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Abstract

Background: Technological advances allow for recording and sharing health-related data in a patient-centric way using
smartphones and wearables. Secure sharing of such patient-generated data with physicians would enable close management of
individual health trajectories, monitoring of risk factors, and asynchronous feedback. However, most remote patient monitoring
(RPM) systems currently available are not fully integrated into hospital IT systems or lack a patient-centric design.

Objective: The objective of this study was to conceptualize and implement a user-friendly, reusable, interoperable, and secure
RPM system incorporating asynchronous feedback mechanisms using a broadly available consumer wearable (Apple Watch). In
addition, this study sought to evaluate factors influencing patient acceptance of such systems.

Methods: The RPM system requirements were established through focus group sessions. Subsequently, a system concept was
designed and implemented using an iterative approach ensuring technical feasibility from the beginning. To assess clinical
feasibility, the system was used as part of the activeDCM prospective randomized interventional study focusing on dilated
cardiomyopathy. Each patient used the system for at least 12 months. The System Usability Scale was used to measure usability
from a subjective patient perspective. In addition, an evaluation was conducted on the objective wearable interaction frequency
as well as the completeness of transmitted data classified into sensor-based health data (SHD) and patient-reported outcome
measures (PROMs). Descriptive statistics using box plots and bootstrapped multiple linear regression with 95% CIs were used
for evaluation analyzing the influence of age, sex, device experience, and intervention group membership.

Results: The RPM system comprised 4 interoperable components: patient devices, a data server, a data viewer, and a notification
service. The system was evaluated with 95 consecutive patients with dilated cardiomyopathy (28/95, 29% female; mean age 50,
SD 12 y) who completed the activeDCM study protocol. The system’s app achieved a mean System Usability Scale score of 78
(SD 17), which was most influenced by device experience. In total, 87% (83/95) of the patients could integrate the use of the app
well or very well into their daily routine, and 71% (67/95) saw a benefit of the RPM system for management of their health
condition. On average, patients interacted with the wearable on 61% (SD 26%) of days enrolled in the study. SHD were available
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on average for 78% (SD 23%) of days, and PROM data were available on 64% (SD 27%) of weeks enrolled in the study. Wearable
interaction frequency, SHD, and PROM completeness were most influenced by intervention group membership.

Conclusions: Our results mark a first step toward integrating RPM systems based on a consumer wearable device for primary
patient input into standardized clinical workflows. They can serve as a blueprint for creating a user-friendly, reusable, interoperable,
and secure RPM system that can be integrated into patients’ daily routines.

(JMIR Mhealth Uhealth 2024;12:e58441) doi: 10.2196/58441
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Introduction

Background
With constant advancements in digitalization, wearable devices
such as smartwatches, fitness trackers, or chest straps are
becoming an integral part of everyday life. These devices
facilitate continuous recording and monitoring of
patient-generated data, such as sensor-based health data (SHD)
and electronic patient-reported outcome measures (PROMs). If
these data were efficiently shared with physicians, they could
gain a more comprehensive view of a patient’s lifestyle and
longitudinal insights into a patient’s health trajectory [1].
Although most wearables are designed for the consumer market
and are not primarily intended as medical devices, initial clinical
trials have shown that the quality of patient-generated data from
wearable consumer devices is sufficiently high to answer
medical questions [2-4]. In addition, selected wearable consumer
devices have been approved for various diagnostic purposes by
authorities such as the US Food and Drug Administration.
Especially for physical activity and cardiovascular monitoring,
the development of wearables with accurate sensors is well
advanced (eg, for step count as well as heart rate and
electrocardiogram [ECG] measurements).

Patients show willingness to share their self-generated data with
physicians, anticipating that the integration of wearables into
their health care journey positively enhances their health [5].
Consequently, this holds potential for both patients and
physicians to engage in collaborative health management. This
can include monitoring the patient’s health status; managing
risk factors; and facilitating asynchronous feedback to support
effective self-management, especially in the case of chronic
conditions [6]. In addition, it has the potential of reducing the
frequency of needed physician consultations; improving quality
of life; and, ultimately, reducing long-term treatment costs
[7-10].

To exploit this potential, suitable IT systems following a
patient-centric design must be available. In the literature, these
systems are often referred to as telehealth, telemedicine, eHealth,
mHealth, or remote patient monitoring (RPM) systems; the
terminology is used interchangeably and inconsistently [11,12].
RPM systems must be able to process and transfer large amounts
of data in an automated manner and should facilitate the
integration of wearable devices into a patient’s everyday life as
well as into standardized primary care and clinical research
workflows. Methods for realizing such integrations are still

immature due to numerous challenges in areas including patient
digital literacy, data overload, interoperability, data privacy,
data protection, and information security [13-16]. Overall, high
usability and, consequently, high acceptance of RPM systems
among patients during their treatment process is needed a priori.
In addition, wearables are mostly used by healthy individuals
as lifestyle devices [17] or for early disease detection in younger
adults, such as in the Apple Heart Study [18] or the Fitbit Heart
Study [19].

Objectives
In its position papers on wearable-based detection of arrhythmias
[20] and eCardiology [21], the German Cardiac Society and
other international organizations emphasize the benefits of
wearables and RPM systems for primary care and clinical
research, including the treatment of heart failure. This chronic
disease has a high worldwide prevalence, with an estimate of
up to 64 million individuals affected. In high-income countries,
it is assumed that 1% to 2% of the adult population has heart
failure [22]. These patients usually have multiple contact with
health care providers each year; the rehospitalization rates can
approach 30% within 90 days of discharge [23]. RPM systems
have been shown to detect early health deterioration of patients
with chronic heart failure, triggering therapeutic interventions
that could reduce rehospitalizations. Overall, approximately
30% to 40% of patients with heart failure have nonischemic
cardiomyopathy, such as dilated cardiomyopathy (DCM) [24].
Patients with DCM face physical and quality of life limitations
and are often young. In the past, they have been discouraged
from physical activity [25]. However, exercise has, in principle,
been shown to positively impact morbidity, quality of life, and
patients’ psychological state, which in turn enhances their
physical well-being [26-28]. Sports-related complications, such
as ventricular arrhythmias, can counteract the positive effects.
Therefore, the activeDCM study [29] investigated the impact
of an individualized exercise program in patients with DCM.
In this paper, we introduce the RPM system used in activeDCM,
detailing its conceptualization, implementation, and evaluation.
The objective of this study was to create a user-friendly,
reusable, interoperable, and secure RPM system incorporating
asynchronous feedback mechanisms using a broadly available
consumer wearable device for primary patient input. In addition,
this study sought to evaluate factors influencing patient
acceptance of the developed RPM system.
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Methods

