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Abstract

Background: Wearable sensors are increasingly being explored in health care, including in cancer care, for their potential in
continuously monitoring patients. Despite their growing adoption, significant challenges remain in the quality and consistency
of data collected from wearable sensors. Moreover, preprocessing pipelines to clean, transform, normalize, and standardize raw
data have not yet been fully optimized.

Objective: This study aims to conduct a scoping review of preprocessing techniques used on raw wearable sensor data in cancer
care, specifically focusing on methods implemented to ensure their readiness for artificial intelligence and machine learning
(AI/ML) applications. We sought to understand the current landscape of approaches for handling issues, such as noise, missing
values, normalization or standardization, and transformation, as well as techniques for extracting meaningful features from raw
sensor outputs and converting them into usable formats for subsequent AI/ML analysis.

Methods: We systematically searched IEEE Xplore, PubMed, Embase, and Scopus to identify potentially relevant studies for
this review. The eligibility criteria included (1) mobile health and wearable sensor studies in cancer, (2) written and published in
English, (3) published between January 2018 and December 2023, (4) full text available rather than abstracts, and (5) original
studies published in peer-reviewed journals or conferences.

Results: The initial search yielded 2147 articles, of which 20 (0.93%) met the inclusion criteria. Three major categories of
preprocessing techniques were identified: data transformation (used in 12/20, 60% of selected studies), data normalization and
standardization (used in 8/20, 40% of the selected studies), and data cleaning (used in 8/20, 40% of the selected studies).
Transformation methods aimed to convert raw data into more informative formats for analysis, such as by segmenting sensor
streams or extracting statistical features. Normalization and standardization techniques usually normalize the range of features
to improve comparability and model convergence. Cleaning methods focused on enhancing data reliability by handling artifacts
like missing values, outliers, and inconsistencies.
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Conclusions: While wearable sensors are gaining traction in cancer care, realizing their full potential hinges on the ability to
reliably translate raw outputs into high-quality data suitable for AI/ML applications. This review found that researchers are using
various preprocessing techniques to address this challenge, but there remains a lack of standardized best practices. Our findings
suggest a pressing need to develop and adopt uniform data quality and preprocessing workflows of wearable sensor data that can
support the breadth of cancer research and varied patient populations. Given the diverse preprocessing techniques identified in
the literature, there is an urgency for a framework that can guide researchers and clinicians in preparing wearable sensor data for
AI/ML applications. For the scoping review as well as our research, we propose a general framework for preprocessing wearable
sensor data, designed to be adaptable across different disease settings, moving beyond cancer care.

(JMIR Mhealth Uhealth 2024;12:e59587) doi: 10.2196/59587
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Introduction

Background
According to the US Food and Drug Administration, digital
health is categorized as mobile health (mHealth), health
information technology, wearable devices, telehealth,
personalized medicine, and telemedicine [1]. Digital health has
revolutionized health care by offering the potential for
continuous and noninvasive monitoring of human physiological
parameters, such as heart rate, sleep, and activity levels, to
facilitate the early detection and prevention of life-threatening
diseases [2]. Digital health consists of collecting, analyzing,
storing, and sharing health care data by harnessing the power
of technology, including smartphone apps, wearable sensors,
telemedicine, the Internet of Medical Things, etc [3]. Due to
the widespread use of mHealth technologies and routine use of
wearable sensors (eg, smartwatches), the person-generated
health data have become promising data sources for biomedical
research [4].

Indeed, the integration of wearable sensors into cancer care has
opened new pathways for remote monitoring, enabling health
care providers to gather a wealth of real-time data from patients
[5-7]. These wearables capture an array of physiological
parameters, including skin temperature [8], offering insights
into the patient’s response to cancer treatment, quality of life,
and overall well-being [9]. These continuous streams of data
have the potential to transform cancer care by providing an
improved understanding of patient conditions outside of the
hospital setting, potentially improving clinical outcomes.
Nevertheless, transforming raw data into meaningful analysis
and insights presents numerous challenges, making standardized
workflows for data preprocessing essential.

Data preprocessing involves a series of steps designed to clean
and refine data to ensure its reliability and suitability for analysis
using artificial intelligence and machine learning (AI/ML)
techniques. The preprocessing steps help transform raw sensor
data, which can be noisy and inconsistent, into a clean,
structured format suitable for AI/ML models to process [10-12].
Without standardization in these procedures, there is a risk that
subsequent data analysis might be based on flawed information,
leading to uninterpretable data, a lack of generalizability, and
erroneous conclusions. Typical preprocessing steps to make
sensor data AI/ML ready include data cleaning (eg, noise
reduction, outlier detection, and handling missing data) [13,14],

data integration (eg, combining data sources and aligning time
stamps), data transformation (eg, windowing and normalization)
[15], dimensionality reduction (eg, feature selection), and data
labeling (eg, annotating).

AI/ML’s scope has become an amazing supportive tool for
digital health [16,17] since its potential evolution to exploit
meaningful relationships in biomedical data sets that can be
used for diagnosis, prediction, and treatments [18-21]. AI/ML
techniques have become popular in biometrics extraction mobile
apps smart systems, such as eye disease detection [22-24], atrial
fibrillation [25], heart rate monitoring [26], etc. In addition, a
summary of the actual cancer statistics and its future directions
is provided in the study by Moher et al [27].

Within the integration of electronic health record technology
[26] in digital medicine, wearable monitoring devices have
earned an important and crucial role for all people in the
biomedical area (eg, patients, medical staff, and biomedical
researchers). Oncology divisions have ultimately contemplated
the importance of incorporating mHealth monitoring while
conducting clinical cancer trials [1]. Moreover, multiple types
of cancer disease detection using AI/ML techniques are a crucial
factor considering its alarming impact rates on the population
[27]. The mHealth integration on cancer applications for the
development of AI/ML solutions has become popular in recent
years [28]. However, the importance of data quality has not
been highlighted while considering the design and development
of prediction models. Building high-quality data is a critical
step while applying AI/ML algorithms in mHealth and wearable
studies; however, the emphasis on enriching the data quality is
very limited in these studies, especially in oncology.
Misclassifications, misdiagnoses, and wrong predictions can
be avoided, and the whole mHealth system feasibility can be
improved by enriching the data quality.

