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Abstract

Background: The increasing prevalence of obesity necessitates innovative approaches to better understand this health crisis,
particularly given its strong connection to chronic diseases such as diabetes, cancer, and cardiovascular conditions. Monitoring
dietary behavior is crucial for designing effective interventions that help decrease obesity prevalence and promote healthy lifestyles.
However, traditional dietary tracking methods are limited by participant burden and recall bias. Exploring microlevel eating
activities, such as meal duration and chewing frequency, in addition to eating episodes, is crucial due to their substantial relation
to obesity and disease risk.

Objective: The primary objective of the study was to develop an accurate and noninvasive system for automatically monitoring
eating and chewing activities using sensor-equipped smart glasses. The system distinguishes chewing from other facial activities,
such as speaking and teeth clenching. The secondary objective was to evaluate the system’s performance on unseen test users
using a combination of laboratory-controlled and real-life user studies. Unlike state-of-the-art studies that focus on detecting full
eating episodes, our approach provides a more granular analysis by specifically detecting chewing segments within each eating
episode.

Methods: The study uses OCO optical sensors embedded in smart glasses to monitor facial muscle activations related to eating
and chewing activities. The sensors measure relative movements on the skin’s surface in 2 dimensions (X and Y). Data from
these sensors are analyzed using deep learning (DL) to distinguish chewing from other facial activities. To address the temporal
dependence between chewing events in real life, we integrate a hidden Markov model as an additional component that analyzes
the output from the DL model.

Results: Statistical tests of mean sensor activations revealed statistically significant differences across all 6 comparison pairs
(P<.001) involving 2 sensors (cheeks and temple) and 3 facial activities (eating, clenching, and speaking). These results demonstrate
the sensitivity of the sensor data. Furthermore, the convolutional long short-term memory model, which is a combination of
convolutional and long short-term memory neural networks, emerged as the best-performing DL model for chewing detection.
In controlled laboratory settings, the model achieved an F1-score of 0.91, demonstrating robust performance. In real-life scenarios,
the system demonstrated high precision (0.95) and recall (0.82) for detecting eating segments. The chewing rates and the number
of chews evaluated in the real-life study showed consistency with expected real-life eating behaviors.

Conclusions: The study represents a substantial advancement in dietary monitoring and health technology. By providing a
reliable and noninvasive method for tracking eating behavior, it has the potential to revolutionize how dietary data are collected
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and used. This could lead to more effective health interventions and a better understanding of the factors influencing eating habits
and their health implications.

(JMIR Mhealth Uhealth 2024;12:e59469) doi: 10.2196/59469
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Introduction

Background
Obesity is a public health issue that leads to chronic diseases
[1], including diabetes [2], cancer [3], and cardiovascular
diseases [4]. In the United Kingdom, the obesity levels increased
from 15% in 1993 to 28% in 2019 [5]. Similarly, in the United
States, the obesity levels increased from 14.5% in 1970s to
39.6% [6]. Furthermore, poor diet was estimated to have
contributed to 11 million deaths globally in 2017 [7].

Given these alarming statistics, gaining insight into people’s
dietary habits is crucial for designing effective interventions
aimed at promoting a healthy lifestyle. Dietary behavior tracking
includes a spectrum of approaches ranging from manual to
highly automated methods. At the most manual end, traditional
food diaries require users to write down manually or digitally
every item they eat or drink. The most commonly used manual
tools to assess dietary intake and eating behaviors are 24-hour
recalls, food records (food diaries), and food frequency
questionnaires [8,9]. Major limitations of these methods include
participant burden and recall or memory bias [10], which can
lead to under- and overreporting of dietary intake. Digital tools
and apps (eg, MyFitnessPal [11]) simplify the manual input
process and integrate nutritional data, yet they require active
user engagement, and in some cases nutrition knowledge to
estimate calorie intake from precooked meals. A visual and less
structured alternative is photographing meals, which offers an
alternative way to recall and review dietary choices, sometimes
shared with a dietitian for professional advice.

Related Works
The existing research indicates a growing interest in developing
automated tools for monitoring eating activities. Regarding the
tools and studies closest to our study, several studies have
explored monitoring eating activities based on sensor-enabled
glasses. Most of these studies are focused on detecting eating
or drinking episodes [12-16] and are performed in controlled
environments [17,18]. Only one study has explored a more
complicated scenario than the typical eating or noneating
detection [18] by exploring the detection of chewing events
using eyeglasses equipped with electromyography sensors in a
study involving 10 participants both in controlled and in real-life
conditions. Compared to the existing work, we present the first
study to use smart glasses with integrated optical surface
tracking sensors and deep learning (DL) to accurately identify
both eating and chewing events, assessed both in controlled
laboratory settings and through real-life trials, thus addressing
research gaps and proving its efficacy in natural environments.

Objective
This study aimed to develop and evaluate a novel, noninvasive
system for automatically monitoring eating behavior by
detecting eating and chewing activities. The system aims to
enhance the accuracy and ease of tracking eating behaviors,
addressing the limitations of self-reporting by providing precise,
objective data.

The study provides a comprehensive evaluation of the proposed
method using a combination of laboratory-controlled and
real-life user studies, ensuring robust and noninvasive way to
distinguish chewing activity from other activities, such as
speaking, teeth clenching, grinding, smiling, frowning, brow
raise, and winking.

The real-life data collection and analysis addresses a substantial
gap in previous research and allows for the evaluation of the
system’s performance in natural settings, providing insights
into its practical application and adaptability.

Methods

Terminology
Throughout this study, several terms related to eating behaviors
are used. To ensure clarity and consistency in their use, the
following definitions are provided:

• Bite: the act of placing food into the mouth, chewing it, and
then swallowing it as part of the eating process.

• Chew: a masticatory cycle involving the grinding or
crushing of food with the teeth, preparing it for swallowing.

• Chewing: the overall process of breaking down food with
the teeth.

• Chewing rate: the frequency of masticatory cycles (chews)
per unit of time, measured in chews per second.

• Eating segment: a continuous period during which the
participant consumes food without interruption,
encompassing consecutive bites and chewing cycles without
pauses between bites. Thus, one eating segment can include
one or several bites and chewing events.