Study Design
activeDCM was designed as a prospective, randomized,
interventional case-control study and is described by
Sedaghat-Hamedani et al [29]. The primary outcome measure
of activeDCM was defined as the change in maximum oxygen
uptake, whereas the secondary outcome measures focused on
changes in quality of life and behavioral lifestyle. The inclusion
criteria for patients were age between 18 and 75 years and
diagnosis of nonischemic DCM (left ventricular ejection fraction
of ≤50% and New York Heart Association Classification of
I-III). The exclusion criteria were acute myocarditis or
Takotsubo syndrome; known or suspected ischemic heart
disease; known syndromic DCM; history of syncope, cardiac
arrest, sustained ventricular tachycardia, or cardiac
decompensation within the previous 3 months; contraindications
for exercise testing or training; and pregnancy or breastfeeding
in women. Patients were identified during initial presentations
or routine examinations at the outpatient center for
cardiomyopathies at Heidelberg University Hospital and were
screened against the inclusion and exclusion criteria by a
physician familiar with the study. Participation in the study
lasted at least 12 months for each patient. On the day of
enrollment, patients were randomly assigned to one of three
study arms: (1) intervention group with an individualized
exercise program and feedback messages (IG+), (2) intervention
group with an individualized exercise program but without
feedback messages (IG–), and (3) control group (CG).

Requirements
Using the focus group methodology [30], the following
requirements for a patient-centric RPM system were
systematically delineated through collaborative sessions
involving cardiologists (n=3), mobile health experts (n=2), and
potential users (n=2) affiliated with Heidelberg University
Hospital, Germany.

The functional requirements were as follows:

1. Patients should use a wearable as primary input device.
They should be equipped with a wearable by the study team
and not use their own device.

2. Patients should be able to record and transmit
patient-generated data (ie, the SHD steps, active burned
energy, heart rate, and ECG as well as the PROMs of a
study-specific, weekly 7-part questionnaire and an optional
exercise diary) in near real time to the study center.

3. Physicians should be able to send personalized feedback
messages to patients with motivational content about the
individualized exercise program.

4. Physicians should be able to review the substantial volume
of transmitted patient-generated data in a streamlined
format.

The nonfunctional requirements were as follows:

1. The RPM system should prioritize usability, thereby
minimizing barriers to integrating the wearable into patients’
daily routines as many patients are older and a prestudy

showed little penetration of wearable devices in this cohort
(data not shown).

2. The RPM system should be based on medical IT standards
for interoperability.

3. The RPM system should meet the regulatory requirements
for data privacy and data protection as well as provide
state-of-the-art information security.

4. The RPM system should be usable beyond the activeDCM
study.

Concept and Implementation
On the basis of the identified requirements, a concept of an
RPM system with asynchronous feedback mechanisms was
designed and subsequently implemented using an iterative
approach. In each iteration, a new module of patient-generated
data or for feedback messages was added to the system.
Throughout the implementation process, a test environment was
available, allowing for the immediate testing of each newly
added module. This facilitated short feedback cycles with test
participants and physicians from the activeDCM study and
ensured the technical feasibility of a patient-centric RPM system.

The final concept, as well as the implementation, consisted of
4 main components: patient devices, data server, data viewer,
and notification service (see the Results section). The patient
devices used in this study included an iPhone (SE generation 1
or newer) and an Apple Watch (Series 4 or newer, generously
provided by Apple Inc). A study-specific wearable and
smartphone app was implemented using the Swift programming
language (version 5.1; Apple Inc) [31] for the operating systems
of both devices (ie, iOS version 14 and watchOS version 7).
The extraction of the SHD (steps, active burned energy, heart
rate, and ECG) was based on the Core Motion [32] and
HealthKit [33] frameworks for iOS and watchOS development.
The PROMs (study-specific, weekly questionnaire and optional
exercise diary) were recorded by means of a self-designed user
interface using Apple’s UIKit [34] framework. The transfer of
data from the Apple Watch to the iPhone and vice versa was
based on the iOS and watchOS Watch Connectivity protocol
[35]. The data storage on the iPhone was based on the Realm
database (version 5.5; MongoDB Inc) [36].

The implementation of the data server as well as the
transmission of the patient-generated data was based on the
standardized application programming interface (API) and the
standardized data model of Health Level 7 (HL7) Fast
Healthcare Interoperability Resources (FHIR) version R4 [37],
as well as the Logical Observation Identifiers Names and Codes
(LOINC) [38] and the Unified Medical Language System
(UMLS) [39] (see the Data Model section) in the Java
programming language (version 11; Oracle Corporation) [40]
using the HAPI library (version 5.2) [41]. The database
technology used was PostgreSQL (version 12; PostgreSQL
Global Development Group) [42].

The physician data viewer component was implemented as a
mobile-first TypeScript (version 4.1; Microsoft Corp) [43] web
application using the vue.js framework (version 2) [44] and the
chart.js library (version 2) [45]. The notification service was
provided by the device manufacturer (ie, Apple Inc). Local
on-device and remote push notifications for the patient devices
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were implemented using the User Notifications [46] framework
for iOS and watchOS development.

The aforementioned version numbers correspond to the ones at
the beginning of the implementation process and were regularly
updated during the use of the RPM system if new applicable
versions were released or APIs changed. These updates did not
change any functionality or user interfaces of any component.

Procedure
To ensure both technical and clinical feasibility, the RPM system
was used in the activeDCM study following a procedure that
was developed in addition to the requirements as part of the
focus group sessions. The procedure is illustrated in Figure 1.
On the day of enrollment, patients were randomized to 1 of the
3 study arms and provided with a configured device bundle
consisting of a consumer wearable (Apple Watch Series 4 or
newer) and a smartphone (iPhone SE generation 1 or newer)
on which the corresponding app of the RPM system was
preinstalled. Patients were not provided with a mobile data
volume contract for the devices; instead, they were required to
set up a Wi-Fi connection at their home. After a thorough patient
educational session regarding the study and the RPM system
covering instructions on use of the wearable and smartphone,
including the RPM-specific app and how to launch a workout
session with resultant increased frequency of activity measures,

patients signed the written informed consent form. After that,
they were onboarded to the app by scanning a patient-specific
QR code using the smartphone’s camera. From this point
forward, the required SHD were continuously recorded by the
wearable. The synchronization of the recorded data with the
study center was confirmed by patients through a short daily
interaction with the wearable. In addition, patients were asked
to answer 1 randomly selected question daily from the
study-specific, weekly 7-part PROM questionnaire [47],
requiring a second daily interaction. To remind patients of these
2 mandatory interactions with the wearable, they were alerted
daily at 11 AM and 5 PM with local on-device push notifications
sent directly by the wearable app. An interaction with the
smartphone was not mandatory but could take place to keep an
optional PROM exercise diary, which was synchronized with
the study center as well. Each patient was part of the activeDCM
study over a period of at least 12 months. Patients were allowed
to withdraw at any time from the study. During participation in
the study, patient-generated data were collected and transmitted
from the wearable via the smartphone to the study center, which
in turn provided feedback messages to the patients in the
corresponding intervention group (IG+). Feedback messages
containing motivational content about the individualized
exercise program were sent by a physician using the study
center’s data viewer approximately every 7 to 10 days using
remote push notifications.