Goals of Our Review
This study aims to explore the use of wearable sensors for
continuous monitoring of key physiological parameters in cancer
care. We systematically reviewed the literature by identifying
and assessing preprocessing workflows that are essential for
transforming raw, noisy, and often inconsistent wearable sensor
data into reliable and structured formats suitable for subsequent
AI/ML modeling. By examining the current landscape of these
practices, our research aims to improve wearable sensor data
quality, specifically for cancer care, ensuring that downstream
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data analyses and interpretations are rigorous and reproducible.
Given the diverse preprocessing techniques identified in the
literature, there is an urgency for a framework that can guide
researchers and clinicians in preparing wearable sensor data for
AI/ML applications. This paper proposes a framework designed
to be adaptable across different continuous monitoring
applications.

Methods

Search Strategy
We conducted a scoping review of articles written in English
using the following literature databases: IEEE Xplore, PubMed,
Embase, and Scopus, while following the PRISMA-ScR
(Preferred Reporting Items for Systematic reviews and
Meta-Analyses extension for Scoping Reviews) guidelines [29].

We have used Covidence (Veritas Health Innovation Ltd) [30]
for identification and screening stages. The search was
performed on December 31, 2023, using the search queries
shown in Multimedia Appendix 1. We selected full
peer-reviewed publications from the last 5 years (from January
2018 to December 2023), focusing on preprocessing techniques
used on wearable sensor data to ensure their readiness for AI/ML
applications for different cancer populations. Searches were
developed using 3 key concepts: wearable devices, AI/ML, and
cancer. Controlled vocabulary and keywords were selected for
the specific databases.

Figure 1 shows an illustration of the study selection process for
this paper. The identified studies meeting the inclusion criteria
were subsequently organized based on the major themes
identified.

Figure 1. Illustration of the study selection process. AI/ML: artificial intelligence and machine learning; mHealth: mobile health.

Inclusion Criteria
Our results with the search query presented in Multimedia
Appendix 1 were first imported into Covidence for screening.
The title and abstracts of the resulting studies were screened to
identify the studies related to preprocessing techniques for
wearable sensor data in cancer. After identifying the eligible
studies, additional inclusion exclusion criteria were applied to
retrieve the primary studies of our review (Figure 2 in the
Results section). Studies were eligible if they fulfilled the
following inclusion criteria in our review: (1) mHealth and
wearable sensor studies in cancer, (2) written and published in
English, (3) published between January 2018 and December
2023, (4) full text available rather than abstracts, and (5) original
studies published in peer-reviewed journals or appeared in
conference proceedings. PRISMA-ScR checklist is provided in
Multimedia Appendix 2.

Exclusion Criteria
Studies were not eligible if they fulfilled the following exclusion
criteria in our review: (1) review articles rather than primary
research, (2) mHealth and wearable sensor studies for other

disease conditions except cancer, (3) articles published in other
languages except English, and (4) conducted statistical analysis
instead of AI/ML.

Data Extraction and Evaluation
The data were extracted from all studies meeting our inclusion
criteria for the review and organized into tables containing each
study’s information (eg, authors’ name, title, and year of
publication), wearable sensor data collected in cancer studies
(eg, activity data, physiological parameters, including steps,
sleep, heart rate, blood oxygen saturation, and temperature),
preprocessing techniques (eg, time segmentation, data filtering,
data transformation, and imputation), wearable devices (eg,
Fitbit [Google LLC], Empatica [Empatica Inc, and Actigraphy),
type of AI/ML methods applied (eg, neural networks, decision
trees, K-Nearest Neighbors, Supporting Vector Machine, and
regressors), sample size (eg, number of participants; Table 1).
The data for all selected studies were extracted independently
by 3 authors (BLO, VG, and SWC) by mutual agreement, and
discrepancies were resolved by discussion with other coauthors
(RK, AJ, XC, and CZ). The outcomes from the data extraction
part were finally evaluated independently by each author.
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Table 1. Summary of eligible studies.

AI/MLa tech-
niques

Preprocessing cate-
gory

Preprocessing proce-
dure

Physiological parameterWearable sen-
sor

Sample
size, N

Cancer typeReference

LRc, SVMd,

DTe, RFf,

Data cleaningMissing data imputa-
tion

Steps, HRb, sleep status, and
blood oxygen saturation
(measured during sleep time)

Garmin
VivoSmart 4

40Terminal can-
cer

Liu et al
[30], 2023

KNNg, Ad-

aBoosth, and

XGBoosti

KNNData transforma-
tion

Peak detection and
fast Fourier trans-
form

Accelerometer and gyroscope
readings

Fuschia Band
prototype

4Breast cancerZhao et al
[31], 2022

SVM, RF,

MLPj, log, and
AdaBoost

Data cleaning and
normalization and
standardization

Different- order But-
terworth filtering
with different cutoff
frequencies and data
normalization

Photoplethysmography sig-
nals, skin temperature, ac-
celerometer readings, and
electrodermal activity

Empatica E4
wristband

21Multiple types
of cancer

Moscato et
al [32],
2022

LSTMkData transforma-
tion

Zero padding and
shortening the time
series

Activity level, angle, and spinActigraphy
device
XB40ACT

60Terminal can-
cer

Yang et al
[33], 2021

LSTM, bidirec-
tional-LSTM,

Data transforma-
tion

Time Segmentation
and zero padding

Activity level, angle, and spinActigraphy
device
XB40ACT

78Terminal can-
cer

Huang et al
[34], 2023

transformer,

and GRUl

RF, GBTm,
KNN, SVM

Data transforma-
tion

One-hot encoding
standardization and
dimensionality reduc-
tion

Step count, HR, and sleep
time–series data

Fitbit inspire
HR

28Pancreatic
cancer

Cos et al
[35], 2021

with linear ker-
nel, and LR
with L1 penalty

RF, GBT,
KNN, SVM

Data cleaning and
transformation

Bias reduction, data
localization, and
vector magnitude
calculation

Accelerometer Readings and
oxygen consumption

ActiGraph
GT3X

27Multiple types
of cancer

Davoudi et
al [36],
2021 with linear ker-

nel, and LR
with L1 penalty

Hidden Markov
models

Data cleaning and
normalization and
standardization

Missing data imputa-
tion and data stan-
dardization

HR data and activity dataFitbit Alta3Multiple types
of cancer

Liu et al
[37], 2020

AdaBoostData cleaning and
normalization and
standardization

Data standardization
and missing data im-
putation

Steps taken, time in light,
sedentary, moderate, vigorous
activities, energy expenditure,
etc.

