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Abstract
Background: Smartphone-based monitoring in natural settings provides opportunities to monitor mental health behaviors,
including suicidal thoughts and behaviors. To date, most suicidal thoughts and behaviors research using smartphones has
primarily relied on collecting so-called “active” data, requiring participants to engage by completing surveys. Data collected
passively from smartphone sensors and logs may offer an objectively measured representation of an individual’s behavior,
including smartphone screen time.
Objective: This study aims to present methods for identifying screen-on bouts and deriving screen time characteristics from
passively collected smartphone state logs and to estimate daily smartphone screen time in people with suicidal thinking,
providing a more reliable alternative to traditional self-report.
Methods: Participants (N=126; median age 22, IQR 16-33 years) installed the Beiwe app (Harvard University) on their
smartphones, which passively collected phone state logs for up to 6 months after discharge from an inpatient psychiatric
unit (adolescents) or emergency department visit (adults). We derived daily screen time measures from these logs, including
screen-on time, screen-on bout duration, screen-off bout duration, and screen-on bout count. We estimated the mean of these
measures across age subgroups (adults and adolescents), phone operating systems (Android and iOS), and monitoring stages
after the discharge (first 4 weeks vs subsequent weeks). We evaluated the sensitivity of daily screen time measures to changes
in the parameters of the screen-on bout identification method. Additionally, we estimated the impact of a daylight time change
on minute-level screen time using function-on-scalar generalized linear mixed-effects regression.
Results: The median monitoring period was 169 (IQR 42‐169) days. For adolescents and adults, mean daily screen-on time
was 254.6 (95% CI 231.4-277.7) and 271.0 (95% CI 252.2-289.8) minutes, mean daily screen-on bout duration was 4.233
(95% CI 3.565-4.902) and 4.998 (95% CI 4.455-5.541) minutes, mean daily screen-off bout duration was 25.90 (95% CI

JMIR MHEALTH AND UHEALTH Karas et al

https://mhealth.jmir.org/2024/1/e57439 JMIR Mhealth Uhealth 2024 | vol. 12 | e57439 | p. 1
(page number not for citation purposes)

https://mhealth.jmir.org/2024/1/e57439


20.09-31.71) and 26.90 (95% CI 22.18-31.66) minutes, and mean daily screen-on bout count (natural logarithm transformed)
was 4.192 (95% CI 4.041-4.343) and 4.090 (95% CI 3.968-4.213), respectively; there were no significant differences between
smartphone operating systems (all P values were >.05). The daily measures were not significantly different for the first 4
weeks compared to the fifth week onward (all P values were >.05), except average screen-on bout in adults (P value = .018).
Our sensitivity analysis indicated that in the screen-on bout identification method, the cap on an individual screen-on bout
duration has a substantial effect on the resulting daily screen time measures. We observed time windows with a statistically
significant effect of daylight time change on screen-on time (based on 95% joint confidence intervals bands), plausibly
attributable to sleep time adjustments related to clock changes.
Conclusions: Passively collected phone logs offer an alternative to self-report measures for studying smartphone screen time
characteristics in people with suicidal thinking. Our work demonstrates the feasibility of this approach, opening doors for
further research on the associations between daily screen time, mental health, and other factors.
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Introduction
The widespread use of smartphones has created new
opportunities for capturing social, behavioral, and cognitive
phenotypes in free-living settings [1]. The ability to col-
lect data from individuals in their natural environments,
rather than in controlled laboratory settings, allows for a
more complete ascertainment of an individual’s behavior.
In addition, the use of smartphones allows for near-continu-
ous data collection, enabling a more detailed and dynamic
view of an individual’s behavior over time. This approach
is well suited to study mental health disorders that are often
characterized by a fluctuating and recurrent course [2].

Suicide is a complex mental health problem that is
characterized as an “act of intentionally ending one’s own
life” [3]. According to the National Institute of Mental
Health, in 2021, more than 48,000 people died by suicide
in the United States [4]. Suicide is often triggered by one or
a combination of factors, including mental illness, substance
use disorders, traumatic life events, and social isolation [3].

To date, in suicidal thoughts and behaviors (STB)
research, smartphone-based monitoring has been primarily
used to collect “active” data, which requires a participant
to actively engage by contributing data entries via surveys.
For example, smartphones can be used to collect ecologi-
cal momentary assessment (EMA) data, which are frequent
surveys on an individual’s thoughts, feelings, and behaviors
in their natural environment [5,6]. EMA deployed through
a smartphone app has been successfully used to understand
potential risk factors for STB and characterize dynamics in
suicidal ideation over time [7-13]. Importantly, the ability
to deploy active data collection via smartphones and access
EMA outcomes in real time has given rise to ethical and
safety concerns, including when and how to intervene if a
participant’s responses indicate an elevated risk during the
course of the study [14].