Figure 1. Use of the remote patient monitoring (RPM) system in the activeDCM study. After onboarding, patients are equipped with devices whose
RPM system app is activated by scanning a patient-specific QR code. Patient-generated data are then continuously recorded and transmitted to the study
center until the end of follow-up. Physicians analyze the data and send feedback messages to the patients’ devices if appropriate. IG+: intervention
group with feedback messages.

Evaluation
The evaluation of the RPM system was conducted in 2 parts.
First, to assess patients’ subjective perspectives on the RPM
system, a 2-part evaluation questionnaire was used to address
the following two end points: (1) the first part of the evaluation
questionnaire asked about experience (no: without previous
device experience [Exp–], yes: with previous device experience
[Exp+]) using Apple devices (iPhone or Apple Watch) before
participating in the activeDCM study and used a German version
[48] of the standardized System Usability Scale (SUS) [49] to

assess user-friendliness, and (2) the second part contained 5
self-designed questions to assess patients’ attitudes toward the
use of an RPM system for disease management.

Both parts of the evaluation questionnaire—the SUS and
self-designed questions—used a 5-point ordinal Likert scale
with each item ranging from strongly disagree to strongly agree.
An SUS value of >68 was considered user-friendly [50]. The
evaluation questionnaire was administered to each patient at
completion of the activeDCM study protocol after at least 12
months and can be found in Multimedia Appendix 1.
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Second, to assess patients’ objective use of the wearable and
the interaction with the study-specific wearable and smartphone
app, three additional end points were evaluated: (3) to assess
wearable interaction frequency, the number of days with at
least one wearable interaction (either SHD transmission or
answering a PROM questionnaire item) was compared with the
total number of days that a patient was enrolled in the study;
(4) SHD completeness was assessed by comparing the days with
available SHD on the data server with the total number of days
that a patient was enrolled in the study; and (5) finally, to assess
PROM completeness, the number of completed and available
PROM questionnaires on the data server was compared to the
total number of PROM questionnaires expected to be completed
during the study period (1 per week).

The statistical analysis of all 5 end points was conducted using
descriptive statistics incorporating box plots. Continuous
variables were described using mean and SD, and categorial
variables were described using absolute and relative frequencies.
Assessment of differences in the patient demographics of the
evaluation groups was performed using the Kruskal-Wallis test
[51] for continuous variables. For categorical variables, the
Pearson chi-square test [52] was used.

As the number of days for which each patient participated in
the activeDCM study varied, we calculated relative values for
end points 3, 4, and 5 for each patient. We then described these
relative values using mean and SD and used them for further
statistical analysis. For comprehensiveness, we reported the
ratio of mean absolute values in days and weeks across all
patients for end points 3, 4, and 5 as well. However, the mean
of the relative values offers a more detailed understanding of
the differences between patients and produces more accurate
results than the ratio of mean absolute values. It is important to
note that these 2 measures are not mathematically equivalent.

Furthermore, bias-corrected and accelerated bootstrapped
multiple linear regression [53] was performed to investigate
evaluation group differences in the SUS, patient wearable
interaction frequency, and SHD or PROM completeness. Thus,
the outcome (dependent) variables were the SUS score, patient
wearable interaction frequency, and SHD or PROM
completeness after activeDCM study protocol completion. As
independent variables, age in years at activeDCM study protocol
completion, sex, device experience (no: Exp–, yes: Exp+), and
study arm membership (CG, IG–, IG+) were chosen before the
analysis. The analysis involved 10,000 bootstrap resampling
distributions applying a CI of 95%. CIs not including 0 were
considered as significant (P<.05). The analysis was conducted
using Python (version 3.10; Python Software Foundation) [54]
using the packages scipy.stats.kruskal (version 1.11.1) [55],
scipy.stats.chi2_contingency (version 1.11.1) [56],
scipy.stats.bootstrap (version 1.11.1) [57], and
statsmodels.regression.linear_model.OLS (version 0.14.0) [58].

Due to the exploratory characteristics of this study, the analysis
is intended for hypothesis generation only; thus, P values were
not adjusted for multiplicity, and P<.05 was regarded as
significant.

Ethical Considerations
The activeDCM study, as well as its RPM system concept, its
implementation, and its evaluation method, received ethics
approval from Heidelberg University’s research ethics
committee (reference numbers S-740/2018 and S-740/2021).
The study is registered on ClinicalTrials.gov (NCT04359238).
It adheres to the principles of the Declaration of Helsinki and
good clinical practice guidelines. Participation in the activeDCM
study was voluntary and patients received no compensation.
An Apple Watch (Series 4 or newer) and an iPhone (SE
generation 1 or newer) were provided during participation in
the activeDCM study. After study completion these devices had
to be returned to the study team. A written informed consent
form was signed by each patient participating in the study. In
addition, the RPM system’s data protection concept and its
security mechanisms were audited by the data protection officer
of Heidelberg University Hospital. No deficiencies were
identified regarding data privacy, data protection, and
information security.

Results

Concept
On the basis of the identified requirements, a concept of a
patient-centric RPM system with asynchronous feedback
mechanisms was designed. It consisted of 4 interoperable
components: patient devices (ie, a smartphone and a connected
consumer wearable device, both having a corresponding RPM
system app installed), a data server, a data viewer, and a
notification service. A graphical representation of the concept
and its implementation can be found in Figure 2 summarizing
the key features and functionalities of the individual
components. In this concept, the smartphone was used for patient
onboarding and as a data relay with local storage for data
transmission to the data server, which was located at the study
center. The wearable was intended to be the patient’s primary
input device. It was used to record SHD as well as collect
PROMs to transmit these patient-generated data to the data
server, relayed via the smartphone. In addition, the wearable
was supposed to remind patients about necessary interactions
and display personalized feedback messages, which were
received from the notification service and forwarded by the
smartphone. The data server was responsible for global storage
of patient-generated data and feedback messages in a
standard-compliant, interoperable manner. In addition, it made
patient-generated data available to the data viewer. The data
viewer, operated at the study center, allowed physicians to
analyze patient-generated data and send personalized feedback
messages to the data server. These feedback messages were
stored on the data server and transmitted to the notification
service. The notification service was responsible for identifying
the smartphone that would receive the forwarded feedback
messages. For the notification service to uniquely identify a
smartphone, the latter must undergo an initial registration
process during patient onboarding. At the end of this process,
administrative data were generated and forwarded from the
smartphone to the data server. The data server used the
administrative data to identify the smartphone when forwarding
feedback messages to the notification service.
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Figure 2. Architecture of the remote patient monitoring system with asynchronous feedback mechanisms describing the 4 main components and their
interaction. Black writing shows the initial concept, and colored writing shows concepts realized subsequently as part of the implementation. The
services, frameworks, and protocols of the Apple ecosystem are shown in green; the standardized data model based on Health Level Seven (HL7) Fast
Healthcare Interoperability Resources (FHIR) are shown in orange; and the authentication mechanisms are shown in blue. PROM: patient-reported
outcome measure; SHD: sensor-based health data.