ActiGraph
GT3X+

2291Multiple types
of cancer

Tedesco et
al [38],
2021

GRLnData transforma-
tion

Time window seg-
mentation

Accelerometer, light, and in-
clinometer

ActiGraph de-
vices

10Pancreatic
cancer

Dong et al
[39], 2021

Penalized (regu-
larized) regres-
sion models

Data cleaningMissing data imputa-
tion with averaging
technique

Rest-activity, sleep, and rou-
tine clinical variables

Actiwatch50Multiple types
of cancer

Patel et al
[40], 2023

J48, SMOp,

MLP, and NBq

methods

Data cleaning and
transformation

Cleaning inconsisten-
cies and noise and
Dimensionality re-
duction

Vital signs that were sensed
through biomedical sensors

IoMTo smart
devices

400Colorectal
cancer

Asghari
[41], 2021

LRData transforma-
tion

Temporal segmenta-
tions

Daily stepsPGHDr

(VivoFit)

52Multiple types
of cancer

Rossi et al
[42], 2021

Pretrained

MLMs
Data transforma-
tion and normaliza-
tion and standard-
ization

Counts threshold
and data normaliza-
tion

Accelerometer readingsActiGraph
wGT3X-BT

10Breast cancerVets et al
[43], 2023
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AI/MLa tech-
niques

Preprocessing cate-
gory

Preprocessing proce-
dure

Physiological parameterWearable sen-
sor

Sample
size, N

Cancer typeReference

LRData transforma-
tion

Time window seg-
mentation

Step countsGoogle health,
Fitbit, or Ap-
ple health

47Prostate can-
cer

Feng et al
[44], 2023

LR, KNN, DT,
RF, support
vector regres-
sion, and XG-
Boost

Data transforma-
tion and normaliza-
tion and standard-
ization

Features calculation,
data dimensionality
reduction and numer-
ical to categorical
data transformation,
and standardization

Activity features, activity
counts, acceleration data, as
well photoplethysmography
signal

Elan sensor
(wristband)

125Multiple types
of cancer

van den Ei-
jnden et al
[45], 2023

DT, SVM, RF,
and back propa-

gation NNt

Data cleaning and
normalization and
standardization

Removing outliers
and missing data,
duplicates removal,
and data normaliza-
tion

Temperature readingsCyrcadia
breast monitor

201Breast cancerS et al [46],
2020

LR, RF, GBT,
and XGBoost

Data normalization
and standardization

Data standardization
and normalization

Steps, HR, and intensity of
physical activity

Fitbit Alta HR34Gynecologic
cancer

Barber et al
[47], 2022

NNData transforma-
tion

Dimensionality re-
duction

Time-series data recorded
from biosensors

Wearable-

based RPMu
79Blood cancerJacobsen et

al [48],
2023

MMDFw, XG-

Boost, LGBMx,
RF, AdaBoost,
and GBT

Data normalization
and standardization

Interval scaling
method and z score
standardization

HR and inertial measurementsIMUv sensor
nodes, and
Heal Force
PC-60NW

201Multiple types
of cancer

Li et al
[49], 2023

aAI/ML: artificial intelligence and machine learning.
bHR: heart rate.
cLR: logistic regression.
dSVM: support vector machine.
eDT: decision tree.
fRF: random forest.
gKNN: k-nearest neighbors.
hAdaBoost: adaptive boosting trees.
iXGBoost: extreme gradient boosting trees.
jMLP: multilayer perceptron.
kLSTM: long short-term memory.
lGRU: gated recurrent unit.
mGBT: gradient boosted trees.
nGRL: graph representation learning.
oIoMT: Internet of Medical Things.
pSMO: sequential minimal optimization.
qNB: naïve Bayes.
rPGHD: patient-generated health data.
sMLM: machine learning model.
tNN: neural network.
uRPM: remote patient monitoring.
vIMU: inertial measurement unit.
wMMDF: multimodel decision fusion.
xLGBM: light gradient boosting machine.

Results

Overview
We identified 2147 studies in the initial extraction phase (n=248,
11.55% from PubMed; n=428, 19.93% from Scopus; n=996,
46.39% from IEEE Xplore; and n=475, 22.12% for Embase,

including Embase, Embase Classic, MEDLINE, and
PubMed-not-MEDLINE). A total of 173 (8.06%) duplicate
articles were removed to produce 1974 (91.94%) for title and
abstract screening. We conducted a thorough screening of titles
and abstracts, which resulted in the exclusion of 1820 (92.2%)
articles that did not meet the inclusion criteria. Following this
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screening, we identified 154 (7.8%) articles for which we
performed a full-text review to assess their eligibility for
inclusion in our study in more detail. In the final screening, 20
(13%) of these 154 articles met our inclusion criteria and were
considered for this scoping review, as shown in Figure 2. The
workflow diagram for the systematic identification of scientific
literature is shown in Figure 2. The geographical distribution
of these studies is mapped in Figure 3, highlighting most
research from the United States. These constituted 35% (7/20)
of the selected publications. Terminal cancer research was
reported from Taiwan.