The use of smartphone “passive” data, that is, data
collected from smartphone sensors and logs without any
active engagement from a participant, is less common in STB
research. Existing studies have mostly relied on proprietary

mobile apps and analytic methods [15]. Using smartphone
log data to obtain detailed characteristics of an individual’s
screen time is a potentially compelling application in STB
studies due to the growing research focus on the associa-
tion between screen time and mental health. Indeed, existing
studies have demonstrated a link between increased levels
of anxiety and depression and high smartphone screen time,
measured either objectively or via a self-report [16,17].
In addition, objectively measured excessive screen time on
mobile devices has been linked with a decreased quantity
of sleep, which can further exacerbate mental health issues
[18]. Interestingly, Rozgonjuk et al [19] reported that in a
sample of 101 undergraduate university students, depression
and anxiety symptom severity negatively correlated with the
frequency of phone screen unlocking but were not related to
total screen time; this finding suggests that not only screen-
on total duration time but also screen-on use patterns are
potentially relevant.

Data missingness is a common issue in digital health
studies [20,21]. For smartphone passive data, Kiang et al
[22] estimated missingness due to sensor noncollection rates
to be 19% for accelerometer data and 27% for GPS data
across 6 digital phenotyping studies. Sensor noncollection has
been attributed to users’ behavior (eg, forgetting to charge a
phone, disabling the GPS, and uninstalling the study app) and
technological factors (the phone operating system restricting
data collection). If the expected data volume or temporal
coverage is fixed by study design (as was the case in these
studies), one can identify smartphone sensor noncollection
by comparing the expected versus observed data volume or
temporal coverage. Determining missing data in the context
of estimating smartphone screen time from phone state logs
is more complicated, and without identifying the missingness,
results may be biased. To the best of our knowledge, to date,
no systematic approach has been proposed to determine the
missingness status of smartphone state logs.

In this paper, we present methods for identifying and
characterizing smartphone screen-on bouts, which we define
as periods of consecutive smartphone use, in smartphone state
logs. These methods were applied to a sample of adolescents
(n=50) and adults (n=76) with suicidal thinking. Data were
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collected for up to 6 months from participants’ personal
Android and iOS phones using the Beiwe smartphone app
(Harvard University) [23]. Our methodological contributions
are as follows. First, we present a method for preprocess-
ing raw smartphone state logs into discrete screen-on bouts,
capturing the duration and timing of each screen interac-
tion, and handling missingness due to sensor non-collection;
additionally, we performed multiple sensitivity analyses for
preprocessing of raw logs. Second, we extracted several
day-level metrics from the preprocessed bouts, including
total screen time volume and fragmentation metrics that
quantify the temporal distribution of screen use. Third, we
compared screen time measures from early versus later stages
of monitoring (which starts after the presentation of suicidal
thinking) to identify use pattern shifts potentially associated
with recent suicidal thoughts. Finally, we demonstrated how
functional data analysis regression techniques can be used
to analyze complex minute-level screen time outcomes. We
estimated a time-varying effect of a daylight saving time
(DST) change on the outcome using the natural experiment
this event creates. The code for all preprocessing and analysis
steps is openly available on GitHub [24].

Methods
Ethical Considerations
This study was conducted ethically and in accordance
with relevant guidelines and regulations. Institutional review
board approval from Harvard University (IRB18-1749) was
obtained before the study began. All data collection and
maintenance followed university, hospital, state, and national
policies and regulations. Participants gave informed consent
before taking part in any study procedures. All identifying
information, such as names, initials, or hospital numbers, has
been omitted from the data used in this analysis to protect
participant privacy.
Study Design and Population
The study recruited 2 samples of participants: adults from
Massachusetts General Hospital’s Acute Psychiatry Service
and children or adolescents (and their parents or guardians)
from Franciscan Children’s psychiatric inpatient unit. Adult
participants were eligible if they were 18 years or older, with
other criteria including owning a smartphone and present-
ing to the emergency department with suicidal thoughts.
Children and adolescents aged 12‐19 years were recruited
from Franciscan Children’s, with eligibility criteria including
smartphone ownership, parental consent for minors, child
or adolescent assent, and presenting problems that included
suicidal thoughts. The recruitment process involved initial
identification and informed consent, and it was conducted
via both an in-person manner and a remote manner (but
fully remote during heightened periods of the COVID-19
pandemic). The recruitment process was designed to promote
diversity among participants, without restrictions based on
diagnosis or clinical history.

