performance in terms of correctly classified segments within
subjects. At the level of the probability assigned to the correct
class for each segment, LME results were significant only for
a data set, whereas results were mixed for t tests. Stratified
resampling gave positive results, but the significance for LME
was reached only at lower downsampling ratios.

Lastly, we visualized the representations learned by the encoder,
EN, part of our best-performing models to gain further insights.
As EN’s output had dimensionality (B=number of segments,
N=number of timestamps, D=transformer’s model dimension),

for visualization purposes, we averaged out the D axis and then
used Uniform Manifold Approximation and Projection (UMAP)
[68], a powerful nonlinear dimensionality reduction technique,
to embed the resulting N-dimensional data points into 3
dimensions. The top-left plot of Figure 5 shows the
representations learned during self-supervised pretraining with
MP. The segments shown are the target task test segments, along
with an equal number of segments belonging to the same
sessions but taken from the sleep state, which the SSL model
was never exposed to during training. Wake and sleep segments
have different embeddings, suggesting that the model captured
this structure in the physiological data: a Gaussian mixture
model, indeed, recovered 2 clusters, one with predominantly
sleep segments (n=4081, 82.66%) and the other with the
majority of wake segments (n=3272, 95.58%). It should be
noted that sleep and wake naturally have quite different
semantics with respect to physiological data, and the algorithm
we used for sleep/wake differentiation (Van Hees [52]) uses a
simple heuristic defining sleep as a sustained lack of significant
changes in the acceleration angle. The top-right and bottom
plots of Figure 5 illustrate the representations from the SSL
model upon FT on the target task. The top-right scatter plot
displays the target task test segments, as well as pretraining
validation set segments (except for the pretraining segments
from the TIMEBASE/INTREPIBD collection). The latter group
of segments we assumed as being taken from subjects without
an acute MD episode and, arguably, most even without any
historical MD diagnosis, since the open access data sets we
found did not select for patients with an MD. The plot shows 3
clusters whose composition, as recovered with a Gaussian
mixture model, was as follows: (1) n=1464 (79.26%) acute MD
episode and n=383 (20.7%) euthymia; (2) n=1120 (74.16%)
euthymia and n=390 (25.84%) acute MD episode; and (3)
n=7801 (91.01%) unlabeled segments, n=683 (7.96%) euthymia,
and n=88 (1.02%) acute MD episode. The bottom plots in Figure
5 show target task segments test segments only (no unlabeled
segment), colored with a gradient proportional to symptoms’
severity, as assessed with the HDRS [46] and the YMRS [47].
Embeddings would seem to suggest a progression in symptoms’
severity across the 2 clusters of segments on the right of the
scatter plot.

Table 3. Ablation analyses results: the unlabeled collection was downsampled, stratifying by data sets.

0%20%40%60%80%Resampling ratio

–7.07b–6.35b–6.07b–2.14b–0.23bACCa
segment difference

–7.82b–4.70b–4.70b–1.57b–1.57bACCsubject difference

.04.05.06.07.09LMEcP value

<.001<.001<.001<.001<.001t Test (segment) P value

.001.001.001.001.001t Test (subject) P value

aACC: accuracy.
bDeterioration in performance upon retraining on the ablated unlabeled data collection.
cLME: linear mixed effects.
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Table 4. Ablation analyses results: self-supervised pretraining was conducted, leaving out each data set in turn from the unlabeled collection.

t Test (subject)
P value

t Test (segment)
P value

LMEbP valueACCsubject

difference
ACCa

segment

difference

Relative sizeData set

.99<.001.01–1.57c–2.44c12.34Alcohol and Drug Abuse Research Program
(ADARP)

.99.99.23–1.57c–0.21c0.30Stress Predict

.99.99.99–3.13c0.52d0.04Toadstool

.99.003.99–4.70c–1.93c2.32Unlabeled Empatica E4 Wristband (UE4W)

.99.90.991.57d1.19d0.18Wearable Human Energy Expenditure Estimation
(WEEE)