In terms of publication years, our analysis revealed an uptick
in the frequency of papers related to mHealth and wearables in
cancer. Our review coincides with the emergence of the
COVID-19 pandemic, during which there was a surge in
research interest within the biomedical sciences, particularly
related to the use of wearable technology in remote monitoring
of patients with cancer. The distribution of publications during
this period suggested that in the years 2020 to 2022 combined,
approximately one-quarter of the selected studies were
published, accounting for 25% (5/20) of our data set. The
majority were distributed between the years 2021 to 2023, which
collectively contributed to 75% (15/20) of the data quality
improvement strategies for wearable data preprocessing in
cancer care settings. In fact, 40% (8/20) of all selected studies
were published in 2023 alone, marking a substantial rise and
interest in this research domain.

Our findings reported the use of wearable technology across a
diverse range of cancer types. Predominantly, the category
encompassing “multiple types of cancer” accounted for 40%
(8/20) of the studies in this area. The remainder of the research
was distributed among specific types of cancer, with each
category’s contribution detailed as follows: breast cancer (3/20,
15%), terminal cancer (3/20, 15%), pancreatic cancer (2/20,
10%), blood cancer (1/20, 5%), colorectal cancer (1/20, 5%),
prostate cancer (1/20, 5%), and gynecologic cancer (1/20, 5%).
In addition, the recent literature indicated a trend toward
increased adoption of wearable technology for cancer

surveillance, signifying a growing recognition of the potential
benefits that wearables may offer in continuous patient
monitoring across heterogeneous cancer types.

The initial database search yielded 2147 studies, of which 20
(0.93%) met the inclusion criteria after screening and full-text
review (Figure 2). The included studies applied preprocessing
techniques to wearable sensor data from a range of cancer
populations, including breast, colorectal, gynecologic, and blood
cancers, as well as multiple other types of cancer. The most
commonly used wearable devices were actigraphy sensors and
consumer-grade fitness trackers, which provided data on
physical activity, sleep, heart rate, and other physiological
parameters.

Various preprocessing approaches are used in each of the
identified themes. The most common data transformation
approaches included fast Fourier transform [31], time-series
segmentation [33,34,39], and statistical feature calculation
[30,35,45]. However, for the data normalization techniques, z
score standardization and min-max normalization were the most
frequently reported scaling methods [32,37,43,46,49] and for
the data cleaning, imputation [30,37,40], outlier removal [36,46],
and artifact filtering [32,41] approaches were used. Notably,
25% (5/20) of the studies combined multiple preprocessing
techniques from different categories, suggesting that a
comprehensive approach to data preparation may be beneficial
[32,36,38,45,46]. However, there was significant heterogeneity
in the specific techniques used and their implementations across
studies, highlighting a lack of standardized preprocessing
pipelines for wearable sensor data in cancer care.

The preprocessing techniques were applied to support a range
of AI/ML applications, including treatment response prediction
[35,42], symptom monitoring [44,47], and survival analysis
[33,34]. The most common ML algorithms were random forests,
support vector machines, and deep learning models, such as
long short-term memory networks. However, few studies
directly compared the impact of different preprocessing
approaches on model performance, making it difficult to draw
conclusions about optimal techniques.
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Figure 2. PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) diagram for a scoping
review of biomedical scientific literature. ML: machine learning.

Figure 3. Relevant references by geographical location.

Major Themes Identified
Three major themes were identified, as outlined in Table 1: (1)
data normalization and standardization (8/20, 40% of papers),
(2) data transformation (12/20, 60% of papers), and (3) data
cleaning (8/20, 40% of papers). These were subcategorized
based on the preprocessing techniques. Data transformation
comprises studies related to dimensionality reduction, data
feature calculation, variable transformation, or domain

transformation. Data normalization and standardization included
data standardization or data normalization. The data cleaning
category included data filtering, outliers’ removal, imputation
techniques, missing data, and duplicate removal. Multiple
selected work categories were required to combine preprocessing
tasks encompassing the previous 3 mentioned categories while
addressing data quality issues [30-49], which are presented in
Tables 1 and 2.
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Table 2. A summary of relevant preprocessing elements on selected published works.

OutcomesFeatures extractedMissing data imputa-
tion technique

Exclusion criteriaTime resolutionReference

Death event predictionA combination of basic demograph-
ic data, clinical assessment data,
and wearable device data

Linear interpolationDays with no wear-
able device data up-
loaded

Each day was a data
point

Liu et al [30],
2023

RehabilitationStatistical gyroscopic-based fea-
tures obtained from all 3 axes (x,
y, and z)

Not applicableDetermine whether an
exercise is completed
correctly or incorrect-
ly

Data were sent at a
rate of 4 times per s

Zhao et al [31],
2022

Pain assessment12 features from the HRVa analy-
sis, 5 features from the photo-

Linear interpolationFeature pairing was
tested by Pearson cor-
relation coefficient
>0.9

A 2-min time window
before the beginning
of each session was
created

Moscato et al
[32], 2022

plethysmography morphological
analysis, 17 features from the
electrodermal activity, 3 features
from the temperature, and 2 fea-
tures from the activity index

Survival predictionPhysical activity, angle, and spinZero paddings until
the maximum length

Time series >500
timesteps

An average value of
20 timesteps within
total time shortened to
<500 timesteps

Yang et al [33],
2021

of the time series
was reached

Survival predictionPhysical activity, angle, and spin
and the clinical data from patients
were also considered

Zero padding was
used to reach the
maximum length of
the time series

Properly designed pa-
tients’admission crite-
ria

A mean of 20
timesteps was chosen
as the average value
for 3 time frames (12,
24, and 48 h)

Huang et al
[34], 2023

Pancreatectomy treat-
ment outcomes from
patients activity

First- and second-order statistical
features from the daily step count,

HRb, and sleep time–series data

Data-level and fea-
ture-level

Biobehavioral rhyth-
mic features were ex-
cluded due to the di-
mensions

Biobehavioral rhyth-
mic features were
computed for the en-
tire tested period, and
statistical and seman-

Cos et al [35],
2021

tic features were gen-
erated daily

Physical activity recog-
nition and energy expen-
diture estimation

Time and frequency domain fea-
tures

Not applicableData length <4 minExtracted relevant
features from a 16-s
window; data were
eventually smoothed