Phone State Logs
Phone state logs were collected with the Beiwe smartphone
app, the front end of the open-source Beiwe high-through-
put digital phenotyping platform [23]. The Beiwe platform
consists of smartphone apps for Android and iOS, a web-
based platform for study administration, and a cloud-based
back-end system for data storage and processing. Participants
were assigned a Beiwe participant ID and had the Beiwe
app installed during enrollment, which defined a study start
date (Multimedia Appendix 1). The phone state logs were
recorded with millisecond-level timestamps. iOS and Android
phones report state logs differently (Table S1 in Multimedia
Appendix 1). For Android, the logs capture “screen turned
on” and “screen turned off” events; for iOS, the logs capture
“locked” and unlocked” events. For iOS, the log also includes
an event for each 1% change (positive or negative) in battery
charge level.
Screen Time Estimation
We define a “screen-on bout” for a smartphone as a period of
consecutive screen use and a “screen-off bout” as a period of
consecutive screen nonuse. Each screen-on bout is followed
by a screen-off bout, and vice versa. To estimate the timing
and duration of screen-on bouts for iOS, we used the time
intervals between consecutive “unlocked” and “locked” event
timestamps, while for Android, we used the time intervals
between consecutive “screen turned on” and “screen turned
off” event timestamps. During preprocessing, we imputed
missing logs, removed bouts attributed to notification arrivals
(for Android only), and capped screen-on bouts that lasted
longer than 30 minutes (which corresponds to approximately
the 97th percentile). A detailed description of our meth-
ods is provided in Multimedia Appendix 1. Our preprocess-
ing steps closely resemble those previously presented by
Kristensen et al [25]. For comparison, we also estimated
timing and duration of screen-on bouts using three compa-
rator approaches: (1) imputing missing logs and capping
screen-on bout duration at 6 hours (instead of 30 minutes); (2)
not imputing missing logs, that is, only considering consec-
utive pairs of matching events (“unlocked” and “locked”
for iOS and “screen turned on” and “screen turned off”
for Android), and not capping screen-on bout duration (ie,
minimal preprocessing); and (3) not imputing missing logs
with screen-on bout duration capped at 30 minutes.
Daily Measures of Screen Time
To obtain daily measures of smartphone screen time, we
used the estimated screen-on bouts and calculated 4 met-
rics: total screen-on time, average screen-on bout duration,
average screen-off bout duration, and screen-on bout count.
We defined a day as the period from midnight to midnight
in the Coordinated Universal Time (UTC) time zone. The
smartphone state logs were originally recorded in UTC, and
we assumed the time zone choice would have no impact on
the statistical analyses. The total screen-on time and screen-
on bout count metrics capture the volume of screen time,
while the average bout duration metrics reflect screen-on time
accumulation patterns.
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Missing Data Labeling
A heuristic was developed to identify periods of missing
phone state logs for iOS based on changes in battery charge
level log events. Our approach assumes that the battery
charge level is in one of four states: (1) decreasing, (2)
increasing (when the phone is being charged), (3) constant
at 0% (when the phone battery is fully depleted), and (4)
constant at 100% (when the phone battery is fully charged
and the charger is plugged in). First, we defined a minute
of the monitoring time as “valid” based on either of two
criteria: (1) phone’s battery level was changing at least 1%
per hour (decreasing or increasing) or (2) the phone had
been recently charged to 100% and not depleted battery for
a period of at most 12 hours (likely having a charger plugged
in). Minutes that did not meet these criteria were labeled as
invalid. A “valid day” was defined as one with at least 1080
valid minutes (18 hours). Unlike for iOS, we were unable
to define “valid minutes” for Android due to the absence of
phone battery level change logs. Therefore, we only defined
“valid days” for Android data as those consisting of at least
8 distinct hours that contained at least 1 screen-on bout. Only
valid days were included in the statistical analyses.
Statistical Data Analysis
The data analysis sample consisted of participants who
provided at least 28 valid days of data. A day was con-
sidered valid if it belonged to a 28-day period with at
least 14 valid days. We computed the number of days in
the study observation period and the number of valid days
of phone state logs for each participant and characterized
these measures using the median and range, separately for
adolescents, adults, and the combined sample.

To visualize daily measures over time, we aggregated
the measures (median, 25th, 75th, 10th, and 90th percentile)
across participants for each relative day since the discharge,
separately for adolescents and adults. We used a 7-day
moving average to smooth the sample statistics and improve
readability.

