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Abstract

Background: Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in school-aged
children. The lack of objective biomarkers for ADHD often results in missed diagnoses or misdiagnoses, which lead to inappropriate
or delayed interventions. Eye-tracking technology provides an objective method to assess children’s neuropsychological behavior.

Objective: The aim of this study was to develop an objective and reliable auxiliary diagnostic system for ADHD using eye-tracking
technology. This system would be valuable for screening for ADHD in schools and communities and may help identify objective
biomarkers for the clinical diagnosis of ADHD.

Methods: We conducted a case-control study of children with ADHD and typically developing (TD) children. We designed an
eye-tracking assessment paradigm based on the core cognitive deficits of ADHD and extracted various digital biomarkers that
represented participant behaviors. These biomarkers and developmental patterns were compared between the ADHD and TD
groups. Machine learning (ML) was implemented to validate the ability of the extracted eye-tracking biomarkers to predict ADHD.
The performance of the ML models was evaluated using 5-fold cross-validation.

Results: We recruited 216 participants, of whom 94 (43.5%) were children with ADHD and 122 (56.5%) were TD children.
The ADHD group showed significantly poorer performance (for accuracy and completion time) than the TD group in the
prosaccade, antisaccade, and delayed saccade tasks. In addition, there were substantial group differences in digital biomarkers,
such as pupil diameter fluctuation, regularity of gaze trajectory, and fixations on unrelated areas. Although the accuracy and task
completion speed of the ADHD group increased over time, their eye-movement patterns remained irregular. The TD group with
children aged 5 to 6 years outperformed the ADHD group with children aged 9 to 10 years, and this difference remained relatively
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stable over time, which indicated that the ADHD group followed a unique developmental pattern. The ML model was effective
in discriminating the groups, achieving an area under the curve of 0.965 and an accuracy of 0.908.

Conclusions: The eye-tracking biomarkers proposed in this study effectively identified differences in various aspects of
eye-movement patterns between the ADHD and TD groups. In addition, the ML model constructed using these digital biomarkers
achieved high accuracy and reliability in identifying ADHD. Our system can facilitate early screening for ADHD in schools and
communities and provide clinicians with objective biomarkers as a reference.

(JMIR Mhealth Uhealth 2024;12:e58927) doi: 10.2196/58927
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Introduction

Background
Attention-deficit/hyperactivity disorder (ADHD) is a common
neurodevelopmental disorder in school-aged children,
characterized by deficits in attention, hyperactivity, and
impulsivity. Globally, the estimated prevalence of ADHD in
children and adolescents is approximately 5.29% [1]; in China,
the prevalence is approximately 6.4% [2]. People with ADHD
typically exhibit deficiencies in various cognitive domains, and
these symptoms can persist into adolescence and adulthood,
which can result in academic underachievement and societal
issues, such as substance abuse and violence [3]. Therefore,
early identification, diagnosis, and intervention for ADHD are
essential.

Despite recent advances, the diagnosis of ADHD relies heavily
on subjective judgments based on the observations of children’s
behavior. Consequently, this can lead to both over and
underdiagnosis, as well as inappropriate treatments. Therefore,
there is an urgent need to develop methods to identify reliable
ADHD biomarkers. Furthermore, given that poor academic
performance is the most common concern of individuals with
ADHD, it is crucial that we improve awareness and
understanding of ADHD among parents and teachers to ensure
timely identification of ADHD. However, on the one hand, most
nonmedical professionals cannot be expected to gain specialized
medical expertise, and on the other hand, physicians cannot
frequently visit campuses to aid in ADHD assessment. This
situation has resulted in delays in diagnosing children with
ADHD. Developing mobile screening equipment will enable
on-campus ADHD screening to facilitate timely identification
and diagnosis of ADHD.

Eye-tracking technology is particularly suited for the assessment
and diagnosis of ADHD because it offers an objective
measurement of children’s neuropsychological behavior. Studies
have shown that there is a significant overlap between the neural
networks responsible for attention and those responsible for
eye-movement control [4]. Children with ADHD experience
difficulties with spatial perception and visual-motor integration
[5], and these neurophysiological features associated with
ADHD can be identified using eye-tracking assessments. In
addition, children with ADHD often find lengthy and complex
assessments challenging, particularly if they are required to
wear additional equipment. Eye-tracking technology surpasses
other neurophysiological techniques in its ability to record the

neuropsychological activity of participants in a more natural
setting [6]. This leads to better cooperation of children during
assessments and higher reliability and generalizability of results.

Recent advances in computational psychiatry have enabled the
extraction of eye-tracking metrics to discern behavioral
alterations in children with ADHD [7-9]. These metrics
encompass various aspects of visual attention, such as fixation
duration, saccade velocity, and gaze entropy [10-12], which
may serve as digital biomarkers for neurodevelopmental
disorders [13,14]. By analyzing the temporal and spatial
characteristics of eye movements, computational models can
capture differences in visual behaviors between ADHD and
typically developing (TD) children. Machine learning (ML)
techniques have emerged as powerful tools for processing and
interpreting large amounts of eye-tracking data [15-17]. Training
ML models on labeled eye-tracking metrics has allowed the
construction of robust and accurate classifiers to identify
whether individuals belong to an ADHD or a TD group. Precise
eye-tracking measurements and digital biomarkers hold great
promise as objective and automated screening tools for ADHD,
which will facilitate the development of early intervention
strategies and improve the clinical outcomes of affected children
[7,18,19]. Moreover, the evolution of mobile eye-tracking
technology and devices, coupled with portable computing
sources, such as smartphones and tablets, will allow the
implementation of eye-tracking assessments in various scenarios
and thus address the need for ADHD screening in the
community [20-22].

Related Work
Neuroimaging studies have shown that children with ADHD
have multidimensional brain function abnormalities. The
impairment of inhibitory control is a fundamental factor
contributing to cognitive and executive functioning deficiencies
in individuals with ADHD [23]. However, these individuals
also have motor coordination difficulties, poorer spatial
perception [24-26], reduced auditory sensitivity, and problems
with attentional integration of audiovisual stimuli [27].

Recently, there has been a growing interest in exploring the use
of eye-tracking technology to study the neurophysiological
features of ADHD. A meta-analysis of the various behavioral
tests developed over the last 5 decades to evaluate eye
movement and cognitive control [28] revealed that eye-tracking
evaluations of children with ADHD yielded the most reliable
and consistent outcomes when eliminating bias. Most of these
tests focused on saccade, which is one of the most crucial type
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of eye movement. Children with ADHD perform significantly
worse than TD children across all tasks, with greater variability
for each metric in the antisaccade task [29].