Davoudi et al
[36], 2021

with a 30-s running
average window

Algorithm validationStatistics from HR metrics and ac-
tivity levels

ThresholdingNonwear days were
identified and re-
moved before the
analysis

Disaggregating the
15-min step count da-
ta and simulating the
1-min step count time
series

Liu et al [37],
2020

Cancer- specific mortal-
ity prediction

Statistical features from (1) demo-
graphics, (2) self-report health and
lifestyle, (3) wearable data, and (4)
laboratory tests

Feature meanWear time per day
was <600 min

Not providedTedesco et al
[38], 2021

Salivary cortisol levels
on in patients with pan-
creatic cancer

Time and frequency domain fea-
tures from actigraphy and laborato-
ry tests

Not applicable9.5 h window size for
accelerometer data to
fit models

1-min epoch to aggre-
gate and synchronize
the raw actigraphy da-
ta

Dong et al [39],
2021

Exploratory machine
learning study

Sleep-based features and sleep-
wake transitional-related features

Average valuesData were excluded
from the 1-h period
before and after going
to bed

Numerical continuous
variables involving
sleep-wake times
were entered in the 24
h format

Patel et al [40],
2023

Diagnostic prediction

on CRCc older adults

Demographics, clinical features,
and wearable data

Not applicableData inconsistencies
removal

Not providedAsghari [41],
2021
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OutcomesFeatures extractedMissing data imputa-
tion technique

Exclusion criteriaTime resolutionReference

Postsurgery complica-
tions

Activity or steps related features
and clinical data

Majority classPeriods before admis-
sion

Three distinct types of
temporal segments for
weekly observations

Rossi et al [42],
2021

Rehabilitation studyStatistical parameters from ac-
celerometer readings

Spline interpolationUnknown data were
discarded from further
analysis

Acceleration data’s
sampling rate was 30
Hz

Vets et al [43],
2023

Physical activity moni-
toring on active treat-
ment

Step counts calculated on different
time windows

ThresholdingA decline of 1000
steps or more as a bi-
nary predictor among
participants

A window of 48 h fol-
lowing step count de-
cline

Feng et al [44],
2023

Recovery scoresFor health dot sensor: RRd, activi-
ty level (actlevel); for Elan wrist-
band: statistical parameters from
HR, and frequency domain fea-
tures

Not applicableEarly stopping algo-
rithm

The data were stored
at 1-s intervals

van den Eijnden
et al [45], 2023

Introductory paperLinear and nonlinear features from
the time-series temperature data

Not applicableOut-of-range tempera-
ture data discrimina-
tion

Temperature profiles
had values from 16
sensors gathered for 1
d at every 5-min inter-
val

S et al [46],
2020

Feasibility and events
prediction

Fatigue, physical function, anxiety,
mean daily HR, daily steps, sleep,
and time-related features

Not applicableDiscrimination of
days was applied to
unscheduled contacts

Each day was consid-
ered an observation

Barber et al
[47], 2022

Clinical complications
during treatment

Noninvasive monitoring of vital

signs and physical activity; SCCe

events

Not applicableData points reduction
due to interruptions

Raw signals were ac-
quired with a frequen-
cy of >30 Hz; calculat-
ed parameters were
stored with a rate of 1
Hz

Jacobsen et al
[48], 2023

Physical fitness assess-
ment

HR metrics, physical activity pa-
rameters, Blood Mass Index, and
blood oxygen statistical values

Majority classFeature selection for
redundancy removal

Sampling frequency

was 200 Hz for IMUf;
the HR was stored at
a sampling frequency
was 1 Hz

Li et al [49],
2023

aHRV: heart rate variability.
bHR: heart rate.
cCRC: colorectal cancer.
dRR: respiratory rate.
eSCC: serious clinical complications.
fIMU: inertial measurement unit.

Data Transformation
Zhao et al [31] reported a proof-of-concept for postoperative
rehabilitation in a small cohort of 4 patients with breast cancer,
using a prototype that used peak detection and Fourier transform
by switching time domain points of the 3D axis to a
predetermined frequency. Yang et al [33] hypothesized that
wristband actigraphy monitoring devices could predict
in-hospital death of end-stage multiple types of patients with
cancer during the hospitalization period admissions. To avoid
variations in each patient’s data length, zero padding was used
until the maximum length of the time series was reached [33].
Scoring systems, such as the Palliative Prognostic Index and
Palliative Performance Scale, were considered for fitting
machine learning models (MLMs) [33]. Huang et al [34]
reported a comparison study between the results of

wearable-based activity monitoring with traditional prognostic
tools for patients with end-stage cancer. In total 3 different time
frames were segmented for preprocessing [34]. A mean of 20
timesteps was selected as the average value for each of the 3
different time frames (48, 24, and 12 h) [34]. Zero padding was
used in the study by Huang et al [34], making it applicable to
data transformation. Cos et al [35] used a wearable device to
predict treatment outcomes in patients with pancreatic cancer,
standardizing data before using ML methods.

Dong et al [39] proposed a general predictive modeling process
that used actigraphy data to predict underlying salivary cortisol
levels using graph representation learning. The raw sensor data
were preprocessed using time window segmentation to reduce
noise in the data [39]. Rossi et al [42] focused on predicting
postdischarge oncologic surgical complications and their impact
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on patient outcomes. There were 3 distinct types of temporal
segments for each patient. They considered observations up to
the second week after discharge, treating each week as a distinct
observation [42].