To quantify population-level daily measures of screen
time, we considered 4 different linear mixed-effects mod-
els (LMMs). Each model had a participant-specific daily
measure as the outcome. The LMMs had different fixed-
effect coefficients: model 1 had a fixed effect for an age
group (adolescents, adults); model 2 had a fixed effect for
an age group, operating system (Android, iOS), and their
interaction; model 3 had a fixed effect for an age group,
monitoring period (one of: the first four weeks after discharge
period, from the fifth week up to 6 months period), and
their interaction; and model 4 had a fixed effect for an
age group, study monitoring period (one of: the first four
weeks after discharge period, from the fifth week up to 6
months period), and their interaction. Each LMM included a
participant-specific random intercept. Additionally, models 3
and 4 also had a subject-specific random slope for a study
period. We fitted each of these 4 different LMMs separately
for each of the 4 daily measures: total screen-on time, average
screen-on bout duration, average screen-off bout duration,

and screen-on bout count (natural logarithm-transformed),
yielding a total of 4×4=16 model fits. Using these models,
least squares means of daily measures were estimated across
age groups, operating systems, and study periods of interest.
We also quantified the contrasts of interest: the difference
between age groups from model 1, the difference between
operating systems across age groups from model 2, and the
difference between (differently defined) study periods across
age groups from models 3 and 4. The statistical significance
of the contrasts of interest was evaluated using a significance
level of α=.05.

We calculated screen-on time for each minute of each
participant day using the timing and duration of screen-
on bouts. The function-on-scalar generalized LMM (FoS-
GLMM) was used to estimate the time-varying effect of
daylight saving time (DST) on the probability of screen-on
time at the minute level. We chose to study the effect of
DST changes because they create a natural experiment that
allows us to assess the feasibility of our method. Specifically,
these changes provide a sudden and exogenous shift in the
timing of daylight hours, which can impact individuals’ daily
routines and phone use patterns. By examining the minute-
level screen time outcome around these time changes, we
explore whether our method captures changes in phone use.

In our FoS-GLMM, the outcome was a participant- and
day-specific functional observation recorded on a minute-
level discrete grid, with a value of 1 if any screen-on time
was recorded for that minute and 0 otherwise. To quantify
the effect of DST, we included a time-varying fixed-effect
indicator for the change effect (1 if the functional observation
was from a time period after the DST change and 0 other-
wise) and a time-varying participant-specific intercept. The
model was estimated separately at the start and end of DST
(March and November of 2019‐2022, respectively) using data
from ±14 days from the time change, and we performed
a sensitivity analysis using data from ±7-day and ±28-day
windows. We estimated FoS-GLMMs using the fast inference
approach for longitudinal functional models proposed by Cui
et al [26], and we made inferences about the time-varying
fixed effect based on 95% joint confidence bands.

Results
Sample Characteristics
In total, 297 participants had the Beiwe app installed during
enrollment. Of those, 247 participants had at least 1 valid day
of data. The final analysis sample consisted of 126 partici-
pants (Table 1). The median age of the combined sample
(adolescents and adults) was 22 (IQR 12-69) years, with
adolescents having a median age of 15 (IQR 12-18) years
and adults having a median age of 30 (IQR 18-69) years.
The sample was predominantly female (n=81, 64.3%) and
self-identified as White (n=101, 80.2%). Most participants
(n=75, 59.5%) used smartphones with iOS, but the propor-
tion of iOS users differed between the 2 subsamples, with
84% (42/50) in adolescents and 43.4% (33/76) in adults.
The study observation period had a median duration of 169
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(IQR 42-169) days, and participants had a median of 94 (IQR
29-167) days of valid smartphone state logs.

Table 1. Baseline demographic and observation period metadata characteristics of the analysis sample.a
Characteristic (statistic) Statistic value