To ensure that the screening method is appropriate for children
with ADHD, we must use a paradigm that is brief and simple
to perform yet capable of highlighting cognitive deficits. In
addition, the extracted eye-movement metrics should be able
to comprehensively characterize children’s task performance.
Several recent studies have used eye tracking to explore the
characteristics of ADHD. Lemel et al [30] incorporated
spoken-word recognition accuracy, gaze duration, and the
number of transitions in response to a phonological competitor
to analyze spoken-word processing in adverse listening
conditions in individuals with ADHD. However, this paradigm
was complex and required word recognition and was thus more
suited to adult patients. Another study used a paradigm to assess
children’s working memory; however, the task took 30 minutes
to complete [31], which is not conducive to task completion in
children with ADHD. Siqueiros et al [32] used the antisaccade
task, which is a simple and reliable paradigm that suits children.
However, only directional errors and expected eye movements
were assessed; moreover, the paradigm was not sufficiently
comprehensive to assess children’s task performance.

Objectives
Studies conducted to date have provided valuable insight into
automatic screening approaches for ADHD in children using
eye-tracking devices. However, these studies have drawbacks
that have hindered the development of a more robust and
accurate auxiliary diagnostic system. For example, the
paradigms were too time-consuming or complex for clinical
ADHD screening, and the extracted metrics were not sufficiently
comprehensive. ML models used in previous studies have
typically achieved only modest accuracy and sensitivity, which
limits clinical applicability. Furthermore, small sample sizes
have limited the robustness of the results.

To address the aforementioned challenges, we aimed to develop
an accurate and reliable auxiliary diagnostic system for ADHD
in children using eye-tracking technology. Specifically, the
objectives of this study were as follows:

1. To design an eye-tracking assessment paradigm that is easy
to implement and can identify differences in eye-movement
patterns between children with ADHD and TD children.

2. To extract effective eye-tracking metrics as digital
biomarkers that quantitatively represent various aspects of
eye-movement behaviors and use these biomarkers to
construct and validate ML models to enable automatic
screening of children for ADHD.

3. To achieve high accuracy and reliability of the ML model
using a large dataset, which will facilitate early screening
for ADHD and timely intervention for children with ADHD
and thus contribute to improving the effectiveness of the
health care system.

Methods

Participants
To ensure the representativeness of the ADHD and TD groups
in this case-control study, we recruited participants from
hospitals and schools separately. Children with ADHD were
recruited from an outpatient clinic at a public pediatric hospital
in Shanghai, China, whereas TD children were recruited from
2 general public elementary schools in Shanghai (one from an
urban area and another from a suburban area). The children
were divided into 3 age groups: group 1 (5-6 years), group 2
(7-8 years), and group 3 (9-10 years).

The inclusion criteria for the ADHD group were children in
grades 1 to 3 with a clinical diagnosis of ADHD who were not
currently receiving treatment. The inclusion criteria for the TD
group were children in grades 1 to 3 with a negative assessment
on the Swanson, Nolan, and Pelham Rating Scale (SNAP-IV)
[33].

The exclusion criteria were children with a full-scale score of
<75 on the Wechsler Intelligence Scale for Children; children
who had a history of severe traumatic brain injury, neurological
disorders, severe physical illnesses, and psychiatric illnesses
(eg, mood disorders and schizophrenia); and those unable to
undergo eye-tracking examinations.

From December 2022 to April 2023, a total of 100 children with
a clinical diagnosis of ADHD were recruited. Of these, 4
participants with a history of severe traumatic brain injury,
neurological disorders, and other severe physical and psychiatric
disorders and 2 participants who were unable to tolerate the
eye-tracking assessment were excluded. This resulted in 94
participants in the ADHD group.

A total of 150 children were randomly selected as the TD group.
Of these, 15 children refused to participate in the program. In
addition, 2 children with a history of severe traumatic brain
injury, neurological disorders, and other severe physical and
psychiatric disorders and 11 children who were considered to
have ADHD after the interviews and evaluations were excluded.
Finally, 122 children were included in the study as the TD
control group.

All personnel involved in administering the assessments in this
study were full-time child health practitioners who had been
working in child health care for more than 3 years. Standardized
survey administration training was provided before the tests
were administered.

Ethical Considerations
Before the assessment began, the purpose of the project was
explained to the children and their guardians, and written
informed consent was obtained from the guardians. All
participants could withdraw at any stage of the study. Interviews
were then conducted with the guardians to gather data on the
basic conditions of the children. Children who fulfilled the
inclusion and exclusion criteria were formally enrolled in the
study and underwent the SNAP-IV and eye-tracking
assessments. All data will be stored in a deidentified form. No
participants will receive any benefit from participating in this
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study, but they will receive a booklet reporting the results of
the assessments involved in this study as a souvenir.

The study protocol and informed consent form were approved
by the Shanghai Children’s Hospital Institutional Review Board
(2022R126-F01).

Paradigm Design

Overview
Eye movements were recorded at a sampling rate of 1200 Hz
using the Tobii Pro Spectrum eye tracker (Tobii Pro AB), a
screen-based eye tracker that captures eye movements and
pupillary responses. Visual stimuli were presented at a screen
response rate of <5 milliseconds on a 24-inch monitor with a
resolution of 1920×1080 pixels (16:9 ratio). The Tobii Pro Lab

software (version 1.194; Tobii Pro AB) was used to set up the
experiment.

The assessment procedure was performed in a quiet room with
only 1 overhead light source (Figure 1). Participants were seated
in a special seat with a chest shield to limit upper body
movement and help stabilize the head. The cushion was adjusted
to ensure that the center of the screen was at the same level as
the participant’s head. The participant was seated in a position
in which they were unable to observe the assessor’s screen or
operations to minimize distractions. Participants maintained a
distance of 65 cm from the screen and began the formal
assessment following a 5-point calibration. Before each task, a
prompt screen appeared, and the assessor provided detailed
instructions to ensure that the participant fully understood the
task content before proceeding with formal testing.

Figure 1. Eye-tracking assessment scenario settings.

During the assessment, participants were asked to complete 3
saccade tasks sequentially (Figure 2): prosaccade, antisaccade,
and delayed saccade. The stimulus was 5 cm high and 5 cm
wide and randomly appeared on the left or right side of the

screen. There was a central fixation cross in the middle of the
screen, and the stimuli were set at 7°, 15°, and 20° away from
the central cross for the different eccentricities. For each trial,
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a stimulus would randomly appear twice at one of the aforementioned 6 positions.

Figure 2. The eye-tracking assessment paradigm.

Prosaccade Task
Prosaccade, also known as reflexive saccade or visually guided
saccade, is an abrupt eye movement triggered by the sudden
appearance of a stimulus [34]. It is primarily induced by
exogenous stimuli and serves as a baseline measure. In the
prosaccade task, participants were instructed to initially fixate
on the central fixation cross. After 1500 milliseconds, a stimulus
appeared randomly in one of the aforementioned 6 positions.
Participants were required to quickly shift their gaze toward the
stimulus. Once participants fixated on the stimulus area (SA)
for more than 300 milliseconds, the next trial was started
automatically.