Smart Glasses and Data Collection Setup

Overview
In this section, we describe our data collection setup, providing
insights into the configuration and sensors of the used smart
glasses. In addition, we describe the methodologies used for
data collection in both controlled laboratory settings and real-life
scenarios.

In contrast to the methods that require manual input, in this
study, we propose an approach to automatic monitoring of eating
behavior by monitoring facial muscle activations using optical
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sensors incorporated in smart glasses frame. The approach offers
real-time feedback that can be integrated with mobile health
apps, allowing users to monitor their dietary habits seamlessly.
The data collected can be used to personalize dietary
recommendations, support weight management programs, and
contribute to research in nutritional epidemiology. Ultimately,
the goal is to empower individuals with actionable insights to
improve their eating habits and promote long-term health and
well-being.

The proposed system is depicted in Figure 1: (A) facial muscles
associated with chewing that we aim to monitor; (B) the areas
of skin that are monitored by the system; and (C) OCO optical
sensors embedded in smart glasses. One of the muscles
associated with the chewing activity is the temporalis muscle.
The temporalis muscle is near the temple and extends downward

in a direction toward the mouth. It controls movement of the
lower jaw (eg, opening and closing of the mouth). This area is
monitored by the OCO temple sensor in the glasses. Other
muscles that are activated during chewing are the cheek muscles
such as zygomaticus major and minor. This area is monitored
by the OCO cheek sensor in the glasses. Our approach is based
on the assumption that chewing activates multiple facial
muscles, which causes the facial skin to move in a parallel
direction relative to the sensors embedded within a glasses
frame. These movements of the facial skin in the X-Y plane are
monitored by our novel patented optical tracking sensors—OCO.
The optical sensor data are then analyzed using DL to
distinguish chewing activity from other activities that cause
facial skin movements, such as speaking, teeth clenching,
smiling, frowning, winking, and similar.

Figure 1. (A) The 2 types of facial muscles related to chewing (temporalis and zygomaticus); (B) monitored skin areas by the smart glasses; and (C)
the placement of OCO sensors within the glasses frame.

OCOsense Smart Glasses and OCO Sensors Data
The OCOsense smart glasses integrate 6 optical tracking—OCO
sensors [19], 3 proximity sensors, a 9-axis inertial measurement
unit, an altimeter, and dual speech detection microphones. The
OCO sensors use optomyography, an optical noncontact
methodology, to measure skin movement in 2 dimensions
resulting from underlying myogenic activity. They consist of
an optical surface tracking sensor that measure relative
movements on the skin’s surface in 2 dimensions (X and Y
dimensions). These sensors operate accurately within a range
of 4 to 30 mm without requiring direct skin contact [19].
Positioned within the glasses frame, their focus lies on
monitoring skin movement over specific facial muscle groups,
including the frontalis and corrugator muscles on both sides of
the forehead, the zygomaticus major and minor muscles on the
left and right sides of the cheeks, the orbicularis muscles around
each eye, and the left and right temples.

The eating activity activates two types of facial muscles that
we can monitor with the glasses: (1) the temporalis muscle,
which is near the temple, and controls movement of the lower
jaw (opening and closing of the mouth), and (2) zygomaticus
major and minor, which are located in the cheek area, and are
activated during the chewing activity. Therefore, in this paper,
we primarily focus on data collected from the cheek and temple
OCO sensors (marked with green rectangles in Figure S1 in

Multimedia Appendix 1), as these areas are more relevant to
eating activity, compared with the rest of the sensors available
in the glasses (marked with red rectangles in Figure S1 in
Multimedia Appendix 1). A corresponding sensor data are
presented in Figures S2 and S3 in Multimedia Appendix 1.

Data Collection Methodology
For development and evaluation of our method we collected 2
data sets. The first data set was collected in laboratory
environment, while the second data set was collected
in-the-wild. The laboratory data enabled us to establish a
foundational understanding of eating behaviors under controlled
conditions. However, evaluating the method on real-life data
allows for assessing its generalization capability and adaptability
to diverse and unpredictable environments.

To be more precise, we used the laboratory data sets to:

• Perform a statistical analysis comparing measurements
obtained during 3 activities (eating or chewing, speaking,
and teeth clenching) from both temple and cheek sensors,
assessing skin movement along both the X and Y axes. This
analysis is based on data from 28 participants for whom we
have both eating and noneating labeled data.

• Develop and evaluate DL models for chewing detection.
We compared the performance of four DL architectures.
For the best-performing DL method, we conducted a more
detailed analysis, including the impact of individual sensors
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on the performance of DL models (eg, temple, cheek,
temple + cheek, left temple + left cheek, and right temple
+ right cheek), and the impact of segmentation window size
on the performance the DL models, varying the window
size between 2 and 15 seconds.

We used the real-life data set to evaluate chewing detection and
eating segments detection methods using data collected
in-the-wild. Summary of the collected data sets is presented in
Table 1.

Participant recruitment involved booking a time for data
collection through social media announcements and completing
a Google form to confirm eligibility. Eligible participants were
required to be in good health; with no history of eating disorders;
and without dietary restrictions, allergies, or intolerances. In
addition, participants with conditions affecting facial muscle
activation, such as stroke or facial palsy, or any other conditions
impacting normal and symmetrical chewing and swallowing
were excluded. An important inclusion criterion was that
participants have proper glasses fit to ensure accurate detection
of skin movements by the sensors.

Table 1. Summary of collected data sets.

Total durationMedian durationParticipants, nData set

369 min 15 s9 min 49 s28Eating (laboratory)

1601 min 47 s11 min 50 s126 (same 28+98 new)Noneating (laboratory)

7163 min907 min8Real life

Study Procedures

Laboratory-Based Data Collection (Controlled
Environment)

In the laboratory-based experiments, we collected two data sets:

1. Eating data set: the participants engaged in a full meal,
providing them with the freedom to choose from a diverse
range of food options, including:
• Crispy or hard foods: apples, carrots, nuts, crisps, and

crackers
• Creamy or soft foods: porridge, banana, yogurt, fruit

salad, and green salad
• Chewy foods: breakfast bars; pop-tart; toast, bagel, or

croissant; and biscuits

In addition, they were allowed to eat with or without utensils,
based on their preference. There were no time constraints for
completing the meal. Participants ate their meals in a laboratory
setting designed to simulate a natural dining environment. They
consumed their meals alongside the researchers, which helped
create a more relaxed and realistic atmosphere. Despite the
laboratory setting, participants were encouraged to consume
their meals in a natural manner, simulating real-life conditions.
This allowed for varied behaviors, for example, some
participants used their phones during meals and others engaged
in conversations. During the data collection, the participants
were continuously video recorded, providing synchronized data
between the video recording and sensor data. This enabled us
to label each chewing segment later manually. For the eating
activity, we annotated all segments where the participants had
food in their mouth. Two researchers independently coded the
bites, ensuring reliability and validity through cross-verification.
The availability of video data allowed for accurate annotation,
as each segment was reviewed by at least 2 researchers to
confirm the presence of food in the participants’ mouths.

