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Abstract

Wearable monitors continue to play a critical role in scientific assessments of physical activity. Recently, research-grade monitors
have begun providing raw data from photoplethysmography (PPG) alongside standard raw data from inertial sensors (accelerometers
and gyroscopes). Raw PPG enables granular and transparent estimation of cardiovascular parameters such as heart rate, thus
presenting a valuable alternative to standard PPG methodologies (most of which rely on consumer-grade monitors that provide
only coarse output from proprietary algorithms). The implications for physical activity assessment are tremendous, since it is
now feasible to monitor granular and concurrent trends in both movement and cardiovascular physiology using a single noninvasive
device. However, new users must also be aware of challenges and limitations that accompany the use of raw PPG data. This
viewpoint paper therefore orients new users to the opportunities and challenges of raw PPG data by presenting its mechanics,
pitfalls, and availability, as well as its parallels and synergies with inertial sensors. This includes discussion of specific applications
to the prediction of energy expenditure, activity type, and 24-hour movement behaviors, with an emphasis on areas in which raw
PPG data may help resolve known issues with inertial sensing (eg, measurement during cycling activities). We also discuss how
the impact of raw PPG data can be maximized through the use of open-source tools when developing and disseminating new
methods, similar to current standards for raw accelerometer and gyroscope data. Collectively, our comments show the strong
potential of raw PPG data to enhance the use of research-grade wearable activity monitors in science over the coming years.

(JMIR Mhealth Uhealth 2024;12:e57158) doi: 10.2196/57158
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Introduction

Wearable monitors are increasingly used to measure physical
activity in research, and new tools and techniques are continually
emerging [1]. Recent innovations have improved the cost, size,
and technical capability of various monitors [2], but accuracy
has not increased at a commensurate pace [3-6]. Thus, there is
a need for further innovation. Successful innovation will likely
entail novel measurement paradigms, rather than incremental
improvements on current techniques [6]. One of the most

promising and underexplored paradigms is to integrate data
from multiple types of sensors, rather than the traditional use
of only accelerometer sensors [7,8].

Photoplethysmography (PPG) is an optical technology that may
have potential to enhance physical activity measurement when
combined with established inertial sensors (accelerometers and
gyroscopes) [9]. Although PPG was first described nearly 90
years ago, it has only recently gained a high level of visibility
for physical activity assessment [10-12]. This growth is reflected
in Figure 1, which shows the results of a Scopus search for
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documents addressing physical activity and PPG. Roughly half
of the identified studies (183/385, 48%) were published in 2020
or later, and roughly three-quarters (285/385, 74%) were
published in 2017 or later.

To date, most applications of PPG for physical activity
assessment have involved consumer-grade smartwatches
[13-16]. A wealth of developmental research has also been
reported in the engineering literature [17-20], but commercial
products for research have rarely incorporated PPG sensors and
even more rarely given access to raw PPG data (ie, the data
recorded by the sensor itself, without any preprocessing applied)
[21]. This is beginning to change, and as it does, there is a need
to raise awareness of PPG and its potential contribution to
monitor-based physical activity assessment. In particular,

awareness is needed for raw PPG data since it provides an
avenue for device-agnostic measurement and iterative,
open-source refinement, similar to the standard for inertial
sensing [22].

In this viewpoint paper, we present raw PPG as a new frontier
in monitor-based methodology. To do this, we first provide an
overview of the fundamentals of PPG for physical activity
assessment, after which we describe the importance and
availability of raw PPG data, as well as specific applications
where it holds the most potential. Throughout, we highlight
ways that raw PPG data can synergize with raw data from
inertial sensors to overcome long-standing challenges (eg,
measurement during cycling).

Figure 1. Annual publication counts over time, drawn from a Scopus.com search for “TITLE-ABS-KEY (physical AND activity AND
photoplethysmography OR ppg),” conducted on December 6, 2023.
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Fundamentals of PPG for Physical
Activity Assessment

Technology, Techniques, and Theory
There are 2 types of PPG, namely, transmission and reflectance
[23]. Transmission PPG is common in clinical settings where
it is used for pulse oximetry [12]. It typically involves red and
near-infrared lights, which are shone into one side of a tissue
(commonly a finger or an earlobe) and measured upon exiting
the other side [10,24,25]. In physical activity assessments,
transmission PPG has limited use compared with reflectance
PPG. Therefore, we do not provide further comments on
transmission PPG.