.99.99.99–1.57c–0.51c0.42Wearable Stress and Affect Detection (WESAD)

.99.05.061.57d1.90d0.72Wearable Exam Stress Dataset (WESD)

.63<.001.99–4.70c–4.44c17.55In-GaugeEn-Gage

.99.99.99–1.57c–0.81c11.82Nurse Stress Detection

.99.08.99–1.57c–2.09c19.38BIG IDEAs Lab

.99<.001.534.70d1.93d0.69PPG Dataset for Motion Compensation and Heart
Rate Estimation in Daily Life Activities (PPG-
DaLiA)

.38.99.99–3.13c–4.32c34.24TIMEBASE/INTREPIBDe

aACC: accuracy.
bLME: linear mixed effects.
cDeterioration in performance upon retraining on the ablated unlabeled data collection.
dImprovement in performance upon retraining on the ablated unlabeled data collection.
eTIMEBASE/INTREPIBD: Identifying Digital Biomarkers of Illness Activity in Bipolar Disorder/Identifying Digital Biomarkers of Illness Activity
and Treatment Response in Bipolar Disorder.
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Figure 5. Reassuringly, the learned embeddings seem to have captured meaningful semantics about the underlying context. (Top left) Embeddings
from the encoder pretrained on MP map sleep and wake segments to different parts of the latent space. (Top right) Embeddings from the encoder FT
on the target task show that segments from the unlabeled open access data sets, which presumably do not contain subjects on an acute MD episode,
tend to cluster with part of the segments from patients in euthymia. Embeddings from the fine-tuned encoder show a gradient in symptoms’ severity
across target task segments, as revealed by (bottom left) the HDRS and (bottom right) the YMRS total score. Note that unlabeled segments are not
shown in the bottom left or right plot and that the HDRS and YMRS ranges shown on the color bar refer to values scored in the TIMEBASE/INTREPIBD
sample, while the total score range, in general, can be 0-52 and 0-60, respectively. FT: fine-tuning; HDRS: Hamilton Depression Rating Scale-17; MD:
mood disorder; MP: masked prediction; TIMEBASE/INTREPIBD: Identifying Digital Biomarkers of Illness Activity in Bipolar Disorder/Identifying
Digital Biomarkers of Illness Activity and Treatment Response in Bipolar Disorder; YMRS: Young Mania Rating Scale.

Discussion

Principal Findings
Personal sensing is likely to play a key role in health care supply,
creating unprecedented opportunities for patient monitoring and
just-in-time adaptive interventions [69]. Toward delivering on
this promise, expert annotation is a major obstacle; this is
especially the case with MDs, wherein data annotation is

particularly challenging and time-consuming, considering the
nature of the disorders.

To the best of our knowledge, we are the first to show that SSL
is a viable paradigm in personal sensing for MDs, mitigating
the annotation bottleneck, thanks to the repurposing of existing
unlabeled data collected in settings as different as subjects
playing Super Mario [27], taking university exams [29], or
performing physical exercise [28].
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We took on a straightforward yet fundamental task, that is, to
distinguish acute MD episodes from euthymia. Timely
recognition of an impending MD episode in someone with a
historical MD diagnosis regardless of the episode polarity
(depressive, manic, or mixed) may, indeed, enable preemptive
interventions and better outcomes [5]. Our results suggest that
with a sample size on the order of magnitude that is typical of
studies into personal sensing for MDs, a modern deep learning
fully supervised pipeline (E4mer) may offer no substantial
improvements over simpler CML algorithms (eg, XGBoost),
despite higher development and computational costs. However,
the accumulation and repurposing of existing unlabeled data
sets for an SSL pretraining phase leads to a confident margin
of improvement: ACCsegment and ACCsubject improve by 7.8%
and 11.54%, respectively, relative to the fully supervised E4mer,
with 6 (9.4%) of 64 more subjects correctly classified.