2. Noneating data set: the data collection was performed in a
controlled laboratory setting, where participants were instructed
on the activities they should perform. First, participants
performed a subset of activities associated with facial muscle

engagement. This category includes brushing teeth, engaging
in conversation, reading aloud, and diverse expressions of
bruxism, encompassing teeth clenching, grinding, and tapping.
In addition, we incorporated various facial expressions and
gestures, such as smiling, frowning, winking, and similar, to
capture a diverse range of facial movements. Moreover, we
included a variety of activities that do not specifically rely on
facial muscle engagement. These include hygiene-related
activities such as handwashing and dishwashing, routine
activities such as walking and sitting in a chair, and physical
activities such as jogging and stair climbing.

Real-Life Data Collection (Uncontrolled Environment)

In the real-life setting, the participants were instructed to wear
the OCOsense smart glasses continuously for a minimum of 8
hours a day over a span of 2 days. The participants were allowed
to follow their daily routines without any imposed limitations
during this period. This enabled the capture of eating behaviors
in various settings such as home, workplace, and other public
spaces. In addition, there were no restrictions placed on
participants regarding their food choices or other diet-related
decision. For the data collection procedure, we developed an
application that collects data from the glasses and enables the
participants to annotate when engaged in eating activities. More
specifically, they were asked to press a button when they start
eating and press it again when they finish eating. A researcher
monitored the number of labeled eating events per day per
participant. In instances where participants forgot to press the
start or end buttons, they were asked to note the approximate
times of their eating sessions. These cases were then manually
analyzed by a researcher using the sensor data from the glasses
to provide precise labels for the eating start and end times. These
labeled segments served as the ground truth for subsequent
experiments. The annotations collected with this approach result
in whole data segments labeled as eating, yet these segments
may also include a range of activities beyond eating itself, such
as engaging in conversation or pausing briefly between bites,
which typically occur during regular real-life meals.
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Statistical Analysis

Data Preprocessing
To perform statistical comparison, the following data
preprocessing steps were applied to the sensor data:

1. Calculation of the vector magnitude for each sensor: as the
OCO sensors measure skin movement in 2 dimensions (X
and Y), the vector magnitude was calculated for each sensor

( ).
2. Combination of processed sensor signals values from the

left and right sensors: the vector magnitude value from the
left cheek sensor was added to the vector magnitude value
from the right cheek sensor, and the same was done for the
temple sensors. This resulted in the creation of 2 signals,
one representing the total cheek movement (left+right), and
one representing the total temple movement (left+right).

3. Smoothing of the resulting signals: the resulting cheek and
temple signals were smoothed using a rolling median filter
with a window size of 15 samples (0.3 s) to reduce the
effects of noise on the signals.

Hypothesis Testing
Hypothesis testing was conducted using the Wilcoxon
signed-rank test, a nonparametric alternative to the paired

2-tailed t test. This test evaluates the distribution of differences
between related paired samples to ascertain whether they
originate from the same distribution. The null hypothesis is that
the samples derive from the same distribution. To account for
multiple comparisons, P values were adjusted using the
Bonferroni correction method (α=.05).

Chewing Detection Methodology

Overview
This section describes the method used in this study for
automatic chewing and eating segment detection. Initially, the
sensor data undergoes preprocessing, including filtering and
segmentation into windows. Then, both the filtered signals and
their frequency representations are used as input to DL models,
which classify the windows into chewing or nonchewing. To
enhance the accuracy in real-life scenarios, we introduce a
supplementary model—hidden Markov model (HMM). This
integration enables the grouping of chewing predictions and the
construction of coherent eating segments. Finally, we calculate
the number of chews and the chewing rate for the detected eating
segments. The block diagram of the pipeline is shown in Figure
2.

Figure 2. Overview of the developed method for detection of chewing and eating segments estimation.

Signal Preprocessing
The method uses data from the 4 OCO sensors—left and right
temple and left and right cheek. Let ORC, OLC, ORT, and OLT

denote these sensors in the specified sequence. The set of sensors
can be represented as S = {ORC, OLC, ORT, OLT}, where each

sensor Si reads data . in the time interval of T
from timestamps t1 to tn. The main objective is defined as:

1. Partitioning T into partially overlapping windows of equal
size W = {W1,W2,...,Wn} and assuming a target activity set
Y = {Y1,Y2,...,Yn}

2. Assigning each window Wi a target label Yj from the target
label set Y = {Y1,Y2,...,Yn} and training a classifier
accordingly

First, to remove the noise from the data, a fifth order median
filter was applied to each sensor channel within the sensor set
S. This filter was proven to effectively remove noise while
preserving essential signal features in our previous studies on
expression recognition using the same type of sensor [20].
Following the medial filter, the next step in the process involved
determining the appropriate window size for data segmentation.
We experimented with various window sizes ranging between
1 and 15 seconds. Once the sensor set S was segmented into
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windows (W), the next step was to enhance the information
carried by the input signals further. To achieve this, we used
Fourier transformation for each sensor within the segmented
windows. This transformation allowed us to convert the
time-domain signals into their frequency representations, thereby
extracting additional features from the data. The Fourier
transformation process provided valuable insights into the
frequency components present in the sensor data, which could
be crucial for detecting subtle patterns associated with chewing
activity.

Chewing Detection With DL Models
In this study, we used 4 distinct DL models based on
convolutional neural networks (CNNs) for the purpose of
chewing detection. We focused on DL architectures commonly
used for wearable sensor data, such as CNN 1D [21,22], CNN
2D [21], attention model [23], and convolutional long short-term
memory (ConvLSTM) [24]. By using these common
architectures, we aim to demonstrate the baseline accuracy
achievable with existing methods. This serves as a foundation
upon which further improvements can be made. Specifically,
developing DL architectures tailored to the unique specifications
of the glasses and the specific use-case of detecting eating
activity could potentially enhance accuracy beyond the baseline
results established in this study.