Implementation

Overview
The described concept was subsequently implemented for the
activeDCM study. For patient devices, an iPhone (SE generation
1 or newer) was used as the smartphone, and an Apple Watch
(Series 4 or newer) was used as the wearable for which a
study-specific app was implemented. Selected screenshots of
the Apple Watch app can be found in Figure 3. The onboarding
of a patient to the RPM system was based on scanning a
patient-specific QR code on the iPhone’s app. After that, SHD

recording started immediately on the Apple Watch. Security
mechanisms permitting data access and extraction from
HealthKit exclusively if the device was unlocked forced the
extraction of SHD on the Apple Watch app, which must be
unlocked during interaction. Each type of SHD and PROM was
implemented in its own module so that each module could be
activated and deactivated independently of one another. To
remind patients to answer the daily question of the PROM
questionnaire and transfer patient-generated data to the study
center, local on-device notifications were implemented directly
as part of the Apple Watch app.

Figure 3. Screenshots of the Apple Watch app. (A) and (B) show the daily notification to remind patients about answering 1 question of the 7-part
weekly patient-reported outcome measure (PROM) questionnaire. (C) and (D) show the user interface to enter 1 of 2 different answer types for the
PROM questionnaire—(C) allows for entering a star rating between 1 and 4, and (D) allows for entering a Boolean answer using yes or no. (E) shows
the user interface during the transmission of the patient-generated data to the study center.

Transmission of patient-generated data from the Apple Watch
to the iPhone was executed using background processes
triggered by interactions with the Apple Watch on-device
notifications. Transmission errors between Apple Watch and

iPhone were displayed to the patient in the user interface,
cached, and retried on the next transmission. Once the
patient-generated data had been transmitted to the iPhone, they
were forwarded again through background processes to the data
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server without any user interaction. This meant that no patient
interaction with the iPhone was necessary. It could remain
plugged into a power supply socket for the duration of the study
and did not have to be carried around. Data transmissions used
the standardized HL7 FHIR API provided by the data server.
Each data transmission from the iPhone to the data server was
recorded with an audit message, which could be viewed by a
patient on the user interface of the iPhone app. If a transmission
error occurred, the patient-generated data were temporarily
stored in an encrypted local database, and the transmission was
retried during the next scheduled data transfer to the data server.

The data server provided global storage of patient-generated
data and feedback messages using standardized HL7 FHIR R4
resources as a data model. In addition, it executed algorithms
periodically to check the date and time of the last data
transmission of each patient. If >5 days had passed since a
patient’s last data transmission, an automated feedback message
was sent to the patient’s devices with a request to synchronize
data.

The data viewer retrieved patient-generated data via the HL7
FHIR API and displayed them through a self-designed user
interface. Data transmitted by a patient could be viewed at
several levels of granularity (ie, data for a single day, data for
2 weeks, data for 1 month, or all recorded and transmitted data
since study enrollment). Depending on the data type, they were
presented using different visualization formats: (1) bar plots
illustrated various granularities of active burned energy and step
data, (2) scatter plots were used for daily heart rate views, and
(3) box plots were used for 2 weekly and all-data heart rate
views.

If all the data of a patient since study enrollment were displayed,
the visualization was zoomable so that a closer look at areas of
interest was possible. Selected screenshots of the data viewer
user interface can be found in Figure 4. A screencast showing
the functionality of the data viewer (with a German user
interface) can be found in Multimedia Appendix 2.

Figure 4. Screenshots of the data viewer application for 1 patient; (A) shows the recorded and transmitted heart rate data of a single day as a scatter
plot; (B) shows the recorded and transmitted heart rate data over 2 weeks as daily box plots; (C) shows the recorded and transmitted step counts for all
days included in the study as a zoomable bar plot, where asterisks indicate days without any recordings or transmissions, for example, because the
wearable was not worn.

To receive remote push notifications from the study center, the
patient’s iPhone registered itself with Apple Push Notification
service (APNs) directly after onboarding. APNs provided a
device-specific identifier, which was forwarded by the iPhone

app to the data server of the study center as administrative data.
On the basis of the device identifier, the data server could
forward a feedback message received from the data viewer to
the APNs server after the message was transformed from the
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standardized HL7 FHIR format to the APNs-required proprietary
format. The device identifier then enabled the APNs server to
forward the feedback message as a remote push notification to
the patient’s devices. Each feedback message was recorded, in
addition to an audit message on the iPhone, and could be viewed
by a patient in the app’s user interface.

Data Model
The data model was based on standardized HL7 FHIR R4
resources to establish syntactic interoperability. A patient was
identified by a Patient resource containing the patient’s study
pseudonym. The Device resource stored the device-specific
identifier provided by APNs, which was needed to send and
retrieve feedback messages via remote push notifications and
linked to the Patient resource. Feedback messages were modeled
using the Task resource, which contained information such as
title, message, category, and recipient, which was a reference
to the Patient resource. The SHD steps, active burned energy,
and heart rate were modeled using the Observation resource.
For steps and active burned energy, the recorded data were
summarized in 1-hour intervals. For heart rate, 25 consecutive
measurements were listed and transferred in 1 Observation
resource to reduce network calls. The DocumentReference
resource was used to store metadata related to ECG data, such
as recording date, classification, and average heart rate. In
addition, it referenced a Binary resource to transport the actual
ECG recording (512 Hz; 30 seconds) as millivolt values in a
CSV file. The PROM questionnaire was based on the
Questionnaire resource, which contained the questions to be
answered weekly, and the QuestionnaireResponse resource,
which stored a patient’s completed questionnaire. The exercise
diary was based on the Composition resource, which stored the
date of a completed workout and was linked to several Task
resources containing information about the executed strength
and endurance exercises during the workout.