Antisaccade Task
In the antisaccade task, participants were required to first fixate
on the central fixation cross. After 1500 milliseconds, 1 stimulus
appeared randomly in one of the 6 aforementioned positions.
Participants were required to quickly shift their gaze to the target
area (TA), which was the location symmetrically opposite to
the stimulus relative to the central fixation cross. Upon
maintaining fixation at the TA for more than 300 milliseconds,
a white feedback cross automatically appeared at the TA position
to indicate success before proceeding to the next trial. If the
participant decided to abandon the trial, the assessor pressed
the space bar to skip the trial, and a white cross was displayed
at the TA before moving on to the next trial. Previous studies
have used a paradigm in which the central fixation cross
disappears when the stimulus is presented [28]. However, this

can make accurately localizing the TA more challenging, which
may result in children being unable to complete the task.
Therefore, in this study, the central cross was retained to assist
participants in locating the TA.

Delayed Saccade Task
The delayed saccade task, based on the go–no-go paradigm
[35], was adapted to the cognitive abilities of children with
ADHD. This task not only directly assesses inhibition but also
requires participants to combine auditory discrimination and
visuomotor modulation. Thus, the task assesses the multisensory
integration and coordination capacity of individuals with ADHD.
During the task, participants were instructed to fixate on the
central fixation cross. After 1500 milliseconds, 1 stimulus
appeared randomly in one of the 6 aforementioned positions.
Participants were asked to maintain fixation on the central cross
until they heard a sound cue after 1000 milliseconds, after which
they were required to shift their gaze toward the SA as fast as
possible. Then, after another 3000 milliseconds, the next trial
was started automatically.

For each saccade task, there were 12 formal trials (2 trials for
each position). Before the formal test, practice trials were
provided, where stimuli were presented randomly in the 6
positions, to allow participants to familiarize themselves with
the task.
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Area of Interest Division Across Tasks
To quantify the eye movements made during the different tasks,
we divided the area viewed by participants into different areas
(Figure 3): the TA, the SA, the center area (CA), the unrelated
area (UA), the proper-side area (PSA), and the wrong-side area
(WSA). The TA represented the area that participants were
required to fixate on, and the SA represented the area of the
stimulus. For the delayed saccade task, we further divided TA
into TA during the proper period (TA-P) and TA during the

wrong period (TA-W) to represent the TA area in the proper or
wrong time periods, respectively (Figure 4). The TA and SA
were the same in the prosaccade and delayed saccade tasks,
whereas in the antisaccade task, they were horizontally
symmetrical. The CA represented a 5 cm × 5 cm area around
the central fixation cross. The UA was unrelated to the task
requirements and expected to attract minimal attention during
the tasks. The PSA and WSA were defined for the antisaccade
task only and represented the proper and wrong areas,
respectively, besides the CA.

Figure 3. Illustration of the division of areas for extracting area-based eye-tracking metrics. CA: center area; PSA: proper-side area; SA: stimulus area;
TA: target area; UA: unrelated area; WSA: wrong-side area.

Figure 4. The different completion statuses in the delayed saccade task. From 0 to 1500 milliseconds, participants were asked to gaze at the center area
(shaded area in a). If fixation fell into the shaded area in b, this indicated the occurrence of an intrusive saccade. From 1500 to 2500 milliseconds,
participants were asked to maintain their fixation on the center area (shaded area in c) until they heard the cue. Thus, if fixation fell into the shaded area
in d during this period, this was defined as a target area during the wrong period fixation (ie, saccade to the target area (TA) but during the wrong period).
At 2500 milliseconds, the sound cue was presented, and participants were required to fixate on the TA (shaded area in e) as fast as possible. Fixation
on the shaded area after 2500 milliseconds was defined as a target area during the proper period fixation (ie, saccade to the TA during the proper period).

Extraction of Digital Biomarkers

Overview
On the basis of the eye-tracking paradigm, we calculated 28
digital biomarkers from the raw data recorded by the eye tracker.
These biomarkers quantitatively reflect various behaviors of
participants during the task, which were divided into 5
categories: general metrics (8/28, 29%), pupil-based metrics

(4/28, 14%), area-based metrics (11/28, 39%), search-based
metrics (3/28, 11%), and entropy-based metrics (2/28, 7%). For
each assessment trial, we recorded 4 trial attributes (ie, task:
prosaccades, antisaccades, and delayed saccades, target side:
left and right, target eccentricity: 7°, 15°, and 20°, and trial
order: first and second) and 6 participant attributes (ie, name,
ID, category [ADHD and TD], sex [male and female], age, and
age group). Table 1 summarizes these biomarkers in terms of
category, symbol, description, and task.
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Table 1. Descriptions of the digital biomarkers.

TaskDescriptionCategory and symbol

General metrics

AllaTotal number of fixationsN Fix.

AllTotal number of saccadesN Sac.

AllTotal duration of the trialT Total

AllAverage fixation durationT Fix. Avg.

AllAverage saccade durationT Sac. Avg.

AllAverage saccade velocityV Sac. Avg.

AllPeak value of saccade velocityV Sac. Peak

AllAverage saccade amplitudeA Sac. Avg.

Pupil-based metrics

AllAverage pupil diameterD Pupil Avg.

AllMaximum pupil diameterD Pupil Max.

AllMinimum pupil diameterD Pupil Min.

AllSD of pupil diameterD Pupil Sd.

Area-based metrics

AllBoolean value to signify the occurrence of fixations in the TAb (TA-Pc for the delayed saccade task)B TA Fix.

AllFixation latency of the TA (TA-P for the delayed saccade task)L TA Fix.

Pe and AfNumber of fixations in the UAdN UA Fix.

DgNumber of fixations in the TA for the whole periodN TA Fix.

DNumber of fixations in the TA for the proper periodN TA-P Fix.

DNumber of fixations in the TA for the wrong periodN TA-W Fix.

ANumber of fixations in the SAhN SA Fix.

ABoolean value to signify the occurrence of fixations in the PSAiB PSA Fix.

ABoolean value to signify the occurrence of fixations in the WSAjB WSA Fix.

ABoolean value to signify if the first fixation located in the PSAB PSA Fix. 1st

DBoolean value to signify the occurrence of intrusive saccade during the center fixation periodB Intrusive Sac.

Search-based metrics

ABoolean value to signify the occurrence of the search behaviorB Search

ANumber of search behavior occurrencesN Search

ATotal duration of search behaviorT Search

Entropy-based metrics

AllNormalized stationary gaze entropySGE norm

AllNormalized gaze transition entropyGTE norm

aAll: all tasks, including prosaccade, antisaccade, and delayed saccade tasks.
bTA: target area.
cTA-P: target area during the proper period in the delayed saccade task.
dUA: unrelated area.
eP: prosaccade task.
fA: antisaccade task.
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gD: delayed saccade task.
hSA: stimulus area.
iPSA: proper-side area.
jWSA: wrong-side area.