An overview of the architectures and their associated
hyperparameters is as follows:

1. CNN 2D: Our initial model adopts a standard CNN [21],
crafted to extract hierarchical spatial features from input
data. The feature extraction module consists of 3
consecutive convolutional layers, each followed by group
normalization and max-pooling layers. Extracted features
are then passed through 2 fully connected layers, each
containing 128 neurons, connecting to the output nodes.

2. ConvLSTM: Expanding on CNN’s foundation, the
ConvLSTM model [24] introduces a temporal dimension
to our analysis. It shares the same convolutional layers with
the CNN 2D architecture and integrates 2 LSTM layers,
each featuring 128 hidden units. This modification allows
the model to effectively capture sequential patterns and
dependencies within the data.

3. Attention model: Incorporating insights from attention
mechanisms, the attention model [25] comprises 4
convolutional layers with 64 feature maps followed by 2
LSTM layers, each with 128 hidden units [23], and an
attention layer. The attention layers allow the model to
prioritize relevant information during the learning process.

4. CNN 1D with statistical features: The last model
incorporates a 1D CNN architecture [22], enhanced with
statistical features. It consists of a single convolutional layer
with 256 filters followed by a max-pooling layer. The
resulting features are then flattened and fused with statistical
features extracted from filtered sensor data, including mean,
variance, and absolute sum. The joint vector is then
processed through a fully connected layer with 1024
neurons capturing both spatial and statistical characteristics.

The determination of architecture parameters, such the kernel
size in the convolutional layers, output size of CNN layers,

LSTM units, and fully connected units, was guided by a
pragmatic approach focused on achieving a balance between
model’s ability to capture complex data patterns and model’s
complexity. These parameters were fine-tuned on the validation
set to optimize performance.

Each model was trained for 100 epochs with a batch size set at
256. Prior the beginning of the learning process, we used
orthogonal weight initialization for both weights and biases,
aiming to enhance the stability and effectiveness of neural
network training. Cross-entropy loss was used as the objective
function for training. Furthermore, all the models were trained
using the Adam optimizer with an initial learning rate of 1e-3.
To avoid overfitting as well as to reduce the training time, early
stopping, monitoring validation F1-macro score with patience
of 15 epochs was applied. In the end, the optimal weights were
selected based on the epoch with the highest validation F1-macro
score.

Detection of Eating Segments
In the initial phase of our eating detection system, we use a DL
model to detect chewing moments at a window-level granularity.
By incorporating the temporal dependence between the detected
chews, we aim to enable our system to identify not only
individual chewing instances but also to discern when eating
segments occur within real-life data. This allows us to
effectively mitigate the occurrence of short false-positive
predictions and consolidate densely clustered chewing instances
into coherent eating segments. By doing so, we anticipate a
more robust and precise analysis of dietary patterns.

To address the temporal dependence between chewing events
in real life, we integrate HMM as a supplementary model that
analyzes the detected chews from the DL model. The HMM
was initialized and trained as described in the study by Stankoski
et al [26]. This process is visually illustrated in Figure S4 in
Multimedia Appendix 1.

Detection of Number of Chews and Chewing Rate
Estimation
After the detection of eating segments, to determine the number
of chews in an eating segment, we additionally analyze and
process the signals from the sensors. Figure 3 presents a visual
representation of the data processing steps used in the detection
of chews within a randomly selected eating segment from the
data set. The initial step involves identifying the signal with the
highest root mean square value. Subsequently, we use a 2-step
filtering process to enhance the selected signal. First, a median
filter with a kernel size of 5 is applied, followed by a
second-order bandpass filter within the frequency range of 0.5
to 3 Hz. For the calculation of the number of chews, we used
an existing peak detection algorithm (using SciPy [27]) on the
processed signal. This involves configuring the threshold and
distance parameters to identify relevant peaks in the signal.
Furthermore, peaks with insufficient prominence are excluded
from the final set.

Each retained peak after this step is considered as a separate
chew in the signal. The parameter values used in the filtering
and peak detection processes were determined empirically.
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Following the detection of chews within eating segments, we
extend the analysis to estimate the chewing rate. To achieve
this, we use the same signal with the highest root mean square
value. This signal is subjected to further analysis through Fourier

transformation to compute its frequency spectrum. By examining
the resulting spectrum, we identify the most substantial
frequency component, which corresponds to the dominant
chewing frequency within the examined eating segment.

Figure 3. Processing steps for detecting the number of chews in an eating segment: (A) cheek and temple signals; (B) selection of signal with highest
root mean square (RMS) value; (C) filtering the chosen signal; (D) detection of peaks and chews in the filtered signal.

Evaluation Setup
To evaluate the effectiveness of the models, we used the
Leave-One-Group-Out cross-validation technique. This involved
dividing the initial data set into N separate groups, where the
data from a single participant is present in only one subset. Each
model is trained on combined data from N-2 subsets, leaving
one subset to be used as validation data set and a second subset
for testing the final model. Thus, all the models are
person-independent, that is, the experimental results demonstrate
the model’s accuracy on unseen test users.

Regarding evaluation metrics, we used recall, precision, and
F1-score. Recall indicates the proportion of actual chewing
segments correctly identified by the model, while precision
denotes the proportion of identified chewing segments that are
truly chewing segments. The F1-score is the harmonic mean of
the recall and the precision—which is more balanced metric
compared with accuracy especially in unbalanced data sets
where one of the classes is more frequent. The reported metrics
reflect the models’ ability to detect chewing at a window level,
and they are calculated as follows:

(1)

(2)

(3)

In the equations (1) to (3), TP represents true positives, TN
represents true negatives, FP represents false positives, and FN
represents false negatives. In the context of chewing detection,
these metrics can be interpreted as follows:

• TP indicates the number of windows from the chewing
class correctly classified as chewing.

• FP indicates the number of windows from the nonchewing
class incorrectly classified as chewing.

• FN indicates the number of windows from the chewing
class incorrectly classified as nonchewing.