To establish semantic interoperability with other clinical
information systems (eg, from primary care), the SHD were
annotated using LOINC codes, and the PROM questionnaire
was annotated using postcoordinated UMLS codes. For semantic
annotation of the PROM exercise diary, we used a self-defined
code system based on the exercise program. HL7 FHIR profiles,
concrete resource examples, and validation information for the
data model can be found in Multimedia Appendix 3.

Security, Authentication, and Authorization
For general security, all messages exchanged between the
components of the RPM system were encrypted using Transport

Layer Security [59] using a minimum version of 1.2. The Realm
database used to cache patient-generated data on the iPhone
was encrypted using the Advanced Encryption
Standard-256+Secure Hash Algorithm 2 algorithm and could
not be analyzed if the device was lost. The encryption key of
the database was stored in the secure Keychain [60] of the
iPhone and could only be accessed through the iPhone app.

Authentication and authorization to the RPM system
distinguished between the roles of patient and study center staff
using distinct technical approaches for each. For the patient
role, the QR code scanned during onboarding contained a signed
JSON Web Token (JWT) [61] valid for study enrollment, storing
authentication information and the patient’s pseudonym in the
iPhone’s secure Keychain. This JWT was used when
transmitting patient-generated data, ensuring authentication and
data provenance. The role of study center staff, authenticated
using X.509 client certificates [62], could retrieve
patient-generated data and stored push notifications on the data
server. Revoking compromised certificates or JWTs was
managed via configuration options on the data server. The
server’s authentication to APNs used a JWT as well that was
signed and encrypted by the study center data server using a
private key from Apple that was revocable on the Apple
developer website if compromised.

Evaluation
The evaluation of the RPM system was carried out with patients
who completed the activeDCM study protocol between October
2021 and February 2024 (N=110). A total of 13.6% (15/110)
of the patients were excluded from the evaluation because of
missing answers in the evaluation questionnaire on experience
or SUS answers. The evaluated cohort consisted of 95 patients
(n=28, 29% female) with a mean age of 50 (SD 12) years at the
end of study participation. Of these 95 patients, 39 (41%) had
previous experience using Apple devices (Exp+, n=30, 77%
using iPhone only and n=9, 23% using iPhone and Apple
Watch), and 56 (59%) had no experience (Exp–) at the time of
enrollment in the study. A total of 26% (25/95) of the patients
were randomized into the intervention group with an
individualized exercise program and feedback messages (IG+),
36% (34/95) were randomized into the intervention group with
an individualized exercise program but without feedback
messages (IG–), and 38% (36/95) were randomized into the CG
study arm. The mean enrollment time of these patients in the
activeDCM study was 396 (SD 39) days, which corresponds to
56 (SD 5) weeks. The baseline characteristics of the evaluated
patient cohort are summarized in Table 1.
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Table 1. Baseline characteristics of patients by device experience and study arm membership in the activeDCM study (N=95).

IG+e (n=25)IG–d (n=34)CGc (n=36)Exp+b (n=39)Exp–a (n=56)Total sampleVariable

Sex, n (%)f

16 (64)24 (71)27 (75)27 (69)40 (71)67 (71)Male

9 (36)10 (29)9 (25)12 (31)16 (29)28 (29)Female

53 (11; 24-66)48 (13; 23-66)50 (11; 24-65)49 (13; 24-66)51 (10; 23-66)50 (12; 23-66)Age (y)g, mean (SD;
range)

389 (31; 330-
484)

395 (28; 336-
448)

402 (50; 315-
625)

394 (30; 330-456)398 (44; 315-
625)

396 (39; 315-625)Time in study (d)h,
mean (SD; range)

aExp–: without previous device experience.
bExp+: with previous device experience.
cCG: control group.
dIG–: intervention group without feedback messages.
eIG+: intervention group with feedback messages.
fDevice experience: Pearson χ2

1P>.99; study arm: Pearson χ2
2P=.65.

gDevice experience: Kruskal-Wallis test P=.58; study arm: Kruskal-Wallis test P=.29.
hDevice experience: Kruskal-Wallis test P=.95; study arm: Kruskal-Wallis test P=.53.

The results of the patients’ subjective perspective on the RPM
system based on the evaluation questionnaire were divided into
2 end points. The results of the first end point, analyzing the
usability of the wearable and smartphone app based on the SUS,
are summarized using box plots in Figure 5. The app achieved
a mean SUS score of 78 (SD 17). A total of 25% (24/95) of the
patients reported an SUS score of <68 (insufficient usability),
of whom 75% (18/24) were aged >50 years and 75% (18/24)
had no previous experience using Apple devices (Exp–). Patients
with previous experience using Apple (Exp+) devices rated

usability more highly, with a mean SUS score of 82 (SD 15),
compared with patients without any experience (Exp–), who
reported a mean SUS score of 75 (SD 18). There were no major
differences among patients in the study arms. Patients in the
intervention group with feedback messages (IG+) reported a
mean SUS score of 78 (SD 15), patients in the intervention
group without feedback messages (IG–) reported a mean score
of 78 (SD 15), and patients in the CG reported a mean score of
77 (SD 20).

Figure 5. Results of the wearable and smartphone app usability analysis using the System Usability Scale (SUS) displayed as box plots. All data
combined are shown in blue, experience using Apple devices is shown in green, and study arm membership is shown in orange. Triangles show mean
values. CG: control group; Exp–: without previous device experience; Exp+: with previous device experience; IG–: intervention group without feedback
messages; IG+: intervention group with feedback messages.

As shown in Table 2, the bias-corrected and accelerated
bootstrapped multiple linear regression analysis of the SUS
scores resulted in a significant effect for those with previous
experience (Exp+) with a 95% CI of 0.25-13.47 and an estimate
of 6.75. This means that patients with Apple device experience
were estimated to rate the usability of the wearable and
smartphone app 6.75 points higher on the SUS than patients

without Apple device experience. This is similar to the measured
differences in SUS scores between those without and with
previous experience (7-point difference). Age approached
significance with a 95% CI of −0.46 to 0.14. The estimate of
−0.19 showed that a 40-year age difference between 2 patients
was estimated to result in a 7.60-point worse SUS score for the
wearable and smartphone app from the older patient.
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Table 2. Bias-corrected and accelerated bootstrapped multiple linear regression analysis of the System Usability Scale (SUS) scores, the wearable
interaction frequency (percentage of days enrolled in the study), the sensor-based health data (SHD; percentage of days enrolled in the study), and
patient-reported outcome measure (PROM) completeness (percentage of weeks enrolled in the study).