Feng et al [44] evaluated the feasibility of daily step count
monitoring and the association between step counts and
treatment-emergent symptoms in patients with prostate cancer.
As shown in Table 1, the preprocessing technique could be
summarized as follows: (1) a decline of 1000 steps or more as
a binary predictor and (2) time window segmentation [44].
Jacobsen et al [48] impacted medical literature by proposing
self-supervised contrastive learning methods for hematological
malignancy treatments. Noninvasive monitoring of vital signs
and physical activity was recorded within serious clinical
complications in the input data set [48]. Data downsampling
was the selected preprocessing technique to eliminate physical
interruptions [48]. These studies collectively illustrated diverse
data transform methods, such as feature selection, time
segmentation, domain transformation, and time windowing, to
enhance wearable device data quality, making them more
suitable for AI/ML modeling aimed at predicting patient
outcomes in cancer care. In addition, these findings have
leveraged a range of wearable technologies and AI/ML methods
to advance cancer care. Techniques, such as peak detection and
Fourier transform have been used for data preprocessing,
supporting applications that include postoperative rehabilitation,
physical activity classification, prediction of treatment outcomes,
and assessment of cancer-specific mortality. These studies
highlight the potential of integrating high-dimensional wearable
data with clinical information to enhance patient monitoring
and prognosis.

Data Normalization and Standardization
Barber et al [47] assessed the feasibility of postoperative
intervention for patients with gynecologic cancer in a manner
similar to Zhao et al [31], incorporating patient-reported
outcomes and wearable activity data and also opting for
standardization and normalization of preprocessing methods.
Finally, Li et al [49] proposed a method using multimodel
decision fusion based on multisource data for physical fitness
assessment for patients with cancer. They enriched the raw data
by using Baseline, Synthetic Minority Over-sampling
Technique, random oversampling, adaptive synthetic
oversampling, and Mahalanobis Distance and Boundary
Constraints. The interval scaling method and z score
standardization after segmentation are the common methods in
the study by Li et al [49]. These additional investigations used
tailored data preprocessing approaches to further refine the
quality of wearable device data for subsequent analysis (eg,
data partitioning for training and testing).

Moscato et al [32] proposed an automatic pain assessment for
patients with cancer (21 in total) by using the Empatica
wristband. Because all physiological signals were recorded at
different sampling rates, different-order Butterworth filtering
with different cutoff frequencies was the data enrichment
selected method [32]. Each pulse was normalized with the z
score procedure and processed with an automated algorithm
that detects pulses suitable for heart rate variability analysis and

derived metrics [32]. Liu et al [37] aimed to develop an
unsupervised personalized sleep-wake identification algorithm
using multistage data to explore the benefits of incorporating
heart rate metrics and actigraphy data in these types of
algorithms for the general population. After nonwear exclusion,
there were 14 participants whose data qualified for analysis; 5
(36%) had high cholesterol, 6 (43%) participants had
hypertension, 3 (21%) had cancer, 2 (14%) had diabetes
mellitus, and 1 (7%) have had a stroke. They preprocessed the
step count data, and 2 schematic ML-based models were
designed by following the Markov model’s fundamentals. To
facilitate the fusion of step count and heart rate data in the
models, downscaling was used to deal with the multigranularity
data [37]. In addition, imputation techniques were implemented.
Tedesco et al [38] explored the prediction of cancer-specific
mortality over a 2- to 7-year period using a data set from a
longitudinal study of 2291 70-year-old Swedish patients,
integrating wearable and electronic health record data. They
applied standardization and normalization preprocessing
techniques within imputation.

Vets et al [43] aimed to determine the accuracy of a pretrained
laboratory-based MLM to distinguish functional from
nonfunctional arm motions through home interventions of
survivors from breast cancer populations. From the
accelerometer data, functional activity was defined using two
separate methods: (1) the counts threshold method, and (2) a
pretrained MLM [43]. Activity counts were calculated from the
raw acceleration data [43]. The outcome “total minutes active”
was calculated as the sum of the 1-second epochs where the
count threshold exceeded 1 [43]. Data normalization was the
final step before fitting AI/ML models. van den Eijnden et al
[45] created a model that predicted continuous recovery scores
(regressors) in perioperative care in the hospital and at home
for objective oncology-based decision-making. They
preprocessed data by obtaining a balanced split in which they
equally divided the demographic predictors and surgery type
into 2 groups by splitting the patients 10,000 times [45]. Finally,
authors standardized features by scaling the data to a normal
distribution with a mean of 0 and a unit variance [45]. S et al
[46] introduced a noninvasive wearable device developed as an
adjunct to current modalities to assist in the detection of breast
tissue abnormalities in any type of breast tissue. In the study,
data normalization and outliers’ removal were the data
transformation methods to enrich the quality of the collected
temperature data.

Data Cleaning
Liu et al [30] aimed to investigate the potential of using wearable
devices and AI/ML to predict death events among patients with
terminal cancer. To improve the model training, the authors
used imputation techniques [30]. The data set was a combination
of demographic, clinical, and wearable device data [30].
Davoudi et al [36] conducted a study comparing various
accelerometer placements in classifying physical activity and
associated energy expenditure among older adults. Of the 93
participants who completed the study, 27 (29%) were identified
with a range of cancer diagnoses. Raw data were cleaned using
bias reduction and eventually transformed by activity location
and vector magnitude calculation [36]. Similarly, Patel et al
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[40] sought to enhance prognostic tools by combining ML
analysis of actigraphy, sleep data, and routine clinical data with
a missing data imputation technique within averaging. Asghari
[41] proposed an internet of things–based predicting model to
predict colorectal cancer in older adults. The data preprocessing
phase was required to clean the sensed medical internet of things
data from the inconsistencies and the noises for the data mining

phase [41]. Outliers’ removal was the initial step selected for
preprocessing.

Accordingly, we proposed a generalized preprocessing
framework that comprises all 3 major data preprocessing themes
(Figure 4), reflecting the core elements that were consistently
reported across studies.

Figure 4. A general framework for data preprocessing techniques used to make noninvasive data collected from mobile health and wearable sensor
artificial intelligence and machine learning (AI/ML) ready in cancer monitoring applications.

Discussion

Principal Findings
In this paper, we conducted a scoping review of the
preprocessing techniques applied to wearable sensor data in
cancer care. Our findings revealed a significant rise in the use
of wearable sensors for patient monitoring, along with an
increase in preprocessing methods for data analysis over the
past 5 years. This likely stemmed from recent advancements in
sensor technology, greater emphasis on personalized and remote
patient care, the rising prevalence of big data analytics in health
care, and increasing recognition of real-time health data for
precision oncology.