General Metrics
Human eye-movement patterns can be divided into fixations,
saccades, and pursuits [36], of which the former 2 patterns are
the focus of our paradigm. Using the Tobii Pro Lab software,
we extracted the fixations and saccades of participants in
chronological order from the raw gaze data. Subsequently, we
calculated the total number of fixations (NFix.) and saccades
(NSac.) and their average durations (TFix. Avg. and TSac. Avg.), which
reflects participants’ holistic visual behavior. The velocity and
amplitude of saccades were automatically recorded by the
software. We calculated the average and peak saccade velocity
(VSac. Avg. and VSac. Peak) and the average saccade amplitude (ASac.

Avg.) for each trial. These values reflect the scanning and
information retrieval process, respectively. In addition, the total
time taken for each trial (TTotal) was recorded.

Pupil-Based Metrics
Pupil size is a crucial physiological measure that reflects
autonomic nervous system activity, cognitive load, and
emotional arousal. It has been applied extensively to various
research fields [37-40]. The eye tracker continuously recorded
participants’ pupil diameter during each trial. We preprocessed
the raw data and extracted pupil-based metrics following 5 steps
(Textbox 1) [41].

Textbox 1. Preprocessed raw data and extracted pupil-based metrics.

Step 1: We removed samples labeled by the eye tracker as “invalid” and pupil diameters that fell outside the feasible range of 1.5 to 9.0 mm.

Step 2: We calculated pupil dilation speed to remove samples with a disproportionately large change in pupil size, which was usually caused by blinks
or system errors. Because of the inconsistent sampling intervals, pupil diameter changes were not directly comparable between adjacent samples.
Therefore, we calculated the normalized dilation speed between samples using the formula:

si = max ( | (pi − pi−1) / (ti − ti−1) |, | (pi+1 − pi) / (ti+1 − ti) | ), (1)

where pi and ti are the pupil diameter sequence and timestamp sequence, respectively. To detect outliers in the dilation speed sequence (si), we
calculated the threshold, T, using the median absolute deviation (MAD):

MAD = median ( | si – median ( si ) | ), (2)

T = median ( si ) + n ∙ MAD, (3)

where the scalar n was chosen as 1.5. Samples with an si larger than T were removed as outliers. Because the eye tracker simultaneously collected
data from both the left and right pupils, we performed steps 1 and 2 for each pupil separately.

Step 3: We excluded samples in which data of 1 pupil was missing and calculated the mean data sequence of the left and right pupil diameters.

Step 4: Because of nonuniform sampling and the presence of noise, we used a size 20 sliding window to resample and smooth the data sequence at
500 Hz. This involved an exponential moving average based on the timestamp and skipped data gaps ≥50 milliseconds.

Step 5: Following the above preprocessing steps, we obtained a valid, uniform, and smooth sequence of pupil diameter data. We then calculated the
average (DPupil Avg.), maximum (DPupil Max.), minimum (DPupil Min.), and SD (DPupil Sd.) pupil diameter values of the sequence for each trial, which
reflect various aspects of the pupil state of participants.

Area-Based Metrics
We extracted a range of metrics according to the area of interest
(AOI) divisions. A Boolean value for fixation incidence (BTA

Fix.) was recorded to signify the completion of the task by
detecting whether the TA (or TA-P for the delayed saccade task)
contained any fixations. The latency of the first fixation in the
TA (or TA-P) was recorded as the fixation latency (LTA Fix.).
The number of fixations was counted for the SA (only in the
antisaccade task), UA (in the prosaccade and antisaccade tasks),
TA-P (only in the delayed saccade task), and TA-W (only in
the delayed saccade task), which were denoted as NSA Fix., NUA

Fix., NTA-P Fix., and NTA-W Fix., respectively. For the delayed
saccade task, fixations outside of the CA during the center
fixation period were defined as intrusive saccades and thus
recorded as a Boolean value (BIntrusive Sac.). For the antisaccade
task, if fixations were detected in the PSA (BPSA Fix.) or WSA

(BWSA Fix.), these were recorded as Boolean values. We also used
a Boolean metric to signify that the first fixation that occurred
after the stimulus appeared was located in the PSA (BPSA Fix. 1st).

Search-Based Metrics
During the antisaccade task, participants may have had difficulty
determining the correct fixation position, which may have led
to a series of consecutive fixations around the TA before finally
reaching the TA. In practice, we detected fixations in the
surrounding area outside the TA and within a distance of 1.5 ∙
LTA from the TA center, where LTA is the length of the TA edge.
Therefore, the consecutive sequences of ≥2 detected fixations
were extracted as search behaviors. For each antisaccade trial,
we recorded the following search-based metrics: the occurrence
of search behaviors (BSearch), the number of search behaviors
(NSearch), and their total duration (TSearch).
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Successful antisaccade trials required both a reversed saccade
as well as an accurate landing position. Therefore, these metrics
based on search behavior represent participants’ vision control
and distance perception abilities.

Entropy-Based Metrics
Entropy in information theory [42] suggests that gaze entropy
reflects the degree of uncertainty or predictability exhibited by
the human eye during visual exploration. Thus, gaze entropy
can provide valuable insight into the cognitive processes
involved in visual perception and attention. There are 2 types
of gaze entropy: stationary gaze entropy (SGE) and gaze
transition entropy (GTE) [43]. SGE evaluates the spatial

distribution of fixations, with a higher value indicating a more
dispersed eye-movement pattern [44]. GTE focuses on the
randomness of eye movements between fixations and reflects
the flexibility and complexity of the scanning pattern.

As shown in Figure 5, the images were divided into n different
areas, which served as the individual state spaces of a discrete
system. We calculated the proportion of fixations located in
each area, denoted as pi for the i-th area, which formed the
approximate probability distribution of the states [45,46]. On
the basis of the entropy equation by Shannon [42], SGE was
calculated as follows:

SGE = – sumi ( pi ∙ log2pi ). (4)

Figure 5. Division of areas for the calculation of gaze entropy metrics. It should be noted that the areas here are different from those for the area-based
metrics shown in Figure 3.

Applying the first-order Markov transition matrix [47], we
derived p(j|i) from the fixation sequence, which represented the
conditional probability of a gaze transitioning from the i-th to
the j-th area. Then, GTE was computed based on the conditional
entropy equation [47,48] as follows:

GTE = – sumi ( pi ∙ sumj ( p(j|i) ∙ log2p(j|i) ) ). (5)

The maximum entropy of a system is determined by the number
of available state spaces, which occurs when they are equally
distributed [49]. To enable a comparison between different
tasks, we used the corresponding maximum value, Hmax = log2n,
to normalize the computed SGE and GTE into a range from 0
to 1:

SGEnorm = SGE / log2n, (6)

GTEnorm = GTE / log2n. (7)

As introduced earlier, n represents the number of areas, where
n=6 for the prosaccade and delayed saccade tasks, and n=8 for
the antisaccade task.