Estimate, mean (95% CI)Variable

SUS score

−3.61 (−10.35 to 4.54)Sex (male)

−0.19 (−0.46 to 0.14)Age

6.75 (0.25 to 13.47) bExp+a

Group

0.95 (−7.80 to 10.10)IG+c

−0.37 (−7.81 to 8.00)IG–d

Wearable interaction frequency (%)

−7.06 (−17.7 to 3.93)Sex (male)

0.39 (−0.08 to 0.84)Age

−1.38 (−10.81 to 8.65)Exp+

Group

6.08 (−6.54 to 19.51)IG+

13.53 (1.02 to 25.4) bIG–

SHD completeness (%)

−8.22 (−16.39 to 0.32)Sex (male)

0.45 (0.06 to 0.95) bAge

5.36 (−2.44 to 13.88)Exp+

Group

12.18 (1.65 to 22.43) bIG+

11.73 (1.17 to 21.86) bIG–

PROM completeness (%)

−5.49 (−17.14 to 5.71)Sex (male)

0.42 (−0.04 to 0.92)Age

−1.43 (−12.03 to 9.31)Exp+

Group

7.17 (−7.39 to 20.9)IG+

12.22 (−0.37 to 24.29)IG–

aExp+: with previous device experience.
bCIs not including 0 were considered as significant (P<.05).
cIG+: intervention group with feedback messages.
dIG–: intervention group without feedback messages.

The results of the second evaluation questionnaire end point,
regarding the 5 self-designed questions about the patients’
attitudes toward using the RPM system as well as their
participation in the study, are shown in Figure 6. A total of 87%
(83/95) of the patients (strongly) agreed that the use of the app
was easy to integrate into their daily routine. Similarly, 88%
(84/95) and 93% (88/95) of the patients considered answering

the PROM questionnaire and transmitting their SHD to the study
center via Apple Watch as convenient, respectively. In total,
64% (61/95) of the patients would like to submit their health
data to the study center and receive feedback from a physician
(even after the activeDCM study), and the app with feedback
from their physician was or would be useful for 71% (67/95)
of the patients regarding their health and well-being.
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Figure 6. Results of the 5 self-designed questions regarding the patients’ attitudes toward using the remote patient monitoring system as well as their
participation in the activeDCM study. Responses to the statements were provided by patients using a 5-point ordinal Likert scale ranging from strongly
disagree in orange to strongly agree in blue.

In Figure 7, the results of patients’objective use of the wearable
device are summarized using box plots, showing wearable
interaction frequency and SHD as well as PROM completeness
for end points 3, 4, and 5. On average, patients interacted with
the wearable app on 61% (SD 26%) of the days that they were
enrolled in the study, which corresponds to 239 (SD 99) of 396
(SD 39) days. On average, SHD were available for 78% (SD
23%) of the days that patients were enrolled in the study, which
corresponds to 307 (SD 87) of 396 (SD 39) days. In terms of
PROM questionnaires answered, data were available on average
for 64% (SD 27%) of the weeks that the patients were enrolled
in the study, which corresponds to 35 (SD 15) of 56 (SD 5)
weeks. There were no major differences between those without
and with previous experience (wearable interaction frequency:
mean 62%, SD 27% of days [240, SD 103 of 398, SD 44 days]
vs mean 60%, SD 23% of days [238, SD 91 of 394, SD 30 days],
respectively; SHD completeness: mean 76%, SD 25% of days
[299, SD 97 of 398, SD 44 days] vs mean 81%, SD 17% of days
[319, SD 69 of 394, SD 30 days], respectively; PROM
completeness: mean 65%, SD 28% of weeks [36, SD 15 of 56,

SD 6 weeks] vs mean 63%, SD 24% of weeks [35, SD 14 of
56, SD 4 weeks], respectively). Only the dispersion of the data
was slightly narrower for those with previous experience (Exp+).
Regarding the 3 different study arms, the interaction with the
wearable was more frequent and patient-generated data
completeness was higher in both the IG– (wearable interaction
frequency: mean 67%, SD 20% of days [266, SD 84 of 395, SD
28 days]; SHD completeness: mean 82%, SD 20% of days [322,
SD 80 of 395, SD 28 days]; PROM completeness: mean 69%,
SD 21% of weeks [39, SD 12 of 56, SD 4 weeks]) and IG+
(wearable interaction frequency: mean 62%, SD 20% of days
[242, SD 78 of 389, SD 31 days]; SHD completeness: mean
85%, SD 16% of days [330, SD 63 of 389, SD 31 days]; PROM
completeness: mean 67%, SD 23% of weeks [36, SD 12 of 55,
SD 4 weeks]) than in the CG (wearable interaction frequency:
mean 54%, SD 31% of days [212, SD 115 of 402, SD 50 days];
SHD completeness: mean 70%, SD 26% of days [277, SD 99
of 402, SD 50 days]; PROM completeness: mean 58%, SD 32%
of weeks [32, SD 17 of 57, SD 7 weeks]). In both the IG+ and
IG–, the dispersion of the data was smaller than in the CG.
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Figure 7. Results of patients’ wearable interaction frequency as well as completeness of recorded and transmitted patient-generated data classified into
sensor-based health data (SHD) and electronic patient-reported outcome measures (PROMs) of the wearable and smartphone app as box plots. All data
combined are shown in blue, experience using Apple devices is shown in green, and study arm membership is shown in orange. Triangles show mean
values. CG: control group; Exp–: without previous device experience; Exp+: with previous device experience; IG–: intervention group without feedback
messages; IG+: intervention group with feedback messages.

The data volume recorded and transferred per patient to the data
server varied based on health status, physical activity levels,
and workout duration, which influenced both recorded data
point density and the number of ECG recordings. On average,
the data volume amounted to approximately 300 MB per patient
and year in the HL7 FHIR database on the data server.

The bias-corrected and accelerated bootstrapped multiple linear
regression analysis (Table 2) resulted in a significant influence
of IG– membership on the wearable interaction frequency and
SHD completeness end points and approached significance for
the PROM completeness end point (wearable interaction
frequency estimate: 13.53%, 95% CI 1.02%-25.4%; SHD
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completeness estimate: 11.73%, 95% CI 1.17%-21.86%; PROM
completeness estimate: 12.22%, 95% CI –0.37% to 24.29%).
This means that, on average, a patient in the IG– was expected
to interact with the wearable app on 13.35% more days enrolled
in study than a patient in the CG and that both SHD and PROM
data were expected to be available on 11.73% more days and
12.22% more weeks that a patient was enrolled in the study,
respectively.

Discussion

Principal Findings
In this paper, we presented a concept, implementation, and
evaluation of a reusable RPM system following a patient-centric
approach for RPM without direct physician-patient contact using
asynchronous feedback mechanisms. The system was based on
patient-generated data such as SHD and PROMs. It leveraged
a consumer wearable device (smartwatch) instead of a
smartphone as the primary input device. The implementation
of the concept and its subsequent use as part of the activeDCM
randomized controlled clinical trial demonstrated that the
identified challenges and requirements of a sophisticated
precision digital health trial could be addressed. The
implementation relied on wearable devices and smartphones
from Apple Inc and their notification service, but the concept
should be versatile enough to be used with devices based on
other operating systems, such as the Android-based Wear OS
for the Samsung Galaxy Watch or the Google Pixel Watch.