Data transformation emerged as the most reported preprocessing
technique, representing approximately 60% (12/20) of the
literature findings. Most studies relied on data from
commercially available products, except a study by Zhao et al
[31], which assessed a prototype’s efficiency in a small cohort.
While published studies describing preprocessing methods for
wearable devices are growing, the diagnoses being studied
remain sparse and generally limited to single disease types or
settings.

The physiological data captured from wearables are typically
noisy, contain missing values, have outliers, redundant features,
and erroneous measurements [50,51]. On the basis of the

literature review in this paper, we found that various data
cleaning procedures are used to clean the wearable sensor data,
including data smoothing techniques (ie, moving average and
exponential moving average) to reduce short-term signal artifacts
and remove noise, removing duplicate entries, detection and
removal of erroneous measurements due to sensor
malfunctioning or losing contact of the sensor with skin or
wearing the watch on incorrect body location, and outlier
removal. The outlier removal for wearable data [52] in the
reviewed studies consists of the range inspection of
physiological parameter values with the clinically relevant range
or developing a threshold using statistical techniques to detect
outliers. Finally, missing data imputation is a critical component
of data cleaning due to their ability to handle complex missing
patterns as demonstrated in wearable-based data [53-57].

Our review suggests that the data cleaning procedures should
be carefully inspected and applied based on the data captured
from the wearables, as the captured data will produce false
conclusions and predictions without proper data cleaning
procedures, which is not acceptable in clinical research. In
addition, the outliers’ removal should be based on data behavior
and domain knowledge, as a region of anomaly is often within
the boundaries of normal patterns of physiological data; for
example, for the heart rate data, the normal behavior might
evolve, which can be considered anomalous behavior, and the
removal of data points leads to the loss of critical data. A
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generalized, automated, and adaptive data cleaning procedure
is required for the wearable data to address the issues that arise
due to improper data cleaning.

Time-series segmentation is the most used data transformation
technique in wearable research identified in the review,
necessitated by the multivariate nature of the data and varying
sampling rates. Segmentation can be based on study outcomes,
such as daily, hourly, or minute-by-minute intervals. Our review
indicates that the optimal time window size for segmentation
must be determined through experimentation to achieve the best
performance results. This window size varies across different
cancer cohorts and should be tailored to the specific data set
rather than relying solely on literature. The granularity of time
segmentation also affects feature extraction. For instance,
summary statistics like mean, median, SD, and minimum, and
maximum differ when calculated for daily versus hourly or
minute-by-minute windows. The reviewed literature [58-60]
also explores additional feature types, including frequency
domain features and linear and nonlinear features.

Data compliance is another major challenge in wearable studies
and has a profound impact on the study outcomes. Physiological
data captured from wearables are highly variable [61] and have
high noncompliance rates by the participants. The participants’
compliance determines the validity of the data collected from
the wearables and their utility. Different thresholds are
established for various parameters, such as daily wear time or
step counts to filter or preprocess the data [62-64]. This scoping
review suggests that we should strive to develop algorithms for
standardizing the physiological metrics collected, which includes
establishing thresholds for data inclusion based on compliance,
filtering data based on adequate wearable wear time in study
participants undergoing cancer per day and per week, percentage
of days on which wearable was worn by the participants,
inclusion and exclusion of data due to participant wearable
synchronization issues, etc. ML techniques can be exploited to
automate the data compliance assessments for different data
extracted in different types of cancer.

Finally, data normalization is critical to developing AI/ML-ready
data for the wearable studies. The data scaling helps not only
in building efficient and accurate MLMs but also removes the
effect of different scales and ranges in the model prediction.
Our review suggests that researchers should identify the
appropriate normalization technique for their study and
understand the data distribution and model results before and
after applying these techniques.

In summary, this scoping review identified 3 main categories
of preprocessing techniques: data transformation, data
normalization and standardization, and data cleaning, that have
been applied to wearable sensor data in cancer care. While these
techniques are commonly used to prepare data for AI/ML
analysis, there is a lack of standardization in their
implementation and limited evidence of their comparative
effectiveness. Moreover, wearable sensor data are highly
unstructured, complex, and messy because it is generated
continuously and with high frequency (thousands of observations
per second), leading to rich streams of time-series data. Thus,
there is an urgent need to develop novel preprocessing

procedures and frameworks, enhancing data quality and data
readiness for AI/ML applications in cancer research. Future
work should focus on developing validated preprocessing
pipelines and benchmarking their impact on AI/ML model
performance across diverse cancer populations and wearable
devices. By providing a generalizable framework, we aim to
accelerate the development of AI/ML models in not only cancer
care but also potentially other areas of health care that leverage
wearable sensor data. Researchers and clinicians can adapt this
framework to their specific needs, promoting standardization
while allowing for necessary customization.

Preprocessing Techniques for General mHealth
Applications
Preprocessing techniques have been a considerable topic of
interest in the research community within its integration with
the mHealth concept [65-67]. For example, cardiovascular
diseases and diabetes are 2 conditions that have benefited from
mHealth tools. In a study by Qaisar et al [68], an efficient
method for the diagnosis of arrhythmia based on
electrocardiogram inputs was proposed. The method combined
multivariate processing, wavelet decomposition, frequency
content-based subband coefficient selection, and ML techniques
for preprocessing. In a study by Efat et al [69], a smart health
monitoring tool for patients with diabetes was introduced. The
objective of the authors was to use continuous sensor monitoring
and processing with neural networks to provide a continuous
evaluation of the patient’s health risk status by considering the
patients’ noninvasive biometric data [69]. To improve data
quality, the authors used data transformation.
Photoplethysmography has been used for blood pressure
monitoring by incorporating the mHealth concept [70]. The
authors collected photoplethysmography signal data from
smartphones and passed them through a high-pass filter with a
cutoff frequency of 0.5 Hz. To filter out unwanted peaks and
create a smooth signal, a moving average filter with a span of
5 data points was applied to the signals before peak detection
was performed [70]. Peak detections were implemented by
finding the local maximum values in the signals [70]. The
incorporation of mHealth technology has brought several
efficient alternatives for health care engineering. In addition, it
becomes a challenging factor while addressing data quality
issues. The general health care sector has experienced
irregularities in converting raw data to suitable formats, there
is not an exceptional case in cancer monitoring.