Adolescents (n=50) Adults (n=76) Combined (N=126)
Age (years), median (IQR) 15 (12-18) 30 (18-69) 22 (12-69)
Sex, n (%)
  Female (cisgender, she or her pronb or unspecified) 35 (70) 40 (52.6) 75 (59.5)
  Female (transgender) 0 (0) 3 (3.9) 3 (2.4)
  Female (cisgender, other than she or her pron) 2 (4) 1 (1.3) 3 (2.4)
  Male (cisgender, he or him pron or unspecified) 11 (22) 31 (40.8) 42 (33.3)
  Male (transgender) 1 (2) 1 (1.3) 2 (1.6)
  Male (cisgender, other than he or him pron) 1 (2) 0 (0) 1 (0.8)
Self-identified race, n (%)
  Asian 3 (6) 2 (2.6) 5 (4)
  Black or African American 1 (2) 6 (7.9) 7 (5.6)
  White 41 (82) 60 (78.9) 101 (80.2)
  More than 1 race 1 (2) 2 (2.6) 3 (2.4)
  Other 0 (0) 3 (3.9) 3 (2.4)
  Unavailable 4 (8) 3 (3.9) 7 (5.6)
Smartphone operating system, n (%)
  iOS 42 (84) 33 (43.4) 75 (59.5)
  Android 8 (16) 43 (56.6) 51 (40.5)
Observation period metadata, median (IQR)
  Days in observation period 169 (51-169) 169 (42-169) 169 (42-169)
  Smartphone state logs (valid data days) 103 (34-158) 86 (29-167) 94 (29-167)

aThe number of valid data days of smartphone state logs was determined differently for iOS and Android operating systems due to the differences in
the type of smartphone state logs recorded.
bpron: gender pronouns use.

Daily Measures of Screen Time
Table 2 summarizes the estimated population-level mean
daily smartphone screen time. Adults had a mean total
screen-on time of 271.0 minutes (4.52 hours), while
adolescents had a mean 254.6 minutes (4.24 hours). Adults
showed slightly higher average screen-on bout duration
(mean 4.998 vs 4.233 minutes), slightly higher average
screen-off bout duration (mean 26.90 vs 25.90 minutes),
and slightly lower average screen-on bout count (natural
logarithm transformed; mean 4.090 vs 4.192) compared to

adolescents. None of these differences were statistically
significant (Table S3 in Multimedia Appendix 1, rows
1‐4). Mean daily smartphone screen time measures across
different phone operating systems and age groups (adults and
adolescents) are shown in Table S2 in Multimedia Appen-
dix 1 (rows 9‐24). There were no statistically significant
differences in any of the 4 screen time measures across
phone operating systems within any age group (Table S3 in
Multimedia Appendix 1, rows 5‐12).

Table 2. Mean daily screen time measures separately for age groups (adolescents and adults).
Daily measure and age group Daily measure mean (95% CI)
Total screen-on time (minutes)

Adolescent 254.6 (231.4-277.7)
Adult 271.0 (252.2-289.8)

Average screen-on bout (minutes)
Adolescent 4.233 (3.565-4.902)
Adult 4.998 (4.455-5.541)

Average screen-off bout (minutes)
Adolescent 25.90 (20.09-31.71)
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Daily measure and age group Daily measure mean (95% CI)

Adult 26.90 (22.18-31.62)
Loga (screen-on bout count)

Adolescent 4.192 (4.041-4.343)
Adult 4.090 (3.968-4.213)

alog(): natural logarithm transformation.

Figure 1 displays heat maps of minute-level smartphone
screen time for 4 participants. Screen time per minute is
shown across minutes of a day for each day of the par-
ticipant’s observation period. The figure highlights vari-
ous between- and within-participant screen time patterns.
Participant ID 48 (plot A) has a relatively low average total
screen-on time (mean 166.7 minutes across the monitor-
ing days) and short average screen-on bouts (mean 0.9
minutes), whereas participant ID 92 (plot B) has a relatively
high average total screen-on time (mean 351.0 minutes)
and a moderate average screen-on bout duration (mean
4.3 minutes). Participant ID 20 and ID 102 (plots C and
D) have similar total screen-on times (mean 253.6 and 266.7
minutes, respectively), but different accumulation patterns,
as measured with average screen-on bout durations (mean
2.5 and 8.8 minutes, respectively) and average screen-off
bout durations (mean 12.2 and 42.8 minutes, respectively).
Participant ID 48 experiences a decline in daily total screen-
on time around their 50th day relative to the study start.
Participant ID 92 exhibits a pattern of waking up at the
same time across many of the 5-day long periods of time
(for 15th-80th relative days: waking up at 10:30 AM UTC,
ie, 6:30 AM in their current Eastern Daylight Time [EDT]
time zone; and for 80th-180th relative days: waking up at
11:30 AM UTC, ie, 6:30 AM in their current EST time zone).
Participant ID 102 appears to have very irregular sleep and
wake-up time and has screen-on time bouts scattered across
the Eastern Time nighttime on multiple days.

Figure 2 displays the median, 25th-75th percentile bounds,
and 10th-90th percentile bounds of the screen time daily
measures aggregated across participants for each day relative
to the study start, separately for adolescents and adults.