In addition, for the evaluation of eating detection in the real-life
scenario, we used custom metric to provide deeper insights into
the models’ performance within eating segments. The metric
was defined to analyze the number of eating segments that are
correctly identified based on the frequency of positive chewing
predictions within each eating segment:
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• Detected eating segments: the number of eating segments
where at least 50% of the instances (windows) are correctly
identified as eating.

Ethical Considerations
To ensure ethical compliance, ethics approval was obtained
from the London—Riverside Research Ethics Committee on
July 15, 2022 (ref: 22/LIO/0415). After a detailed explanation
of the experimental procedure, all participants provided written
informed consent before participating in the study. The consent
forms addressed the use of their data. To protect participant
privacy, all data were deidentified. The participants who took
part in the laboratory sessions were compensated with US $26.5,
while those involved in the real-life study received US $26.5
per day for their participation. The experiment was conducted
following institutional ethical provisions and the Declaration
of Helsinki.

Results

Overview
In this section, we present the results from the experiments. The
Statistical Analysis of OCO Sensors for Facial Muscle
Movements section presents the outcomes of the statistical
analysis, focusing on the ability of OCO sensors in detecting
facial muscle movements during various activities, including
eating. The Laboratory-Based Data Set DL Experiments section
assesses the performance of different DL models, sensor
combinations, and window sizes for chewing detection in a
controlled laboratory data set. Finally, the Real-Life Data Set
Experiments—Chewing and Eating Segments Detection section
presents the results obtained with the real-life data set and
evaluate the performance of the method for detection of eating
segments.

Statistical Analysis of OCO Sensors for Facial Muscle
Movements
To evaluate the ability of the OCO sensors to detect facial
muscle movements during different activities, we first conducted
a statistical analysis. Our focus was on comparing measurements
obtained from both temple and cheek sensors, assessing skin
movement along both the x and y axes. In this context, we
focused on comparing facial muscle movements during the
activities of eating or chewing, speaking, and teeth clenching.
The selection of these activities was based on the potential

similarity in facial muscle activation patterns. For example,
Figure 4 presents 6 graphs. The top row measures movements
from sensors placed over the zygomaticus major muscle (cheek
area) and the bottom row from sensors positioned on the
temples. Each column of graphs represents 1 of the 3 activities
being measured (eating, speaking, and clenching). The
horizontal axis of each graph represents time in seconds, and
the vertical axis shows the magnitude of skin movement in
millimeters. By comparing these graphs, we can assess the
differences and similarities in facial muscle activation patterns
during the 3 activities.

We calculated mean movements measured from the cheek and
temple OCO sensors for each participant during eating or
chewing, speaking, and teeth clenching. The mean values were
calculated over all data points corresponding to each activity,
resulting in n=28 (number of participants present in both the
eating and noneating laboratory data set) tuples, with each tuple
comprising 3 values representing the mean cheek or temple
movement for eating or chewing, speaking, and teeth clenching.

Figure 5 shows the mean cheek (left plot) and temple (right
plot) movements during different activities, presented on the
x-axis, and the results from the Wilcoxon signed-rank (paired)
test with Bonferroni correction (α=.05).

For the cheek OCO sensors, we can observe an increased
movement during eating (median value 0.113 mm) compared
with relatively lower values observed during speaking (median
value 0.036 mm) and the teeth clenching (median value 0.008
mm). The results from the statistical test further indicate
significant differences in cheek movements between speaking
and eating (P<.001), eating and teeth clenching (P<.001), as
well as speaking and teeth clenching (P<.001).

Similarly, for the temple OCO sensors, a notable increase in
movement with a median value of 0.027 mm during eating is
observed, compared with 0.008 mm during speaking and 0.002
during the teeth clenching. The statistical tests affirm the
significance of these differences, demonstrating that mean
temple movements differ significantly between speaking and
eating (P<.001), eating and the teeth clenching (P<.001), as
well as speaking and the teeth clenching (P<.001).

These findings highlight the potential sensitivity of the cheek
and temple OCO sensors in capturing distinct patterns and subtle
variations in facial muscle activation across different activities.
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Figure 4. Sensor signals from the sensors on the right cheek and temple recorded during eating, speaking, and teeth clenching activity performed by
one participant.

Figure 5. Wilcoxon signed-rank (paired) test with Bonferroni correction for comparing mean cheek and temple movements during activity pairs (n=28):
clenching versus eating, clenching versus speaking, and eating versus speaking. Statistical significance annotations: *If P ∈ {.05, .01); **if P ∈ {.01,
.001); ***if P ∈ {.001, .0001); and ****if P≤.001.

Laboratory-Based Data Set DL Experiments
In this section, we present the sample characteristics of the data
set, the results of the experiments for chewing detection,
conducted on the laboratory-based data set, offering insights
into the results achieved across various DL architectures, sensor
combinations, and window sizes.

Sample Characteristics
The laboratory-based data set consists of 2 subsets, one for
eating activities and another for noneating-related activities. In

the controlled eating data set, we gathered data from a cohort
of 28 participants, comprising 13 (46%) males and 15 (54%)
females, with an average age of 25.6 (SD 9.1) years. The data
set comprises a total of 6.1 hours of recorded data. The
noneating data set includes data from the same 28 participants,
along with an additional 98 participants (n=48, 49% males and
n=50, 51% females) with an average age of 23.3 (SD 6.4) years.
Each participant contributed data for various activities, totaling
26.7 hours of recorded data. In summary, the data set comprises
126 participants and spans a combined total of 32.8 hours of
recorded data.
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DL Models for Chewing Detection
In this section, we present a comparison of various DL
architectures used for the task of chewing detection. Table 2
provides a summary of the performance metrics, including
F1-score, recall, and precision for the chewing class, for each
architecture.

The results show that all architectures demonstrated strong
results, indicating that the sensor data provided from the glasses
is informative for the chewing detection task. ConvLSTM
demonstrated the highest F1-score of 0.91, precision of 0.92,
and recall of 0.89. CNN 2D also performed well with balanced
metrics, achieving a slightly lower precision of 0.90, recall of
0.90, and F1-score of 0.90. In contrast, the attention model
displayed moderate performance with precision, recall, and
F1-score of 0.89, 0.90, and 0.89, respectively. The CNN 1D
architecture, despite exhibiting a high precision of 0.90, fell
short in recall at 0.86, resulting in a lower overall F1-score of
0.88.