Statistical Analysis
We reviewed and uniformly numbered basic information and
scale data. After eliminating data with incomplete information,
data were entered in duplicate using the Chinese version of
EpiData 3.1 (The EpiData Association), and Excel (version
2019; Microsoft Corp) was used to clean and organize the data.

The Tobii Pro Lab software was used to analyze basic
eye-movement metrics and export data. Participants with >80%

valid data were included in the analysis. Python (version 3.8)
was used to extract the eye-tracking metrics.

All data were tested for normality and homogeneity of variance.
Samples conforming to a normal or approximately normal
distribution are represented as means and SDs, and nonnormally
distributed data are described as means and 95% CIs. Count
data are expressed as n (%), and differences between groups
were calculated using the chi-square test. For visual
harmonization, 4 valid digits were retained for the eye-tracking
metrics. We used independent samples 2-tailed t tests to compare
normally distributed data between the 2 groups. To compare
nonnormally distributed data between the 2 groups, we used
the Wilcoxon Mann-Whitney U test, and the Kruskal-Wallis
test was used to compare among multiple groups. Paired
comparisons for significant multiple-group comparisons were
performed using the Bonferroni method. A 2-sided P<.05 was
considered statistically significant.

ML Analysis

Overview
To validate the effectiveness of the proposed digital biomarkers,
we conducted an ML analysis of the eye-tracking metrics to
classify the ADHD and TD groups. First, we preprocessed the
extracted metrics to meet the requirements of ML analysis and
sequentially performed variable filtering, model construction,
and model evaluation to verify the effectiveness of the extracted
biomarkers. To ensure the reliability and generalizability of the
model, we applied 5-fold cross-validation.
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Data Preprocessing
The eye-tracking metrics were subdivided into multiple variables
according to trial attributes (ie, task, target eccentricity, target
side, and trial order). For each metric, we performed an average
calculation for the target side and trial order, while maintaining
different values for different task types and target eccentricities.
For example, the metric NFix. was obtained from the prosaccade,
antisaccade, and delayed saccade tasks with 7°, 15°, and 20°
target eccentricities, respectively, which were subdivided into

9 variables as follows: P7NFix., 
P15NFix., 

P20NFix., 
A7NFix., 

A15NFix.,
A20NFix., 

D7NFix., 
D15NFix., and D20NFix. This ensured that the

variability of the metrics would be reasonably preserved. The
preprocessing resulted in 183 eye-tracking variables, and each
participant became 1 data point for the ML analysis.

Model Construction
Before model training, we performed filtering to remove
redundant variables and enhance computational efficiency.
Variables that were significantly different between groups,
compared using the Mann-Whitney U test, were retained.

To predict the categories of participants, we used the extreme
gradient boosting (XGBoost) algorithm as the classification
model. XGBoost is an advanced implementation of the gradient
boosting decision tree framework, which sequentially builds an
ensemble of decision trees to refine the prediction. The learning
process minimizes the gradient of the loss function, thereby
enhancing the model’s performance. The XGBoost algorithm
applies regularization techniques to efficiently boost the model
and has thus demonstrated superior performance than the
conventional gradient boosting decision tree framework in
similar studies [50,51]. We implemented the XGBoost model
in Python (version 3.8) using the packages xgboost (version
2.0.1) and scikit-learn (version 1.3.0). The hyperparameter
settings of the model are listed in Multimedia Appendix 1, which
are mainly the default values without adjustment to objectively
illustrate the model’s performance.

Model Evaluation
The 5-fold cross-validation method with 500 repeats was applied
to evaluate classification performance. The model was trained
with 173 samples and tested with 43 samples for each fold. To
evaluate the models, we used the receiver operating
characteristic (ROC) curve and the area under the ROC curve
(AUC), which consider the trade-off between the true positive
rate and false positive rate at various classification thresholds
and provide a holistic assessment of the model’s classification
performance. We used the evaluation metrics of accuracy,
sensitivity, specificity, precision, and F1-score to quantify
classification performance.

Variable Importance
When training the XGBoost model, the split gain was calculated
at each node of the decision tree, which indicated the
contribution of variables to the model. After the training process,
the split gain was aggregated for each variable among all the
decision trees to provide a comprehensive measure of the
variable’s relative importance in the classification of ADHD or
TD groups.

Results

Characteristics of the Participants
A total of 216 participants (n=122, 56.5% in the TD group and
n=94, 43.5% in the ADHD group) were enrolled in the study
(Table 2). Overall, there was no significant difference in age
(t214=–0.30; P=.76); full-scale IQ (t214=1.14; P=.25); or verbal
IQ (t214=0.03; P=.98) between the TD and ADHD groups.
However, the ADHD group scored significantly lower than the
TD group for performance IQ (t214=2.08; P=.04). On the
SNAP-IV, children in the TD group scored within the normal
range, whereas the ADHD group scored significantly higher
than the TD group on all 3 core symptoms (all P<.001).
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Table 2. The basic information of the participants.

P valuet test or chi-square test (df)cADHDb (n=94)TDa (n=122)Variables

<.00137.28 (1)Sex, n (%)

84 (89.4)61 (50)Male

10 (10.6)61 (50)Female

.76–0.30 (214)7.24 (1.39)7.18 (1.19)Age (y), mean (SD)

.730.63 (2)Age group, n (%)

36 (38.3)44 (36.1)Group 1 (5-6 y)

37 (39.4)45 (36.9)Group 2 (7-8 y)

21 (22.3)33 (27)Group 3 (9-10 y)

IQ, mean (SD)

.980.03 (214)97.41 (12.90)97.36 (12.51)Verbal IQ

.042.08 (214)99.01 (15.02)103.02 (13.25)Performance IQ

.251.14 (214)98.11 (12.43)100.06 (12.44)Full-scale IQ

SNAP-IV d , mean (SD)

<.001–199.20 (214)15.09 (0.75)0.63 (0.25)Inattentive

<.001–137.43 (214)11.59 (0.82)0.50 (0.30)Hyperactivity or impulsive

<.001–118.54 (214)7.66 (0.56)0.36 (0.12)Oppositional defiant

aTD: typically developing.
bADHD: attention-deficit/hyperactivity disorder.
ct-tests were used for variables presenting means and standard deviations (Age, IQ, and SNAP-IV scores), and chi-square tests were used for variables
presenting numbers and percentages (Sex and Age group).
dSNAP-IV: Swanson, Nolan, and Pelham Rating Scale.