Decisions during RPM system conceptualization and
implementation aimed to minimize barriers to use, enhancing
usability and ensuring high patient acceptance as well as
compliance. The study team established a device preparation
and distribution scheme providing patients with ready-to-use
devices, thereby reducing the configuration efforts to scanning
an onboarding QR code. Patient education sessions focused not
only on the medical aspects of the study but also on digital
literacy and provided written and video-based material about
the wearable and smartphone app, requiring additional effort
from patient educational sessions. Opting for a wearable as the
primary input device likely played a pivotal role in seamlessly
integrating the RPM system into the patients’ daily routines. Its
proximity to the patient and its intuitive interaction, aligned
with the chosen device, operating system, and study-specific
app, contributed to a successful integration and reduced the
interaction time to a few seconds per day. To enhance the
wearable and smartphone app usability, we implemented only
the essential functionalities in a straightforward, simplistic
manner, trying to reduce the interactions for these functionalities
to a minimum. This was significantly shaped by the official
human interface guidelines provided by Apple [63,64]. Storing
authentication information during onboarding further
streamlined data transmissions, eliminating the need for patients
to remember usernames and passwords.

The Apple Watch sensors capture heart rate measurements in
an interval of seconds during an activity session [65], and active
burned energy and step data can be extracted in hourly intervals.
Given this vast amount of data points, the physician-centered
data viewer prioritized simplicity, presenting summarized

information. In total, 3 visualization granularity levels allowed
physicians to analyze patient-generated data, identifying short-,
medium-, and long-term trends, and compare data from multiple
patients effortlessly. Direct remote push notifications from the
data viewer interface streamlined physician support, eliminating
the need to switch between various communication channels,
as observed in other wearable-based studies [66,67].

The HL7 FHIR standard enhanced medical data exchange by
addressing health care challenges beyond the capabilities of
previous standards, such as HL7 version 2, HL7 version 3, and
Clinical Document Architecture [68]. Therefore, HL7 FHIR’s
standardized API and data models used in combination with
the LOINC and UMLS medical terminologies ensured syntactic
and semantic interoperability with other clinical information
systems. However, complete integration with other clinical
information systems requires these systems to provide
standardized interfaces as well. Without these interfaces,
integration becomes more complex, necessitating adaptations
and mappings. In Germany, legislative efforts are promoting
the adoption of HL7 FHIR interfaces for clinical information
systems [69].

The wearable and smartphone app, data server, and data viewer
implementation were not bound to a specific medical domain
and could be used independently beyond the activeDCM study
as long as the counterpart supported the HL7 FHIR standard as
well. The components of the wearable and smartphone app and
the data viewer were built iteratively in a modular system and,
thus, can be adapted for further studies and other diseases such
as diabetes or chronic obstructive pulmonary disease without
major effort. If required, new modules could be implemented,
integrating additional sensors and data types. Similarly, not
required data types could be removed easily.

By equipping patients with dedicated devices, it was possible
to ensure that data transmissions only took place in a
pseudonymized form. During the educational session, patients
were briefed on the RPM system’s privacy and security
mechanisms, emphasizing the storage of only the pseudonym
on devices after handover. This ensured that no data were stored
in a cloud solution provided by the manufacturer of the devices.
As such, the smartphone and wearable were setup using Apple
Configurator 2, and the app was deployed using the over-the-air
method without the need to sign in using an Apple ID.
Furthermore, by separating patient identification from device
identification, feedback messages could be sent via the
manufacturer’s notification service without having to know the
patient’s identity or pseudonym. The connection of the
pseudonym to the device could only be established on the data
server.

The SUS evaluation, resulting in a mean score of 78 (SD 17),
indicated that the wearable and smartphone app was considered
user-friendly by patients [50]. The significant difference between
patients with and without experience using Apple devices
(estimate: 6.75, 95% CI 0.25-13.47) suggests that patients are
generally more comfortable using devices they are familiar with.
However, to allow use of wearables from different
manufacturers in the RPM system, achieving comparable sensor
accuracies for the same SHD recordings would be essential, but
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the literature shows that there are measurable differences
[70,71], posing challenges for physicians in comparing patient
data and providing feedback. Despite the additional effort to
explain the devices and study-specific app, patient age had an
influence on the SUS score approaching significance (estimate:
−0.19, 95% CI –0.46 to 0.14). Insufficient usability (SUS score
of <68; 24/95, 25% of the patients) was mainly reported by
patients aged >50 years (18/24, 75%) and with no previous
Apple device experience (18/24, 75%). This suggests that the
challenges faced by these individuals may not have been due
to problems with the usability of the wearable and smartphone
app but rather with the general use of the devices. These findings
are consistent with results reported by Sonderegger et al [72]
and illustrate the importance of digital literacy and the
supplementary material provided for patients during the
onboarding process.

On average, patients engaged with the wearable more than every
other day (61%, SD 26% of days, 239, SD 99 of 396, SD 39
days). For SHD recording and transmission, as few as 1
interaction per week would suffice for complying with the
activeDCM study protocol. Complete datasets would still be
transferred as Apple Watch sensors store SHD for up to 10 days.
The data server algorithm that monitored transmission frequency
and sent automatic reminders likely played a crucial role in
obtaining complete datasets. The measured user-friendliness
was also reflected in the completeness of SHD data, which was
available on average for 3 out of 4 days (78%, SD 23% of days,
307, SD 87 of 396, SD 39 days). This aligns with the results by
Werhahn et al [73], where heart rate measurements and step
counts based on a worn Apple Watch were recorded on 84.8%
and 83.5%, respectively, of days that patients were included in
their study. However, the monitoring period lasted only 2
months, which is significantly shorter than that in activeDCM.
The average completeness of PROM questionnaires showed
similar results, which were sufficient to see relevant health
changes in patients and corresponds to a transmission of a
complete PROM questionnaires more than every second week
(mean 64%, SD 27% of weeks, 35, SD 15 of 56, SD 5 weeks).

Gaps in data, whether SHD or PROMs, could be attributed to
various factors, such as illness, hospitalization, vacation, or
lapses in wearing the Apple Watch. Technical issues, poor
internet connection, or oversight in configuring the patient
device’s Wi-Fi connection at home may also have resulted in
missing patient-generated data.