The confusion matrices for the evaluated models are presented
in Figure 6. They provide additional insights into the models’
behavior. Notably, the ConvLSTM model also demonstrated a
lower number of false positives (FPs), totaling 1749 instances.
This number is approximately 20% lower than that of the
second-best model, CNN 2D, which recorded 2089 FP instances.

Figure S5 in Multimedia Appendix 1 shows the FP rates for
various noneating activities detected by the ConvLSTM model.
Socializing has the highest rate (0.72%), followed by reading
(0.28%). Both involve speaking, leading to confusion with
eating due to similar facial movements. The overall FP rate is
2%, also shown in Figure 6 (0.02 in confusion matrix D).

Table 3 provides a comparison of complexity and resource
metrics for the evaluated architectures focusing on network
parameters, computational complexity expressed as the number
of floating-point operations per second (FLOPS) during a
forward pass and the size of the model. CNN 1D with 2.4
gigaFLOPS and the 270-kB model size is the smallest model
making it suitable for embedded applications in the future. CNN
2D, although larger, offers a balanced trade-off between
performance and model size. The attention model, despite
having fewer parameters than CNN 2D, has the highest
computational complexity of 80.25 gigaFLOPS. ConvLSTM
demonstrates a balance between accuracy and resource
requirements.

Considering the results, ConvLSTM emerged as the preferred
choice for the chewing detection tasks based on the model
accuracy and computational complexity and resources needed,
thus this architecture was used in the subsequent experiments.

Table 2. Performance metrics of different deep learning architectures for chewing detection. Precision, recall, and F1-score are calculated for the eating
class.

F1-scoreRecallPrecisionDL architecture

0.880.860.9CNNa 1D

0.90.90.9CNN 2D

0.890.90.89Attention model

0.910.890.92 cConvLSTM b

aCNN: convolutional neural network.
bConvLSTM: convolutional long short-term memory.
cBest performing algorithm.

Figure 6. Confusion matrices for the evaluated deep learning architectures: (A) convolutional neural network (CNN) 1D; (B) CNN 2D; (C) attention
model; (D) convolutional long short-term memory (ConvLSTM).
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Table 3. Complexity and resource metrics for the evaluated deep learning (DL) architectures.

Model size (MB)Computational complexity (GFLOPSa)Total parametersDL architecture

0.272.4143,366CNNb 1D

4.8820.921,208,578CNN 2D

2.6880.25407,620Attention model

4.0331.42997,890ConvLSTMc

aGFLOPS: giga floating-point operations per second.
bCNN: convolutional neural network.
cConvLSTM: convolutional long short-term memory.

Impact of Individual Sensors on the Performance of
Chewing Detection Models
In this section, we present the results from the analysis of the
impact of individual sensors on the performance of the chewing
detection models. Having identified the ConvLSTM architecture
as the best-performing architecture among the models that we
evaluated in the previous experiments, we proceeded with this
architecture for a series of experiments encompassing various
sensor combinations. The tested sensor combinations included
temple, cheek, temple and cheek, as well as the left versus right
side. The results from these experiments are presented in Table
4.

From Table 4 it can be observed that the cheek sensor
outperforms the temple sensor. Specifically, in detecting
chewing segments, the cheek sensor achieves recall of 0.88,
which is 4 percentage points higher than the recall achieved by
the model trained with temple sensor data (0.84).

The performance of the model trained with data from the cheek
sensors can be attributed to the role of the cheek region in eating
activities, predominantly chewing. The sensors are adept at

capturing the specific circular movements of the cheek area
during such activities, which produce distinct signal pattern
associated with eating. The ability to capture these specific
patterns results in the model’s high precision in distinguishing
eating episodes, thus enhancing recall rates.

Although the temple muscle is uniquely activated during
chewing activity, the results show that the activation measured
by the sensor is not very high across all people. However, if we
combine the temple and the cheek sensors, we can see that the
recall is improved by 1 percentage point. This shows that the
temple sensor data provides additional information to the model.

In addition, we explored the performance of the models by using
only one side of the temple and cheek sensors. On the basis of
the results, we can see that the combination with the sensors
measuring the right temple and cheek achieves recall of 0.89,
which is 3 percentage points higher than the recall achieved by
the model trained with left temple and cheek sensor data. This
might be expected because most people prefer to chew the food
on one side of their mouth [27,28] and the activation of the
muscles is higher, which results in higher values in the sensor
data.

Table 4. Performance metrics of convolutional long short-term memory for chewing detection with multiple combinations of sensor data. Precision,
recall, and F1-score are calculated for the eating class.

F1-scoreRecallPrecisionSensor combination

0.830.840.83Temple

0.900.880.92Cheek

0.910.890.92 aTemple+cheek

0.880.860.9Left temple+left cheek

0.890.890.89Right temple+right cheek

aThe selected combination shows the best results based on the F1-score.

Window Size Impact on the Performance of Chewing
Detection Models
This section presents the results of the analysis of how window
size influences the performance of the chewing detection
models. For this purpose, a series of experiments were
conducted, exploring various window sizes that extend beyond
the default 4-second window size used in the previous
experiments. For this analysis, we used a consistent 1-second
window slide, with the aim to prevent delays in prediction

changes and to ensure that the model will be able to promptly
detect eating-related movements. The results from the
experiments are presented in Table 5.

The performance of the ConvLSTM architecture demonstrated
a noticeable enhancement with the increase in window size in
terms of precision, recall, and F1-score. More specifically, as
the window size extends from 2 to 10 seconds, we consistently
observe improvements in results. However, upon reaching a
15-second window, we observe saturation in performance
metrics, where the obtained results remain consistent with those
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achieved at the 10-second window. This is probably because
longer windows might include nonchewing data, leading the
model to misclassify entire instances as noneating.

Although, among the window sizes of 6- and 10-second
improvement can be observed, we decided to proceed with the

4-second window. This decision was based on its advantage in
processing fewer data compared with the 6- and 10-second
modes, leading to a reduced computational demand and
potentially lower energy use.

Table 5. Performance metrics of convolutional long short-term memory for chewing detection with various window sizes. Precision, recall, and F1-score
are calculated for the eating class.