Comparison of Digital Biomarkers Between the ADHD
and TD Groups

Eye-Tracking Metrics Across the 3 Tasks
The analysis of the biomarkers identified for all 3 tasks (Figure
6; Multimedia Appendices 2 and 3) showed that for completion,
there were significant differences in TA fixation incidence
(calculated based on BTA Fix.) and LTA Fix. between the ADHD
and TD groups for all 3 tasks (both P<.001). ASac. Avg. of the
ADHD group was significantly smaller than that of the TD
group in the prosaccade and antisaccade tasks (all P<.001),

whereas VSac. Avg and VSac. Peak of the ADHD group was
significantly slower than those of the TD group for all tasks (all
P<.001). DPupil Sd. of the ADHD group was significantly greater
than that of the TD group for all tasks (P=.03 for the prosaccade
task, P<.001 for the antisaccade task, and P=.02 for the delayed
saccade task).

In terms of attention control, in both the prosaccade and
antisaccade tasks, more irrelevant fixations (ie, NUA Fix.) occurred
in the ADHD group than in the TD group (all P<.001). In
addition, the ADHD group fixated more frequently on the UA
during the antisaccade task than in the prosaccade task.
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Figure 6. Comparisons of eye-tracking metrics between the attention-deficit/hyperactivity disorder (ADHD) and typically developing (TD) groups.
Results of the corresponding data analyses are presented in Multimedia Appendices 3 and 4. *P<.05, **P<.01. Fix.; fixation; GTE: gaze transition
entropy; PSA: proper-side area; SA: stimulus area; Sac.: saccade; SGE: stationary gaze entropy; TA: target area; UA: unrelated area; WSA: wrong-side
area.

Eye-Tracking Metrics of the Antisaccade Task
The heat maps (Figure 7) of the analysis of the different target
eccentricities (Multimedia Appendix 4) revealed that the TD
group’s fixations were concentrated along the horizontal position
where the SA and TA were located, whereas the ADHD group’s
fixations were more widespread. Moreover, the TD group was
more accurate than the ADHD group in fixating on the TA,
whereas the ADHD group showed more erroneous localization

deviations in both the 7° and 15° trials. Interestingly, in the 20°
trial, we noted that the fixation concentration of the ADHD
group deviated from the stimulus: there was a longitudinal
distribution of fixations along the edge of the correct side of
the screen, which suggested that the ADHD group did not
localize fixation according to the logic of symmetry; rather,
they relied purely on the edge of the screen to assist in their
fixation positioning.
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Figure 7. Heat maps of fixations of the typically developing (TD) and attention-deficit/hyperactivity disorder (ADHD) groups for stimuli of different
target eccentricities in the antisaccade task.

As shown in Figure 6 and Multimedia Appendix 4, the ADHD
group had more WSA fixations (calculated from BWSA Fix.) and
fewer PSA fixations (calculated from BPSA Fix.) than the TD
group (all P<.001). Among the 3 eccentricities, the number of
WSA fixations during the 15° and 20° trials were significantly
different between the groups (U=81,316 for 15°, U=80,812 for
20°, all P<.001), whereas in the 7° trials, both groups showed
a higher number of WSA fixations (U=87,841, P=.52) than
PSA fixations. However, the TD group had more PSA fixations
in the 7° trials and a higher incidence of the first fixation in the
PSA (calculated from BPSA Fix. 1st) than the ADHD group (all
P<.001).

Comparisons of search incidence (calculated from BSearch),
NSearch, and TSearch between the ADHD and TD groups showed
that the ADHD group was significantly higher than the TD
group for all 3 metrics (P<.001, P<.001, and P=.008,
respectively). Both SGE and GTE were significantly higher in
the ADHD group than in the TD group (all P<.001).

Eye-Tracking Metrics in the Delayed Saccade Task
As shown in Figure 6 and Multimedia Appendix 4, TA-P
fixation incidence (calculated from BTA Fix.) and LTA Fix. were
significantly different between the 2 groups at all eccentricities.
Moreover, the TD group had a lower NTA-W Fix. than the ADHD
group (all P<.001).

As the stimulus eccentricity increased from the center point,
only the TD group showed an improvement in performance.
The TD group showed a lower NTA-W Fix when the eccentricity
was 15° than when the eccentricity was 7°, whereas the decrease
in NTA-W Fix in the ADHD group from an eccentricity of 15° to
20° was more gradual than that in the TD group.

The assessment of intrusive saccades for stability of eye
movements showed that the ADHD group had more intrusive
saccades (calculated from BIntrusive Sac.) and less stable
eye-movement patterns than the TD group (P<.001).

Comparisons of Digital Biomarkers Among Age
Groups
We discovered that several digital biomarkers showed consistent
changes with age (Figure 8; Multimedia Appendices 5 and 6).
In the prosaccade task, the overall TTotal of both groups showed
a decreasing trend with age (P=.02 for ADHD, P<.001 for TD).
In addition, an age-related decrease in ASac. Avg. was observed
in the TD group only (P=.007), whereas VSac. Avg. and VSac. Peak

remained stable in both groups (P=.71 for VSac. Avg. and P=.46
for VSac. Peak). In the antisaccade task, both the TD and ADHD
groups showed an increasing trend for accuracy (P<.001 for
ADHD, P=.63 for TD) and efficiency (P<.001 for ADHD and
TD) in completing the task. In fact, the ADHD group showed
significantly greater improvement than the TD group (P<.001).
The ADHD group also exhibited a propensity for DPupil Sd. to
decrease with age (P<.001). Across all age groups, the ADHD
group had a higher NUA Fix. than the TD group (P<.001), and
this did not significantly improve with age; although the NSA

Fix. significantly dropped with age (P<.001). We also found that
there was a greater tendency for SGE and GTE to decline with
age in the TD group than in the ADHD group (P<.001 for SGE
and P=.001 for GTE).

The TA-P fixation incidence (P=.06) did not significantly differ
with age in the ADHD group for the delayed saccade task. This
was true despite the ADHD group showing improvements in
LTA Fix. (P=.01), NTA-W Fix. (P=.005), and intrusive saccade
incidence (calculated from BIntrusive Sac.; P=.003) with age.
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Figure 8. Comparisons of eye-tracking metrics among age groups. Letters above the bars indicate the results of the post hoc tests using Bonferroni
correction among different age groups in the attention-deficit/hyperactivity disorder (ADHD) and typically developing (TD) groups. Lower case letters
indicate P<.05; upper case letters indicate P<.01. *P<.05, **P<.01. Fix.; fixation; GTE: gaze transition entropy; SA: stimulus area; Sac.: saccade; SGE:
stationary gaze entropy; TA: target area; UA: unrelated area.

ML Analysis With the Proposed Digital Biomarkers
The evaluation metrics (AUC, accuracy, sensitivity, specificity,
precision, and F1-score) are reported as means (95% CIs). The
XGBoost model trained on the eye-tracking variables achieved
an AUC of 0.965 (0.964-0.966), an accuracy of 0.908
(0.907-0.910), a sensitivity of 0.877 (0.874-0.880), a specificity

of 0.932 (0.930-0.934), a precision of 0.913 (0.910-0.915), and
an F1-score of 0.892 (0.890-0.894). The averaged ROC curve
is shown in Figure 9, which illustrates the effectiveness of the
proposed digital biomarkers for discriminating the ADHD and
TD groups. The 10 most important variables for the model are
reported with their scores in Figure 10.
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Figure 9. Receiver operating characteristic curve of the classification model. AUC: area under the receiver operating characteristic curve.