Reflectance PPG has been investigated using both “wearable”
and “remote” instruments, the latter referring to cameras that
do not touch the skin. Similar to transmission PPG, remote
applications of reflectance PPG have minimal relevance for
physical activity assessment, and thus we forgo additional
comments on them. Instead, we focus our comments on wearable
applications of reflectance PPG, particularly those embedded

in wrist-worn devices. Hereafter, we use the term “PPG” to
refer exclusively to such applications.

As noted by Mannheimer [26], the term “reflectance” is a
misnomer, since there are no mirrors in the skin. Instead, light
is scattered by various components of the tissue, and portions
of the scattered light return to the surface where they can be
measured by a photodetector. Thus, the defining characteristic
of this PPG technique is that emission and measurement of light
occur on the same side of the tissue [27].

There is some debate around what exactly PPG captures, but
the prevailing theory is that it detects pulsatile changes in blood
volume [28-30]. Figure 2 depicts the mechanics of this proposed
process, with light being shone into the skin while cyclical
fluctuations in scatter are monitored. These fluctuations occur
because blood concentration is increased when a pulse wave
passes under the light, resulting in more light absorption in
accordance with the Beer-Lambert law [26,31]. Consequently,
a waveform emerges in the PPG signal, which can be analyzed
to detect pulse waves and calculate related parameters such as
heart rate [9,10,23]. Green light is typically used because it
offers shallower penetration and greater robustness against
motion artifacts and other noise [17,19,32-35].

Figure 2. Basic representation of PPG technology. An emitter shines light into the skin. The light is absorbed by some components—mainly hemoglobin
and melanin—and scattered by others toward a photodetector. Pulse waves cause increases in local blood concentration, leading the balance of absorption
and scatter to shift in favor of more absorption. The photodetector signal thus diminishes as the pulse wave passes, creating a waveform that can be
analyzed to predict cardiovascular parameters such as heart rate and blood pressure. Public domain icons from PubChem are shown for melanin (CID
6325610) and (deoxy)hemoglobin (CID 135310457).
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Common Difficulties and Sources of Error
It is important to understand not only the theoretical workings
of PPG but also practical issues that affect its operation. Fine
et al [36] have grouped such issues into 3 categories (individual
differences, physiology, and external factors), while Bent et al
[37] have highlighted the unique importance of one overarching
individual factor (skin type) and 2 external factors (motion
artifact and signal crossover). In this section, we provide a brief
overview of these latter 3 factors and their potential implications
for physical activity research, with additional comments on
broader sources of error for general applications of PPG.

Skin type encompasses adiposity, pigmentation, and other
factors that influence tissue composition (see the study by Fine
et al [36] for a detailed listing). Differences in tissue composition
can affect optical scattering and absorption in ways that are
difficult to predict. Accordingly, prior work has shown the
accuracy of PPG-based estimates to vary depending on age,
sex, obesity status, and skin tone [13,20,38-40]. The latter is an
especially important variable to consider because melanin is
one of the skin’s main absorbers of light at various wavelengths
[41,42]. When using PPG for the measurement of physical
activity, there is thus a clear need to ensure that new methods
have consistent accuracy across diverse skin types. This is
especially important given the implications for equity in health
research.

Motion artifact is movement-induced noise in the PPG signal,
which can occur due to both mechanical and physiological
aspects of the movement [43]. Efforts to address motion artifact
often rely on frequency-domain analyses, since it is expected
that the rhythmicity of the pulse will create a sharper contrast
between signal and noise in that domain [44]. Increasingly,
these analyses involve cross-referencing PPG against data from
concurrently worn accelerometer and gyroscope sensors to aid
in differentiating between inertial and cardiovascular signal
[45]. Thus, when using PPG for physical activity assessments,
future studies may benefit from using devices that provide access
to raw data from both PPG and inertial sensors.