F1-scoreRecallPrecisionWindow size

0.880.860.902 seconds

0.910.890.924 seconds

0.920.920.936 seconds

0.930.940.93 a10 seconds

0.930.940.9215 seconds

aBest performing result.

Real-Life Data Set Experiments: Chewing and Eating
Segments Detection

Overview
To assess the effectiveness of our chewing detection and eating
segments detection methods using data collected in-the-wild,
we conducted a series of experiments. In the first subsection,
we present the sample size of the data set. Then, in the second
subsection, we present the results of the chewing detection
method using real-life data. Next, in the third subsection,
evaluation of the eating segment detection is presented. In the
last subsection, we show the estimation of the chewing
characteristics.

Sample Characteristics
The real-life setting data collection involved 8 participants (5
males and 3 females; average age 30.8, SD 12.4 years). Each
participant wore the glasses for a minimum of 8 hours per day
over 2 days, resulting in 16 hours of recorded data per
participant and a total of 128 hours of recorded data.

Chewing Detection Evaluation Using Real-Life Data
This evaluation allows us to explore whether a model trained
with seminaturalistic behavior data collected in a laboratory
setting can perform well on a real-life data from unseen
participants. Figure 7 presents the results obtained on the

real-life data set at a window level using the model for chewing
detection. The classification report is shown in Table 6. It shows
that the model achieved precision of 0.95, recall of 0.82, and
an F1-score of 0.88 for the eating class. The accuracy of this
model was 98%.

We derived the probability density function of the model’s
probability outputs. The resulting graph, depicted in Figure 8,
reveals a bimodal distribution, exhibiting one smaller peak near
a probability of 0.2 and a larger, more substantial peak beginning
at approximately 0.8 probability. The prominence of the second
peak starting from a higher probability threshold signifies the
model’s strong confidence in identifying chewing activity,
within the labeled eating segments. In addition, the predictions
around the first peak can be interpreted as instances where the
model is relatively certain that chewing is not occurring within
the eating-labeled segments.

These results are in line with our expectations and understanding
of the real-life data set. As previously described, the ground
truth of the real-life data set contains only the information when
eating segments took place. When evaluating the chewing
detection method on data set where eating segments are labeled,
the presence of false negatives can be attributed to the nature
of the data set. Eating segments may encompass various
activities beyond just chewing, such as talking, short breaks
between bites, holding food, and similar. Therefore, segments
labeled as “eating” may indeed involve nonchewing activities.
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Figure 7. Confusion matrix for the chewing detection model evaluated on the real-life data set on window level.

Table 6. Classification report for the chewing detection model evaluated on the real-life data set on window level.

F1-scoreRecallPrecisionClass

0.991.000.99Noneating

0.880.820.95Eating

0.940.910.97Macroaverage

Figure 8. Probability density function of the model’s output probabilities for the chewing-labeled instances.

Evaluation of the Method for Eating Segment Detection
As previously described, the ground truth for the real-life data
set contains information when the eating segments took place.
This means that the annotated eating segments may contain
short breaks between bites, conversations, food preparation,
and similar. Because of this, we evaluated the eating segments
detection based on the temporal information of the chewing
detection algorithm as described in the Detection of Eating
Segments section.

The results obtained on a segment level are shown in Table 7.
This table contains the total number of eating segments, number
of detected eating segments, and falsely detected eating
segments for each participant. An eating segment is considered

as detected if >50% of the instances in the labeled segment are
predicted as chewing. The result of this evaluation shows that
from total of 74 eating segments labeled by the participants, we
can accurately detect 71 eating segments. The number of the
falsely detected eating segments is relatively low for all
participants, having total of 7 false detections.

Furthermore, we extended our analysis of the real-life data set
to explore the suitability of the sensor data obtained from the
smart glasses in-the-wild for capturing more detailed
eating-related metrics, beyond only detecting instances of eating.
In particular, we aimed to quantify the number of chews and
the chewing rate within eating segments, although this method
was not subjected to formal evaluation, mainly because of the
lack of ground truth in the real-life data set.
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Table 7. Evaluation of eating segment (ES) detection on the real-life data set, including total number of ES, number of true detected ES, number of
false detected ES, and mean duration of falsely detected ES per participant.

Mean duration of falsely detected ES, SD (min)False detected ESTrue detected ESTotal ESParticipant ID

—a0451

1.77 (0)112122

—020203

0.72 (0.5)2674

0.54 (0.2)3455

—015156

0.46 (0)1447

—0558

—77174Total

aNot available.

Estimation of Chewing Rate and Number of Chews
Using Real-Life Data
After using the previously described methodology for calculating
the number of chews on a window level for the eating segments,
the resulting values ranged from 48 to 1505. The distribution
of these values, as depicted in Figure 9A, indicates that
participants have recorded both short snacks and long-duration
meals, reflecting the diversity of eating behaviors captured in
the data set.

Similarly, upon applying the approach for chewing rate
estimation on a window-level for the eating segments, the
derived values ranged between 0.8 and 2.3 chews/s. Notably,
these values align with expectations observed in real-life eating
scenarios [28]. Figure 9B depicts the distribution of the chewing
rate values. Figure S6 in Multimedia Appendix 1 presents the
mean chewing rate and the total number of chews for all eating
segments across all participants in the data set.

Figure 9. Distribution of estimated number of chews and chewing rates per eating segment in the real-life data set.

Discussion

Principal Findings
While most people know that modifying eating behavior is key
to sustained weight management, improving what is not
measured is difficult. Traditional methods of eating assessment
typically summarize dietary measures at the hour, day, week,
or even year level [10]. Although these can clarify high-level
relationships between eating behavior and disease risk, important
short-term patterns are not measured and cannot be explored
with the traditional methods. The ability to explore microlevel
eating activities—such as meal microstructure (eg, meal duration
and chewing frequency) [29] and food choices [30]—is
important because they play an important role on food selection,
dietary intake, and ultimately, obesity and disease risk [31-33].