Figure 10. Importance scores of the top 10 most important variables. NSac.: total number of saccades; NFix.: total number of fixations; LTA Fix.: fixation
latency of the TA; NSA Fix.: number of fixations in the stimulus area; BTA Fix.: Boolean value to signify the occurrence of fixations in the TA (TA-P
for the delayed-saccade task); NUA Fix.: number of fixations in the UA; NTA-W Fix.: number of fixations in the TA for the wrong period; TSac. Avg.:
average of saccade duration.

Discussion

Principal Findings

Clinical Behavioral Performance
The 3 saccade tasks consistently showed that the performance
of the ADHD group was poorer than that of the TD group, which
suggests that the paradigm serves as a reliable and objective
measure of cognitive and executive functioning. Furthermore,
the ADHD group exhibited a pattern of amelioration with aging,
whereas the TD group showed consistent performance across
the different age groups. This may be because TD individuals

had already achieved a higher cognitive skill level and a
relatively stable state of corresponding biomarkers than ADHD
individuals of the same age. Therefore, despite the ADHD group
showing a faster rate of improvement, they performed
significantly worse than TD individuals across all age groups.
This finding demonstrates distinct developmental eye-movement
patterns associated with ADHD.

Attention and Inhibitory Control
The ADHD group exhibited a significant lag in the ability to
inhibit stimuli, which was characterized by poorer performance
than the TD group on tasks with a weaker perceptual load.
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Previous studies have confirmed that human visual features are
divided into 3 regions–the foveal region at a viewing angle of
2.5° from the gaze point has the highest visual sensitivity,
followed by the parafoveal region from 2.5° to 4.2°, and the
peripheral region from 4.2° to 9.2° has the lowest visual
sensitivity [52]. In this study, the 7° eccentricity stimulus was
closest to the central cross and within the peripheral region,
whereas the other 2 stimulus types were located outside the
peripheral region. Thus, the task of inhibiting the 15° and 20°
eccentricity stimuli was a low perceptual load task, which was
relatively easy for the TD group. However, the performance of
the PSA first incidence showed that the ADHD group had poorer
inhibitory control for the lower perceptual load task of inhibiting
stimuli that were located outside of the peripheral region (ie,
the 15° and 20° eccentricity stimuli, as shown in Figure 6). This
confirms the existence of up-down attention control impairment
in individuals with ADHD [53] and emphasizes that children
with ADHD may be more prone to distraction in low perceptual
load environments because of a higher central threshold of
response to perceptual load [54]. This finding also corroborates
previous reports that individuals with ADHD are more sensitive
to stimuli located in peripheral regions.

Furthermore, although individuals with ADHD had difficulty
suppressing the sudden appearance of distracting stimuli, they
also had a longer completion time than the TD group for the
prosaccade task with a single instruction. This may be attributed
to the low load of the prosaccade task, which may not have
elicited sufficient cognitive arousal in the ADHD group, leading
to poorer task performance. In addition, in the delayed saccade
tasks that involved sequential instructions (ie, “do not look at
the stimulus until you hear the cue, and then quickly look at the
stimulus”), the weak task-switching ability of the ADHD group
may have also prolonged fixation latency.

Organizing and Planning
In the antisaccade task, the ADHD group exhibited significantly
lower TA fixation incidence and longer LTA Fix. compared with
the TD group (Figure 6). This suggests that most children in
the ADHD group were unable to accurately localize the TA,
and those who succeeded took longer. On the basis of the heat
map and UA fixation (Figures 6 and 7), the ADHD group
exhibited greater fixation deviation and more frequent search
behaviors.

In addition, the ADHD group had much higher SGE and GTE
than the TD group for overall eye-movement trajectory, which
indicated that they exhibited more eye-movement pattern shifts
and spatial dispersion of fixations. This suggests that patients
with ADHD favor an irregular search pattern and lack
forethought when organizing and coordinating eye movements
during symmetrical localization, resulting in prolonged search
time to accurately locate the target. Furthermore, the positive
correlation between SGE and GTE in the ADHD group supports
the impact of top-down interference on visual scanning in
ADHD [43].

The TD group followed a significant declining trend in SGE
(P<.001) and GTE (P=.001) with age, whereas the ADHD
group maintained high entropy values. We also observed that
the frequent UA fixation in the ADHD group did not improve

with age. These findings suggest that with age, the TD group
better localized the landing point, which led to a more regular
eye-movement trajectory. In contrast, the irregular
eye-movement pattern of the ADHD group was exhibited across
all age groups.

Eye-Movement Coordination With Age
Previous studies have mainly focused on age-related changes
in the general population by comparing individuals among
different age groups. However, few studies have examined
variations in eye movement among younger individuals with
ADHD and TD individuals. A recent study evaluating the
performance of visually guided horizontal prosaccades in healthy
people aged 3 years to >80 years found that peak saccade
velocity increases until the age of 6 years, after which it remains
relatively stable until 10 years of age [55]. The results of our
prosaccade task similarly demonstrated that VSac. Avg. and VSac.

Peak remained stable from ages 5 to 10 years in both the ADHD
and TD groups, which indicates that the developmental pattern
of saccade velocity is similar across both groups.

We also discovered that the ADHD group was more likely to
experience intrusive saccades during the central fixation stage.
The percentage of intrusive saccades decreased with age in the
ADHD group, whereas that in the TD group remained at a
well-performing and stable level across age groups. This further
highlights the overall impairment in eye-movement control in
the ADHD group.

The TD group showed a consistently higher VSac. Avg. than the
ADHD group. However, it showed a decreasing trend with age
for ASac. Avg than the ADHD group. In addition to speed, accurate
localization is also required to successfully perform the
prosaccade task. With age, children may modulate their eye
movements to a lower speed for greater controllability, rather
than simply sweeping their eyes rapidly toward the target, and
thus, increase task efficiency.

Previous research has reported that the cerebellum is a crucial
hub of the motor network that interacts with the executive
control circuits of the frontoparietal lobe, which are involved
in inhibition and stimulus response [56]. Furthermore, studies
have demonstrated reduced volume and under activation of the
cerebellum in individuals with ADHD [57], which suggests that
impairment of the cerebellum contributes to poor control and
coordination of eye movements in patients with ADHD.