Signal crossover is closely related to motion artifact and refers
to confusion between rhythmic motions of the monitor itself
(eg, during locomotion) and the inherent rhythmicity of the
cardiovascular signal from PPG [37]. Specifically,
cardiovascular signal is expected to have dominant frequencies
between roughly 1.0 Hz and 3.5 Hz (corresponding to heart
rates between 60 and 210 beats per minute), and human
movements can generate considerable amplitude in the same
range [46-48]. Thus, it is likely that some motions will result
in overlap of inertial and pulsatile signal components, making
it hard to tell which is which. This is one reason that PPG-based
devices have frequently been shown to have lower accuracy
during physical activity than during other behaviors [37,49,50].
Signal crossover is uniquely important to highlight because it
suggests that device accuracy may vary based on not only the
amount of movement but also the type of movement. This could
have major implications for physical activity assessments,
making it crucial to address in future work.

Apart from skin type, motion artifact, and signal crossover, Fine
et al [36] have highlighted difficulties posed by physiological

factors (respiration, venous pulsations, attachment site of the
device, and body temperature) and additional external factors
(ambient light and pressure of the sensor on the skin). These
difficulties are important to acknowledge and address, but their
implications may not be substantively different for physical
activity research than what has been described for other
disciplines.

Many of the difficulties with raw PPG resemble what is already
faced when dealing with inertial data from accelerometers and
gyroscopes [51]. The latter sensors have enhanced the
measurement of physical activity despite their limitations [52],
and thus PPG may have similar potential. Furthermore, the
impact of device limitations may diminish over time through
ongoing innovation in technology and analytics. Thus, the
difficult aspects of PPG can be viewed as opportunities for
refinement rather than insurmountable barriers.

Importance and Availability of Raw PPG
Data

To understand the revolutionary potential of raw PPG data for
physical activity assessment, it is helpful to consider a similar
revolution that has already taken place with accelerometer data
[53-55]. Historically, accelerometer-based devices provided
only proprietary “activity counts” as their output, which led to
intermonitor differences and a lack of flexibility to innovate
with new data processing techniques [56-58]. Over time, raw
acceleration data became commonplace, opening doors for
standardization and innovation in physical activity research [2].
An especially noticeable result was that many researchers began
to focus on techniques that combined research-grade products
with open-source tools for data processing and analysis, thereby
promoting streamlined and coordinated progress in the field
[59-64].

The potential parallels for PPG data are striking. To date, most
research with PPG has relied on proprietary outputs from
consumer-grade devices, which have been used to track heart
rate, atrial fibrillation, blood pressure, and more [65-76].
Intermonitor differences and lack of flexibility are thus
limitations of current standards for PPG, in much the same way
as they once were for accelerometry. Furthermore, concerns
have frequently been raised about unannounced algorithm and
firmware updates that can make consumer-grade technology
undesirable in certain research contexts [77-81]. The advent of
raw PPG data therefore offers many of the same benefits that
have already been derived from raw accelerometer data,
especially when pairing research-grade devices with open-source
resources. But the full potential of raw PPG for physical activity
research cannot be realized unless the market provides devices
that are scalable for use in large studies.

Existing research involving raw PPG data has generally involved
small-scale devices (sometimes custom-made) [19,21,27,30,82],
specialized tools for hospital use [83-86], or smartphone
technology [87-89]. While these studies have shown strong
proof-of-concept, they have only sometimes been oriented
toward physical activity research, and the availability of suitable
devices for large assessments remains an issue. The best-known
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research-grade devices are likely the E4 and EmbracePlus from
Empatica Inc, the Shimmer3+ GSR from Shimmer Sensing,
and the LEAP from ActiGraph LLC. Each device has strengths
and limitations, with major points of comparison being cost,
comfort, and access to raw data. The Shimmer3+ GSR is the
most affordable option and provides access to fully raw data
from both PPG and inertial sensors. However, a potential
limitation is its reliance on physical components (eg, wired
probes that wrap around the fingers) that may be unappealing
or uncomfortable for some participants. The EmbracePlus is
the most expensive device and is a replacement for the E4. It is
designed like a standard smartwatch and is therefore very
comfortable, but it does not provide truly raw PPG data (nor
did the E4 [21]). Specifically, the EmbracePlus preprocesses
PPG data using a proprietary algorithm that produces a blood
volume pulse waveform, which resembles but does not replace
raw data as it would appear in a direct recording from the
photodetector. The LEAP device falls between the other 2 in
terms of cost and comfort but does provide access to fully raw
data from PPG and inertial sensors.