Our findings further show that careful choice of the pretext task,
as well documented in the literature on SSL [40], is key toward
learning useful representations for the downstream target task.
Unlike MP, improvement, if any at all, from TP was only
modest. This is not to say that such a pretext task may in general
fail to deliver on acute MD episode versus euthymia
differentiation. Indeed, the specific transformations we
implemented, borrowed from Wu et al [42], may have been
suboptimal for our downstream task, pointing to the importance
of domain knowledge (including clinical expertise) in pretext
task design. Lastly, although SSL relaxes dependence on large,
annotated data sets, our results indicate that its success relies
on the size of unlabeled data. Ablation analyses, indeed, showed
a positive correlation between target task performance and the
size of the corpus available for pretraining. Data
set–idiosyncratic factors accounting for the nonperfect
correlation between the relative size and impact on target task
performance may be present. Speculatively, these may include
noise in the data, (dis)similarity of recording conditions, or
(ir)relevance for the target task of the representations learned
modeling the domain of the unlabeled data set.

Statistical analyses showed that excluding from pretraining any
of the individual unlabeled data sets, while keeping all others,
is not associated with a significant change in performance on
the proportion of correctly classified segments within subjects.
The lack of a significant effect in either direction (improvement
or deterioration), along with a significantly superior performance
of SSL over fully supervised schemes, indicate that pretraining
on big data collections leads to higher performance than taking
on the target task from scratch. Of importance, adding data sets
for pretraining from domains not immediately related to the
target task did not undermine the model. Pretraining under
progressively lower downsampling ratios lent further support
to the importance of data size. This is consistent with the deep
learning recipe where the bigger the pretraining corpus, the
better the results [70]. Results from tests at the level of

segment-predicted probabilities are consistent with this view.
Of the data sets comprising less than 1% of the entire unlabeled
collection, only 1 reached statistical significance. LME has
more flexibility to explain the data since rather than pooling all
segments together in a unique (bigger) population, it treats them
as embedded within subjects. This explains the lack of statistical
significance relative to the t tests under various data ablation
regimes.

Limitations
We acknowledge the following limitations of this study. We
deliberately chose the simplest task that has clinical relevance
in personal sensing for MDs since our focus was on SSL;
however, we appreciate that a more fine-grained MD
description, beyond a simple acute MD episode versus euthymia
binary classification, may add further clinical value [35]. As
the literature on SSL is expanding at a fast pace, a thorough
search of different approaches was beyond the scope of this
work. We acknowledge that other pretext tasks can be deployed,
and although the architectural choice may have an impact on
SSL, we settled for just 1 reasonable, modern model design
with a transformer [43] as a workhorse for representation
learning. Lastly, given the naturalist design of the study,
reflective of the intended use of personal sensing in a clinical
setting, we could not exclude the effect of confounders,
including medications, on the physiological variables. However,
we reported medication classes administered in the cohort and
verified a lack of any significant association between target
classes (euthymia vs acute MD episode) and being on a given
medication class.

Future Directions
As our findings indicate that the choice of the pretext task has
a significant impact on target task performance, further efforts
should be put into pretext task design. Indeed, although MP is
a general-purpose strategy inspired by the great success of BERT
[38] in NLP, the literature on SSL [40] suggests that domain
knowledge may help tailor the pretext task to the specific use
case. A promising approach we did not explore is contrastive
learning [71], which, indeed, relies on domain knowledge of
how augmented views of the input are created, especially since
most experience today is in computer vision and NLP, while
physiological multivariate time series are relatively unexplored.

Conclusion
This work shows that SSL is a promising paradigm for
mitigating the annotation bottleneck, 1 of the major barriers to
the development of artificial intelligence–powered clinical
decision support systems using personal sensing to help monitor
MDs, thus enabling early intervention. The collection and
preprocessing of open access unlabeled data sets that we curated
(E4SelfLearning) can foster future research into SSL, therefore
advancing the translation of personal sensing into clinical
practice.
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