Variations in Pupil Diameter and Cognitive Stress
It is well-established that when humans encounter stressful
situations, they dilate their pupils to improve vision [58].
Previous research using eye-tracking technology has also
revealed that when people are engaged in an active coping task,
their pupils enlarge significantly. These findings suggest that a
larger pupil diameter is linked to higher cognitive load while
preparing for challenging tasks [58]. According to previous
research examining the relationship between pupil diameter and
attention, there is an inverted U–shaped pattern between pupil
diameter and attentional performance; that is, when pupil
diameter becomes too small or large, error rates are higher and
response times are slower [59]. In our study, we discovered that

JMIR Mhealth Uhealth 2024 | vol. 12 | e58927 | p. 16https://mhealth.jmir.org/2024/1/e58927
(page number not for citation purposes)

Liu et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


for all tasks, children with ADHD displayed greater pupil
diameter variation than TD individuals. This finding supports
the theory that excessively large or small pupil diameter is an
indicator of inattentiveness when completing tasks requiring
active responses. Alternatively, executive function deficiencies
at the functional level of the brain and inefficient brain network
connectivity in the ADHD group may account for the higher
cognitive load when responding to complex task demands [60].

ML Analysis
For the classification of ADHD and TD children, the ML model
achieved an AUC of 0.965 and an accuracy of 0.908, which
demonstrates promise for the model to serve as an automated
screening tool for ADHD children. Moreover, the high
performance of the model highlights the effectiveness of the
paradigm and its ability to extract digital eye-tracking
biomarkers. In a previous study focused on screening for ADHD
using eye-tracking and ML methods, Lev et al [18] conducted
continuous performance tests in 66 participants (33 adult patients
with ADHD and 33 healthy controls) and used eye-movement
metrics during the tests to classify patients and controls. They
applied a regression model to combine the relative gaze
durations of 4 AOIs as the diagnostic scale and achieved an
AUC of 0.826. Das and Khanna [19] extracted pupil size
dynamics features as an objective biomarker and trained 5 types
of commonly used classification models to detect ADHD. Using
the data of 50 participants (28 patients with ADHD and 22
healthy controls) and 10-fold cross-validation, they attained an
AUC of 0.856. Deng et al [61] built an eye-tracking ML
classifier for ADHD using the natural reading paradigm;
however, the model was difficult to interpret, and the
classification performance (AUC of 0.646) was not as high as
the performance achieved by our model.

Compared with previous work, we recruited a larger number of
participants (ie, 94 ADHD and 122 TD individuals), obtained
higher evaluation metrics, and achieved better classification
performance for children with ADHD. Moreover, we extracted
a larger variety of eye-tracking metrics and provided a more
comprehensive description of participants’ eye-movement
behaviors. These advantages emphasize the effectiveness,
reliability, and potential practical applications of the model.
Furthermore, our findings offer valuable insight into the field
of ADHD diagnosis using ML.

Because we plan to extend our findings using portable
eye-tracking devices in the future, we validated the performance
of our model at lower sampling frequencies using external
samples. Results demonstrated that the model adapted well to
low-sampling rate data, which further confirmed its high
generalizability and applicability to portable devices
(Multimedia Appendix 7).

Advantages of the Study
First, we used eye-tracking technology in a natural and
straightforward assessment setting, which enabled direct visual
and on-screen interactions without complicated rules or
restrictions on head motion. Unlike the paradigms used in
previous studies, our approach did not require participants to
wear additional equipment [7] or make additional keystrokes

[18]. In addition, our method avoided interference from other
environments and devices, facilitated children’s participation,
and minimized inaccuracies in eye-movement measurement
due to excessive head movement.

Second, our paradigm allowed a more comprehensive
exploration of children’s cognitive skills. In addition to testing
attentional and inhibitory ability, our paradigm included
audiovisual integration, which has been shown to be effective
in evaluating children with ADHD.

Third, we provided a more comprehensive scheme for extracting
digital eye-tracking biomarkers by expanding the evaluation
system of classical paradigms. The presentation of stimuli was
further divided into defined areas of fixation for quantitative
analyses; moreover, behaviors, such as search behaviors that
are typically observed in the clinic, were quantified alongside
numerous metrics based on the AOI, such as fixation duration,
saccade velocity and amplitude, and pupil diameter change.
This enabled the extraction of more detailed eye-movement
metrics during different saccade tests than those used in previous
studies [8,18,19,62] while ensuring that the extracted digital
biomarkers were interpretable and objectively reflected cognitive
deficits. As a result, we were able to provide a practical and
thorough description of children’s performance in completing
the various tasks.

In addition, we applied ML modeling using the extracted digital
biomarkers and achieved promising results, which confirmed
that these biomarkers are highly valuable for the future
development of screening and auxiliary diagnostic tools. We
also investigated age-related developmental patterns of eye
movement in addition to simple eye-movement metrics in
children with ADHD in a larger, more trustworthy, and more
representative dataset than previous research. In terms of
practical applications, the implementation of the paradigm is
straightforward, and the 7-minute duration of the assessment is
suitable for children with ADHD. These features will increase
the likelihood that the assessment can be completed successfully
by children with ADHD. Taken together, we have provided a
reliable and practical solution for auxiliary diagnosis and
screening for ADHD at the primary care level.

Limitations
Although our sample size was larger than previous studies, we
only recruited from 1 city in China. Therefore, the
representativeness of the sample can be improved. There was
also a sex imbalance between the TD and ADHD groups. The
TD group had a 1:1 sex ratio, whereas the ADHD group had
considerably more boys (84/94, 89%) than girls (10/94, 11%).
Although this was attributed to morbidity bias, our modeling
would have benefited from a balanced sex ratio, especially
because previous studies have reported sex differences in
comorbidity and cognitive impairment in children with ADHD
[63]. To verify the effect of sex on the validity of the model, 2
models were trained using data from boys and girls separately
and validated using data from the opposite sex. Results showed
that the 2 models performed well, which suggested that sex does
not significantly affect modeling and that the current model
trained with predominantly male data can also be applied to
predict female participants’ behavior (Multimedia Appendix
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8). Nevertheless, we must consider recruiting participants with
various presentations (eg, different geography and balanced sex
ratios) in future studies to ensure the generalizability of the ML
model. Finally, our eye-tracking instrument is heavy and
difficult to carry. Thus, in the future, a portable eye-tracking
instrument could be used.

Conclusions and Future Research
We successfully adapted eye-tracking technology for clinical
use as a tool for auxiliary diagnosis and campus and community
screening for ADHD. The system includes standard paradigms
and a reliable digital biomarker extraction process. We validated
the use of digital biomarkers to build robust ML models. In

addition, the entire assessment process was conducted in a
natural setting without the need for extra equipment to be worn
by participants. The assessment is also brief and simple, which
makes it particularly suitable for clinical applications and
ensures completion of the assessment.

For the next steps of our research, we plan to further expand
the sample size and implement multicenter data collection using
the proposed paradigm and digital biomarker extraction scheme.
We aim to build a robust ML model and externally validate
classifiers to improve their predictive accuracy and stability.
This will ensure that the auxiliary diagnosis model can be
effectively applied to real clinical scenarios and improve primary
care–level screening and diagnosis of ADHD.
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