As new and upgraded devices continue to emerge and provide
access to raw PPG data, a key objective will be to apply, extend,
and standardize the techniques from earlier proof-of-concept
studies for use in large-scale physical activity assessments for
research. The following section outlines several specific areas
in which there may be greatest warrant for these efforts.

Potential Applications of Raw PPG in
Assessments of Physical Activity

The most obvious application of raw PPG for physical activity
assessment is heart rate monitoring, where a notable contrast
exists between the wrist-based optical approach and standard
electrode-based approaches involving chest-worn monitors (eg,
heart rate straps and Holter monitors). The latter tend to have
greater accuracy than the former [90,91] and yet can also be
uncomfortable to wear, especially over long periods [92].
Conversely, wrist-based PPG devices can be comfortably worn
over long periods and yet have lower accuracy than chest-worn
monitors. One implication is that raw PPG may encourage
participant compliance in long assessment protocols (eg, lasting
a week or more, which is common in physical activity research).
This could be especially valuable for interventions that assess
change over time, since responsiveness is generally a greater
concern than accuracy in those contexts. Moreover, the
diminished accuracy compared with chest-worn monitors may
be less of an issue in cases where the key outcome is categorical
intensity rather than continuous heart rate (eg, if assessing time
in heart rate zones, where measurement error would be a concern
only at the boundaries between zones, rather than across the
spectrum of continuous heart rates). Nevertheless, there is a
definite trade-off between accuracy and comfort, and neither
chest-worn nor wrist-worn monitors are the optimal choice for
every research question. This makes the accuracy-comfort
trade-off a critical consideration when selecting a monitor for
research. With continued innovation and refinement, the
accuracy gap may narrow between chest- and wrist-worn
devices, and trade-off–related considerations may change

accordingly. But it is unlikely that the issue will ever disappear
completely.

While heart rate monitoring is an obvious application for raw
PPG, it may not be the most impactful one. Rather, there may
be greater promise when combining raw data from PPG and
inertial sensors to predict other physical activity–related
outcomes such as energy expenditure. This multimodal approach
not only allows for robust correction of motion artifact in the
PPG signal (as described previously) but also enables concurrent
analysis of movement and cardiovascular data. While this is
not an entirely new concept, the ability to carry it out using
purely raw data from a single wrist-worn device is quite recent.
Thus far, the primary multimodal methods have relied on either
separately worn movement and cardiovascular monitors [93-95]
or the chest-worn Actiheart device (CamNtech Ltd) [96-99]
when predicting energy expenditure. These approaches have
shown clear synergy between movement and cardiovascular
data but have ultimately had limited uptake compared with the
widespread use of wrist-worn monitors in field-based research.
Furthermore, heart rate has been the only cardiovascular
parameter emphasized with the earlier methods, whereas raw
PPG can potentially lead to enhanced predictions through the
capture of additional aspects of cardiovascular response to
activity (eg, pulse wave parameters and variability). This
highlights the warrant for translating and extending earlier
concepts of multimodal assessment to the use of raw PPG and
inertial data from wrist-worn devices.

The combination of raw PPG and inertial data may also help
overcome known limitations of movement-only techniques in
the prediction of energy expenditure. For example, wrist-worn
monitors are generally unable to register any motion during
cycling despite the level of lower-limb exertion, resulting in
poor measurement validity [100]. In contrast, PPG may still
detect exertion during cycling because it relies on optical and
physiological signal rather than inertial signal. This advantage
reflects the known benefit of using not only multiple sensors
but multiple types of sensors [51,56]. Similar benefits may also
arise for other activities where the body’s inertial profile is
altered, such as when carrying an external load or pushing a
stroller [101,102]. The potential to overcome these limitations
with virtually no change in participant burden highlights the
strong potential of raw PPG to improve physical activity
research, especially in the area of energy expenditure prediction.

Combining raw PPG and inertial data may also be beneficial
for activity recognition, promoting greater understanding about
certain elements of activity context [103]. Activity recognition
is also important as a precursor to energy expenditure prediction,
since it is much easier to predict energy expenditure if the type
of activity is first known [104-106]. This is the basis for several
prior models of energy expenditure, including well-known
2-regression models [107-114]. The utility of raw PPG for
activity recognition was recently highlighted by Hnoohom et
al [115], who calibrated models using data from 3 open-access
datasets [116-118]. The parent studies used devices from
Shimmer, Empatica, and Maxim Integrated (Analog Devices
Inc), and the models were calibrated using deep learning and
different combinations of accelerometer, PPG, and
electrocardiographic data. When combining accelerometer and
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PPG data, the dataset-specific models each achieved near-perfect
accuracy during 10-fold cross-validation. However, external
validations are needed to confirm the effectiveness of the models
and apply them with scalable devices, as described previously.