Although some day-to-day variability is evident, we did not
observe any specific patterns during the early versus later
monitoring period, which is consistent with the results of
our LMMs. Our analysis did not identify any statistically
significant differences in population-level daily measures
between the first 4 weeks and week 5 and onward nor
between the first week and week 5 and onward after the
discharge, except for 2 cases: in the adult subsample, the
average screen-on bout duration was significantly lower
during the first 4 weeks than week 5 and onward; and in the
adolescent subsample, the average screen-off bout duration
was significantly higher during the first 4 weeks than week 5
and onward. Please refer to Table S2 in Multimedia Appendix
1 for daily measure means across different treatment periods
by age group (rows 25‐56) and to Table S3 in Multimedia
Appendix 1 for difference between treatment periods by age
group (rows 13‐28).

In addition to our proposed approach, we estimated the
timing and duration of screen-on bouts using 3 comparator
methods. Figure S1 in Multimedia Appendix 1 illustrates
the differences in daily measures of total screen-on time
and average screen-on bout duration among participants.
Comparators 1 and 2 produced substantially higher estimates
for daily total screen-on time, with mean differences of
−106.1 (range −502.6 to −1.3) minutes and −133.5 (range
−666.4 to −2.4) minutes, respectively. These methods used
either a generous cap of 6 hours on an individual screen-on
bout duration (comparator 1) or no cap at all (comparator 2).
In contrast, comparator 3 (no imputation, capping screen-on
bout duration at 30 minutes) yielded results similar to our
proposed approach, with an average difference of −0.2 (range
−11.8 to 7.3) minutes.
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Figure 1. Characteristics of minute-level smartphone screen time for 4 participants. Screen time per minute is shown (color-coded; expressed in
seconds) across minutes of the day (y-axis; UTC time) for each day of participant’s monitoring period relatively to the study start (x-axis). Days
labeled as invalid data days are shadowed in gray. Plot A: ID 48 (iOS, adolescent) with the following means of daily measures: total screen-on
time=166.7 minutes, average screen-on bout=0.9 minutes, and average screen-off bout=8.4 minutes. Plot B: ID 92 (iOS, adolescent): total screen-on
time=351.0 minutes, average screen-on bout=4.3 minutes, and average screen-off bout=13.8 minutes. Plot C: ID 20 (iOS, adolescent): total screen-on
time=253.6 minutes, average screen-on bout=2.5 minutes, and average screen-off bout=12.2 minutes. Plot D: ID 102 (iOS, adolescent): total
screen-on time=266.7 minutes, average screen-on bout=8.8 minutes, and average screen-off bout=43.8 minutes. UTC: Coordinated Universal Time.
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Figure 2. Characteristics of daily screen time measures across time relative from study start. Plots A-H show sample median (black line), 25th-75th
percentile bounds (darker color ribbon), and 10th-90th percentile bounds (lighter color ribbon) of day-level measures: total screen-on time (in
minutes; plots A and B), average screen-on bout duration (in minutes; plots C and D), average screen-off bout duration (in minutes; plots E and F),
and screen-on bout count (plots G and H). Plots I and J show the number of participants contributing a valid day of phone state logs data on a given
day relative from the study start.

Time-Varying Effect of a Daylight Time
Change on Minute-Level Screen Time
We used FoS-GLMM to estimate a time-varying effect of a
daylight time change on the probability of screen-on time at

the minute level. Figure 3 shows estimates of a functional
intercept and a functional slope for the fixed-effect covariate
(1=after and 0=before DST change; plots A-D) as well as
fitted probabilities of screen time (plots E and F) in a given
minute across the functional domain of a day.
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Figure 3. Estimates of functional intercept and slope for daylight saving time (plots A-D) and fitted probabilities of screen time (plots E and F) in
a given minute across the minute-level functional domain of a day. Logistic function-on-scalar mixed-effects regression was used to estimate the
time-varying effect of the covariate (1=after and 0=before daylight saving time change) on the functional outcome (1=any screen time and 0=no
screen time). In rows 1‐2 (plots A-D), functional coefficient estimates (solid black line), 95% point-wise CIs (dark gray shaded area), and 95% joint
CIs (light gray shaded area) are presented. In row 3 (plots E and F), fitted probabilities for before and after the change are shown, with vertical dashed
lines indicating the time window with a statistically significant effect based on joint CIs. Separate models were fitted for the start (column 1; plots A,
C, and E) and end (column 2; plots B, D, and F) of daylight saving time, each using a ±14-day window of data relative to the change night. UTC:
Coordinated Universal Time.