In this study, we explored the potential of optical tracking
sensors integrated into smart glasses for detection of eating,
focusing on chewing activity as a critical component of dietary

monitoring. Table 8 compares our study with existing
glasses-based eating and chewing monitoring systems,
highlighting differences in study goals, sensor types, number
of participants, study setups, and performance metrics. It is
important to note that the performance metrics may not be
directly comparable due to differences in sensors, devices,
population, and evaluation setup. Unlike most studies, which
primarily monitor eating and drinking behaviors, our approach
provides a more granular analysis by specifically detecting
chewing activities. Only 2 other studies, including Zhang and
Amft [18], have focused on chewing as an activity, and among
these, only Zhang and Amft [18] and our study have conducted
evaluations in real-world settings. Our results are slightly better,
likely because electromyography sensors used by Zhang and
Amft [18] require skin contact, whereas our optical sensor-based
tracking does not, making our estimates more robust and less
intrusive.

Accurate estimates of chewing can further be used for
calculating eating rate. Such granularity offers better insights
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for nutritional management. For example, eating rate has gained
interest over recent years, as studies suggest a link between
eating quickly and being overweight [31]. Other studies suggest
that faster eating rate is associated with higher BMI and higher
energy intake [32]. Studies also suggest that eating rate is
independently associated with insulin resistance [33], which
might be explained by the rapid entrance of glucose into the
circulation at the beginning of the meal [34].

Our investigation spanned controlled laboratory settings to the
real-life environment, providing a robust assessment of the
technology’s effectiveness and practicality. The system
leverages contactless optical tracking technology—OCO, to
monitor facial muscle activation related. These activations are
further processed by a DL model for detection of eating and
chewing segments. On the basis of the results of the experiments
where we evaluated various DL architectures, ConvLSTM
model was selected as the best-performing model for identifying
chewing events in our eating detection experiments. Regarding
the real-life experiments, our method for chewing detection and
eating segments detection, validated on data collected
in-the-wild with 8 participants, demonstrates promising results.
The model achieved high precision (0.95) and recall (0.82) for
the eating class, with an F1-score of 0.88 at a window level.
However, false negatives in chewing detection can be attributed
to the diverse activities encompassed within eating segments

beyond just chewing, such as talking or short breaks between
bites. Evaluating eating segments detection based on temporal
information from the chewing detection algorithm revealed
accurate detection of 71 out of 74 labeled eating segments, with
only 7 false detections across participants.

Regarding the sensor positioning, based on the results in Table
4 and the data from 128 participants, we observed that the cheek
sensor outperforms the temple sensor, achieving a recall of 0.88
compared with 0.84 for detecting chewing segments. The
addition of temple sensor data shows a modest 1 percentage
point improvement in recall, indicating its supplementary role
in enhancing overall performance.

Regarding the segmentation window size, as we increased the
window size from 2 to 10 seconds, the ConvLSTM model’s
precision, recall, and F1-score improved. However, at a
10-second window, performance plateaued, likely due to the
inclusion of irrelevant nonchewing data. Despite better results
at 6 and 10 seconds, we chose a 4-second window for its lower
computational load and energy consumption. This aspect is
crucial for deployment on mobile or wearable devices, where
processing power and battery life are limited. Moreover, the
use of a 4-second window has proven to offer stable
performance that ensures the model is sufficiently fast to adapt
to changes in eating behavior without substantial delays, due
to the 1-second sliding segment.

Table 8. Comparison with glasses-based eating and chewing monitoring systems.

PerformanceSetupParticipants, nSensorsGoalStudy

F1-score: 0.89Laboratory and
real world

18 (laboratory) and
5 (real-world)

IMUa, proximity, and
camera

Eating and drinkingBedri et al [13],
2020

F1-score: 0.92Real-world30Piezoelectric and IMUEatingShin et al [14],
2022

F1-score: 0.86 (expressions); 0.94
(eating or drinking)

Real-world10IMU, pressure, micro-
phone, force, and
piezoelectric

Facial expressions and
eating and drinking

Bello et al [15],
2023

F1-score: 99% (eating vs activity)Laboratory10Piezoelectric and IMUEating and physical ac-
tivity

Farooq and
Sazonov [16],
2016

F1-score: 94%Laboratory10Load cellsChewing and 5 other
activities

Chung et al [17],
2017

Precision or recall: 95% (laboratory)
and 78% (real-world)

Laboratory and
real-world

10EMGb sensorsChewing and eatingZhang and Amft
[18], 2018

F1-score: 0.91 (laboratory) and 0.88
(real-world)

Laboratory and
real-world

128 (laboratory) and
8 (real-world)

OCO optical sensorsChewing and eatingThis study

aIMU: inertial measurement unit.
bEMG: electromyography.

Limitations and Future Work
Regarding limitations, while our study included data from >100
participants, most of the data were collected in controlled setup.
In contrast, our real-world data came from 8 participants
observed for 2 days. To strengthen these findings, a broader
and more prolonged study is needed.

Regarding the technical aspects of the system, the technology
should be assessed across various demographics and age groups
to ensure its generalizability. Factors such as the shape of a
participant’s head or nose might alter sensor position and data
quality, and participants’ adherence to wearing the device
properly must be considered. Developing personalized models
that adapt to individual eating patterns and preferences could
improve the system’s accuracy and user acceptance. Machine
learning algorithms that learn and adapt to each user’s unique
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behaviors over time could provide personalized and more
accurate monitoring.

In terms of system application domains, combining the eating
detection system with nutritional analysis tools could provide
a comprehensive solution for monitoring not only eating
behaviors but also dietary intake and nutritional quality, offering
more actionable insights for health interventions. Furthermore,
investigating the long-term impact of using such monitoring
systems on health outcomes, including weight management,
metabolic health, and behavior change, could provide valuable
evidence for the efficacy of these technologies in promoting
healthy eating habits and preventing chronic diseases.

Conclusions
Our study demonstrates the efficacy and feasibility of using
optical tracking sensors integrated into smart glasses,
particularly with the OCO technology, for noninvasive
monitoring of eating behaviors, with a focus on chewing
detection and eating segment detection. Through rigorous
experimentation on data from 128 in-laboratory participants
and 8 real-world participants, we determined that the proposed
approach can accurately detect chewing activity in both
laboratory and real-life scenario, highlighting the promising
potential of this system for dietary monitoring applications.
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Abbreviations
CNN: convolutional neural network
ConvLSTM: convolutional long short-term memory
DL: deep learning
FLOPS: floating-point operations per second
FP: false positive
HMM: hidden Markov model
LSTM: long short-term memory
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