Proposed Preprocessing Framework
To address the challenges and limitations identified in the
reviewed literature, we propose a general preprocessing
framework to develop AI/ML-ready data for mHealth cancer
monitoring applications. Figure 4 summarizes this framework
for noninvasive physiological monitoring data analysis. While
our framework is conceptually applied within the setting of
general oncology monitoring to fit AI/ML models, it could also
be applied in other disease settings by following the key
elements and steps of data preprocessing techniques.

Our proposed framework (Figure 4) synthesizes the best
practices identified in this review, offering a standardized
approach to preprocessing wearable sensor data. The
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framework’s strength lies in its flexibility and broad
applicability. While the framework was developed based on
cancer care applications, its fundamental components, data
cleaning, data transformation, and data normalization and
standardization, are relevant to a wide range of chronic diseases
that can benefit from continuous monitoring via wearable
sensors. By extracting raw wearable-based data from a
real-world scenario, as shown in this paper using the cancer
care setting, researchers should be able to reproduce available
preprocessing solutions to other settings that leverage wearable
sensor data. For instance, the data cleaning techniques identified
in cancer studies, such as handling missing data and removing
artifacts, are equally crucial in preprocessing data for heart
disease or diabetes monitoring. Similarly, the data
transformation methods, including feature extraction and
dimensionality reduction, can be adapted to extract relevant
biomarkers for various conditions. The framework’s emphasis
on data normalization and standardization ensures that regardless
of the specific disease context, the preprocessed data will be
suitable for AI/ML applications.

Data captured from wearable sensors (eg, sleep parameters,
heart rate, and steps) are unique in that they are collected
passively, nonobtrusively, and continuously in real-world
settings [71]. For cancer applications, the identification of
noninvasive biomarkers is an attractive tool for possibly
predicting clinical outcomes [72]. However, current challenges
of applying AI/ML techniques in the cancer research setting
include data quality issues, data dimensionality, diverse data
types, dynamic evolution of disease states, lack of labeled data,
frequent and irregular data sparsity, and data integration issues
[73]. Noninvasive wearables, such as fitness trackers,
smartwatches, and many medical monitoring devices, are built
using standardized design and manufacturing processes. These
standard processes pertain to aspects like how data are sampled
(sampling rate), how the wearables are constructed (structural
aspects), and how complex the devices are. Because of these
standardized methods, wearable devices can operate in a manner
that captures and provides data frequently, often in real time.
This continuous stream of data means that wearables are
consistently generating much information. Wearable
technologies are still in their infancy in cancer research because
they have not been widely implemented on patients diagnosed
with oncology diseases. In addition, they still face challenges
in being effectively used for cancer research because of
difficulties in data collection, limited types of data captured,
and the scattered nature of the data storage.

Strengths and Limitations of the Review and
Preprocessing Techniques
Our review provides a valuable synthesis of current
preprocessing practices for wearable sensor data in cancer
applications and highlights key opportunities for standardization
and future research. By transparently reporting our methods and
potential biases, we aim to support the interpretability and
trustworthiness of our findings. Prior research has primarily
focused on ML methods rather than emphasizing on

standardized preprocessing techniques to make the data AI/ML
ready. Key strengths and limitations are summarized in
Multimedia Appendix 3. In addition, we point out potential
factors that may influence the validity of our scoping review.

First, despite our comprehensive search strategy across multiple
databases, it is possible that some relevant studies were not
captured, particularly if they were published in nonindexed
journals or as gray literature. However, we believe the risk of
missing significant preprocessing methodologies is low given
the breadth of our search and focus on peer-reviewed articles.

Second, categorizing preprocessing techniques required some
subjective interpretation, as nomenclature was not always
consistent across studies. We mitigated this by having multiple
authors independently classify techniques and resolve
discrepancies through discussion. Nonetheless, some overlap
between categories may remain. The framework we proposed
offers a generalizable taxonomy but should be further validated
and refined as the field evolves.

Third, our analysis was limited to assessing the reported
preprocessing workflows in each study. Without access to the
underlying data sets and code, we could not directly compare
the effectiveness or reproducibility of different techniques.
Quantitative benchmarking of preprocessing methods on
standardized wearable data sets would be a valuable direction
for future work to provide more objective guidance for
researchers.

Conclusions
Herein, we conducted a scoping review of preprocessing
techniques by focusing exclusively on enhancing raw data from
wearables before fitting AI/ML models. Recently, there has
been a worldwide interest in the data quality improvement
elements in the biomedical area. Our review identified 3
different preprocessing categories applicable to cancer care.
Data preprocessing plays a fundamental role in the knowledge
discovery from analyzing cancer-related data, especially when
data are captured from wearables. A general framework within
conventional preprocessing tasks, including data cleaning, data
transformation, and data normalization and standardization, has
been proposed with a detailed preprocessing pipeline well
described. However, due to the diversity of oncology diseases,
we validated the availability of significant challenges in
preprocessing technique implementation for AI/ML readiness.
These methods can bring significant research outcomes across
the enhancement of wearable data while addressing data quality
issues through different data sets with diverse specifications.
The general preprocessing framework proposed in this study
represents a significant step toward standardizing the preparation
of wearable sensor data for AI/ML applications. While
developed in the context of cancer care, its principles are broadly
applicable and adaptable to other chronic diseases requiring
continuous monitoring. Future research should focus on
validating and refining this framework across diverse health
care contexts, potentially leading to more efficient and effective
use of wearable sensor data in precision medicine.
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Abbreviations
AI/ML: artificial intelligence and machine learning
mHealth: mobile health
MLM: machine learning model
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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