With the start of the DST model, we observed statistically
significant negative effects (based on 95% joint confidence
bands) on the probability of screen-on time after the time
change during the period from 2:24 AM UTC to 4:19 AM
UTC (equivalent to 9:24 PM EST to 11:19 PM EST before
the time change). In this timeframe, the functional coefficient
estimate had an average value −0.57 (range −0.65 to −0.38).
This estimate suggests that the odds of phone use after the
time change were 0.56 times lower compared to the odds
before the time change. The average probabilities of phone
use in a given minute were 0.26 and 0.17 for before and after
the change in that period, respectively, as depicted by the blue

and red lines in Figure 3E, respectively (located between the
dashed vertical lines).

With the end of the DST model, we observed statistically
significant positive effects (based on 95% joint confidence
bands) on the probability of screen-on time after the time
change from 2:22 AM UTC to 3:19 AM UTC (10:24 PM
EDT to 11:19 PM EDT before the change) and statistically
significant negative effects (based on 95% joint confidence
bands) during the time window from 10:52 AM UTC to
11:44 AM UTC (6:52 AM EDT to 7:44 AM EDT before
the change). In the time window of positive effect signif-
icance, the functional coefficient estimate had an average
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value 0.71 (range 0.58-0.77), corresponding to the odds of
phone use after the time change being 2.03 times the odds
before the change, and average probabilities of phone use in
a given minute 0.15 and 0.27 for before and after the change,
respectively (Figure 3E). In the time window of negative
effect significance, the functional coefficient estimate had an
average value −1.13 (range −1.40 to −0.66), corresponding to
odds of phone use after the time change being 0.32 times the
odds before the change, and average probabilities of phone
use in a given minute 0.15 and 0.06 for before and after the
change, respectively (Figure 3E).

Based on sensitivity analysis results (Figure S2 in
Multimedia Appendix 1), the inference was very similar
for cases of using ±14 days (main analysis) and ±28 days,
whereas for the ±7-day model, the 95% joint confidence
bands do overlap with 0 value for the functional coefficient in
the DST end model.

Taken together, these results suggest that the effects on
screen-on time during these time windows are plausibly
attributable to sleep time adjustments related to clocks going
1 hour forward (“we sleep less”) or 1 hour backward (“we
sleep more”).

Discussion
Screen Time Data in STB Studies
Digital phenotyping entails the collection and analysis of
various types of data from personal digital devices in
naturalistic settings; it has applications both within and
outside mental health. The focus of our paper is the devel-
opment of a simple method to enable investigators to
use moment-by-moment screen time metrics when studying
adolescents and adults with STB. We emphasize that in our
approach, the data are collected in naturalistic settings and
arise as a byproduct of how participants use their phones,
which makes the approach scalable.

In the digital phenotyping literature in mental health, there
is surprisingly little existing research on the intersection of
STB and screen time. For example, a recent literature review
only briefly mentions STB and does not discuss screen time
[27]. Another paper focusing on stress, anxiety, and mild
depression carried out a systematic review of 40 studies
[28]; 7 studies with “student participants” and 2 studies with
“adult participants” used screen time data (screen on or off,
phone lock or unlock, and similar metrics), but none of the
reviewed studies dealt with STB. Finally, a recent narrative
review of digital phenotyping for differential diagnosis of
major depressive disorder reviewed 74 papers dealing with
“digital tools”; 4 of the papers focused on STB, but none were
reported to discuss screen time [29].
Principal Findings
We investigated the smartphone screen time characteristics in
126 adolescents and adults with suicidal thinking. Passively
collected smartphone state logs data for a median of 169
(IQR 42‐169) days provided objective measurements of
screen time. Our analysis showed that study participants spent

an average of 254.6 and 271.0 minutes per day on their
smartphones for adolescents and adults, respectively. The
means of participants’ average screen-on bout duration were
4.2 and 5.0 minutes, average screen-off bout duration were
25.9 and 26.9 minutes, and screen-on bout count (natural
logarithm transformed) were 4.2 and 4.1 for adolescents and
adults, respectively.

The daily measures remained relatively constant across the
monitoring period. The near constancy of the measures at the
daily level could be perceived as a favorable result. First,
nearly all methods that attempt to detect changes in temporal
data, such as anomaly detection and change-point detec-
tion methods, need to establish an underlying trend of the
measure over time. Substantial variation in the daily measures
of screen time could complicate the detection of changes
potentially due to STB episodes. With that, there were very
few suicide attempts in this cohort during the monitoring
period (data not reported in this paper), highlighting the
clinical team’s effectiveness in ensuring participant safety.
Finally, the crucial question of the longitudinal association
between screen time and STB, as well as the identification
of STB episodes, will be addressed in future work, with this
paper laying the groundwork by introducing the necessary
method.