Outside of energy expenditure and activity recognition, raw
PPG may have use for measuring a range of other physical
activity–related variables as well, from specific hemodynamic
parameters related to exertion (eg, pulse transit time [119]) to
consequences of physical activity such as fatigue and recovery
[120]. Steps warrant mention as well, given their status as a
well-known output of most wearable activity monitors. Raw
PPG could potentially enhance or refine the measurement of
steps and related variables (eg, cadence), including during
periods where the inertial movement profile is altered, as
described previously for energy expenditure. The combination
of raw data from PPG and inertial sensors could also enable
automated measurement of highly specialized outcomes in
free-living settings, such as cardiac-locomotor coupling (ie,
synchrony of footfalls with systole or diastole) [121].

Finally, although our focus has been on physical activity–related
applications of raw PPG, it is important to acknowledge
potential contributions in the broader context of 24-hour
measurement as well. This refers to the growing emphasis on
interrelationships between physical activity, sedentary behavior,
and sleep as part of a daily composite [122,123]. The importance
of the concept is reflected in the release of 24-hour movement
guidelines from numerous governments and the World Health
Organization over the last few years [124-129], and there are
at least 2 key contributions raw PPG can make to 24-hour
assessments. One is to differentiate between nonwear, sedentary
behavior, and sleep, all of which produce minimal accelerometer
and gyroscope signal and are therefore hard to tell apart using
only inertial data. Raw PPG may exhibit richer variation across
the categories, thereby assisting with disambiguation. Some
proof-of-concept already exists in this area as well, given the
amount of prior work using PPG for sleep measurement [130].
The other benefit may be to assist with classifying posture
(seated or lying vs upright) [131], which is essential for
differentiating sedentary behavior from light-intensity physical
activity [132]. These possibilities highlight the strong potential
and exceptional flexibility of raw PPG, which will be an asset
for a broad range of movement-oriented research in the coming
years.

Discussion and Conclusion

In this viewpoint paper, we have introduced raw PPG and
highlighted its potential benefits for physical activity
assessments. Our specific focus on raw PPG data (as opposed
to preprocessed or aggregated data) was critical and timely,
given the recent emergence of mainstream devices that provide
access to them. A key strength of raw PPG is that its optical
basis complements the inertial basis of familiar accelerometer
and gyroscope sensors. Furthermore, raw PPG can be used to
assess not only heart rate but also broader aspects of
cardiovascular physiology. These are the driving forces behind
the potential we laid out in the prior sections.

Going forward, it will be critical to obtain raw data from both
PPG and inertial sensors, not only to facilitate merging them
but also to make new algorithms both transparent and device
agnostic (ie, applicable to data from any PPG-inclusive device).
These characteristics help combat the “black box” phenomenon
of closed-source devices [133]. Device agnosticism also plays
an important role in “future proofing” new methods by reducing
dependence on individual monitors that can leave the market
at any time (eg, as seen with the SenseWear Armband, Phillips
Actiwatch, Empatica E4, and ActiGraph GT9X). The use of
raw PPG can be further advanced by using open-source channels
when developing and disseminating of new resources, consistent
with growing standards for existing wearable devices in physical
activity assessment [59-64].

This viewpoint paper was among the first to suggest the value
of integrating raw PPG data into large-scale assessments of
physical activity, where the importance of raw accelerometer
and gyroscope data has already been established. In doing so,
the viewpoint paper serves to orient new users to the wealth of
prior work on PPG from other research areas, where critical
reference points have been provided that can spur a paradigm
shift in physical activity research. A noteworthy limitation of
the viewpoint paper was that it was not a systematic review. As
such, it did not fully summarize the available literature, whether
in general or focused specifically on physical activity
assessment. Nevertheless, our overall conclusion is that there
is warrant for vigorous exploration of raw PPG going forward.
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