However, home-based Wi-Fi connection did not restrict patient
recruitment, the daily use of the wearable and smartphone app,
or recording of patient-generated data. Data were still collected
even without a current Wi-Fi connection. The Wi-Fi connection
was only necessary for data transmission to the study center,
thereby transmitting all recorded data since the last transmission.
A mobile data volume contract is possible for data transfer,
enabling transfers outside the patient’s home. However, as the
devices and the wearable and smartphone app can temporarily
store patient-generated data until they can be transferred to the
data server, data completeness would remain unchanged.

There was a notable difference in the evaluation results of
objective RPM use between the CG, IG–, and IG+, showing

significance for wearable interaction frequency (estimate:
13.53%, 95% CI 1.02%-25.4%) and SHD completeness
(estimate: 11.73%, 95% CI 1.17%-21.86%), as well as
approaching significance for PROM completeness (estimate:
12.22%, 95% CI −0.37%-24.29%) in the IG– in comparison
with the CG. This suggests the presence of a Hawthorne effect
[74] for increased RPM system use as anticipated given the
expected behavioral impact of the activeDCM study in the
intervention groups. Within each randomized controlled trial,
a potential bias exists in the case of a Hawthorne effect that
could have increased compliance with the treatment and the use
of the wearables in this study. To study the use of the RPM
system in real-world settings, another design of an observational
trial would be needed.

The inferior performance of the IG+ (only significant SHD
completeness with an estimate of 12.18%, 95% CI
1.65%-22.43% compared with the CG) in comparison with the
IG– may be attributed to more patients with no Apple device
experience and more patients aged >50 years in the IG+
compared with the IG–.

Positive responses from patients to self-designed questions 1
to 3 regarding the wearable as a primary input device and its
integration into daily routines aligned with the usability and
data completeness results, affirming our design decisions. In
addition, responses to questions 4 and 5 indicated a strong
willingness among patients to share patient-generated data,
acknowledging the benefits of an RPM system with feedback
mechanisms. This reflects a positive attitude from patients
toward using technology for chronic disease management, which
is consistent with the evaluations by Turner et al [75] and Rising
et al [5].

While sensors for cardiovascular monitoring and smartphone
apps for PROM recording are advanced, RPM systems are not
commonly used in cardiology research or standardized clinical
workflows, highlighting the need for more guidance on the
design and implementation of such systems. In a systematic
review, Kinast et al [76] found a limited number of studies
(between January 1, 2001, and March 31, 2021) implementing
wearables and noninvasive sensors, as in the activeDCM study,
for the management of cardiovascular diseases. In contrast,
activeDCM featured continuous recording and transmission of
patient-generated data for at least 12 months—more than twice
the duration of most studies in the review. This extended time
frame offers initial evidence supporting the feasibility of an
RPM system for the longitudinal monitoring of patients with
chronic diseases. A systematic review by Vegesna et al [11]
examining RPM systems for various other chronic diseases,
including cardiac, respiratory, neurological, and metabolic
conditions, revealed similar distinctions. Only a few studies for
each disease type could be identified, shorter monitoring time
frames were mainly applied, and the use of wearables as primary
device was rather modest (computerized systems, smartphones,
websites, biosensors, or a combination of these were often used).
Finally, many studies in both aforementioned reviews
predominantly emphasized clinical outcomes, with limited
attention given to providing in-depth insights into the technical
design and implementation of the RPM system as well as its
usability, which in turn impacts patient adherence and
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completeness of patient-generated data—all factors influencing
the sustained long-term success of RPM systems [77].

Limitations
This study has several potential limitations. First, the evaluated
cohort consisted of twice as many men than women, which is
typical in cardiovascular trials and especially in DCM trials as
men are more often affected than women and the activeDCM
study design enrolled independently of gender selection. The
RPM system can be used in its current implementation state
only with iOS devices and requires a Wi-Fi or cellular data
connection of the smartphone for data transfers.

Furthermore, the RPM system was only used and evaluated in
a research context. We hypothesize that the experience and
evaluation results obtained from this research can facilitate the
transition of the RPM system into primary care. We anticipate
that this transition will maintain high levels of interaction
frequency and completeness of patient-generated data, as
observed in the research setting. Nevertheless, additional
investigation is required to ensure the successful integration
and adoption of the RPM system into standardized clinical
workflows. Potential challenges, especially in managing a
considerably larger number of patients and their devices, may
necessitate adjustments to current physician-patient interaction
workflows as established for the activeDCM study. Who would
bear the costs for the RPM-based treatment approach would
also have to be clarified. One possibility for a reimbursement
scheme to explore in Germany would be to certify the RPM
system as a digital health application [78,79]. As a result, the
wearable and smartphone app and the monitoring process could
be prescribed by physicians and, thus, paid for by health
insurance companies. In addition, cardiologists would need
training in interpreting patient-generated data. The calculation
of scores and the implementation of clinical decision support
tools would streamline the analysis of patient-generated data,
thereby saving time and increasing the scalability of RPM-based
clinical workflows.

The RPM system module to answer PROM questionnaires has
limited response options, using yes or no, or a scale from 1 to

4. Future efforts should explore methods for adapting more
complex PROM questionnaires with diverse response options
for use on wearables, maintaining their role as primary input
devices. An example could be the Kansas City Cardiomyopathy
Questionnaire–Short Version [80], an important questionnaire
in cardiology that may require adaptation for wearable use.

Finally, the RPM system’s reliance on manually triggered data
transmission by patients, coupled with the consequent time
delay in analysis by study physicians, makes it unsuitable for
monitoring acute medical emergencies such as myocardial
infarctions. To enable real-time monitoring, algorithms would
need to be developed for direct analysis of patient-generated
data on wearables. Nevertheless, the observational data collected
as part of the activeDCM study could serve as a foundation for
the future development of such algorithms.

Conclusions
As life expectancy increases and the older adult population
experiences more chronic diseases, there is a growing need for
ready-to-use RPM systems. In addition, physicians and
researchers require more guidance on designing and
implementing such systems for both primary care settings and
research purposes [77]. This paper presents a blueprint of an
RPM system concept, its subsequent implementation, and its
procedure for use as part of the activeDCM study. The selected
patient-centric approach and the evaluation results show the
feasibility of creating a user-friendly, reusable, interoperable,
and secure RPM system including an asynchronous feedback
mechanism using a consumer wearable without a designated
medical purpose as the primary input device for
patient-generated data such as SHD and PROMs. The main
factors influencing usability and patient acceptance of the RPM
system were device experience, age, and intervention group
membership. Our research provides a first step toward
integrating RPM systems into standardized clinical workflows
and could help other researchers in tailoring RPM systems for
their studies. Further research is needed to translate such systems
into primary care settings. If this translation is successful, the
RPM systems have the potential to change the traditional
patient-physician interaction in the future [81].
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