Another finding was the significant impact of DST
changes on screen use behavior. When DST started, a
decrease in screen-on time probability was observed between
2:24 AM and 4:19 AM UTC, with average probabilities
dropping from 0.26 to 0.17. Conversely, when DST ended,
an increase in screen-on time probability occurred between
2:22 AM and 3:19 AM UTC, with average probabilities
rising from 0.15 to 0.27. A further decrease was observed
between 10:52 AM and 11:44 AM UTC, with average
screen-on probabilities dropping from 0.15 to 0.06. These
findings suggest that sleep adjustments related to DST shifts
do influence screen use behaviors.

Our study highlights the advantages of phone log–
derived measures of screen time compared to traditional
self-report surveys. As noted by Harris et al [30-33],
self-report scales often lack internal consistency and
test-retest reliability, rely on the participant’s memory,
and may result in both over- and underestimation of
screen time. In contrast, phone logs provide an objec-
tively measured representation of an individual’s smart-
phone screen time, making them particularly useful for
identifying trends or patterns in screen time, especially in
longitudinal studies and free-living settings.

Our framework derives 4 daily measures of screen time:
total screen-on time, average screen-on bout duration, average
screen-off bout duration, and screen-on bout count to enable
us to characterize a phone use behavior. The framework
allows adaptation for different time resolutions, allowing
researchers to explore subday-level (including minute-level)
use patterns. For instance, they can investigate diurnal
variations in screen time, identify atypical use periods, or
study the impact of specific events on phone interactions.
In future work, we propose to use sudden deviations from
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a participant’s routine of phone use (and screen time in
particular) to identify potential STB episodes, with the goal
of ultimately developing clinical interventions.

Finally, to the best of our knowledge, this is the first
presentation of freely available code for preprocessing and
analysis of raw phone state logs [24]. Using open-source
software and sharing publicly the analysis code are essential
for ensuring transparency and replicability of the results,
promoting accountability, and building trust in the research
process.
Limitations
The primary limitation is the lack of a gold standard for
identifying missing smartphone state logs. Though related
mental health research often fails to report data quality,
accounting for missingness is crucial for accurate screen
time estimates and valid comparisons [16]. We proposed
a heuristic for iOS to identify missingness at the minute
level based on battery level changes and a method for
both platforms to label data quality by day. Additionally,
we evaluated the sensitivity of screen time measures to
missing log imputation and, inherently related, the choice
of maximum screen-on bout duration threshold (Figure S1
in Multimedia Appendix 1). Results showed substantial
variability in participants’ mean total screen-on time and
screen-on bout duration based on the chosen screen-on
duration cap. Given the lack of a principled approach for
selecting an optimal cap, researchers should be mindful that
this choice can substantially influence measure estimates. We
do not have a definitive reason for choosing the 30-minute
threshold instead of other options. However, we believe this
choice strikes a good balance by indicating when a long
screen time session has likely occurred while minimizing the
impact of outliers on our daily estimates. Our code is openly
available for transparency.

We acknowledge the potential for differences in daily
measures resulting from difference in how we identified
on-screen bouts for iOS versus Android devices. In additional
analyses (Tables S2 and S3 in Multimedia Appendix 1), we
quantified the differences in daily measures between Android
versus iOS across age groups (adolescents and adults).
However, the observed difference sizes were relatively small,
and no statistical significance between iOSs was found. It is
important to note that the absence of statistical significance
does not necessarily imply the absence of a true effect.
Nevertheless, given the substantial sample size, we deemed
the results sufficient for our analysis.

In the sensitivity analysis for time-varying effect of a
daylight time change on minute-level screen time (Figure
S2 in Multimedia Appendix 1), for the ±7-day model, the
95% joint confidence bands do overlap with 0 value for
the functional coefficient in the DST end model. We note
that the ±7-day model’s insignificant results might be due
to either small sample size or using conservative 95% joint
confidence bands to make inferences about the subset of the
whole functional domain. Future studies could consider joint
confidence bands for a prespecified restricted subset of the
functional domain to increase power.
Conclusions
Passively collected smartphone logs allowed us to estimate
daily measures of screen time characteristics in a large sample
of adolescents and adults with suicidal thinking over a half
year–long monitoring period. Our work demonstrates the
feasibility of this approach, opening doors for further research
on the associations between daily screen time, mental health,
and other factors.
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