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Abstract

Background: Smartphone apps and wearable activity trackers are increasingly recognized for their potential to promote physical
activity (PA). While studies suggest that the use of commercial mobile health tools is associated with higher PA levels, most
existing evidence is cross-sectional, leaving a gap in longitudinal data.

Objective: This study aims to identify app-use patterns that are prospectively associated with increases in and maintenance of
PA. The primary objective was to test whether continued app use is linked to adherence to the recommended PA levels (ie, 23
metabolic equivalent task [MET] hours per week for adults or 10 MET hours/week for individuals aged >65 years) during a
follow-up assessment. The secondary objective was to explore which functions and features of PA apps predict changes in PA
levels.

Methods: A 2-wave longitudinal survey was conducted, with baseline and follow-up assessments separated by 6 months. A
total of 20,573 Japanese-speaking online respondents participated in the baseline survey, and 16,286 (8289 women; mean age
54.7 years, SD 16.8 years) completed the follow-up. At both time points, participants reported their current PA levels and whether
they were using any PA apps or wearables. Each participant was classified into 1 of the following 4 categories: continued users
(those using apps at both the baseline and follow-up; n=2150, 13.20%), new users (those who started using apps before the
follow-up; n=1462, 8.98%), discontinued users (those who had used apps at baseline but not at follow-up; n=1899, 11.66%), and
continued nonusers (those who had never used apps; n=10,775, 66.16%).

Results: The majority of continued users (1538/2150, 71.53%) either improved or maintained their PA at the recommended
levels over 6 months. By contrast, discontinued users experienced the largest reduction in PA (−7.95 MET hours/week on average),
with more than half failing to meet the recommended levels at the follow-up (n=968, 50.97%). Analyses of individual app functions
revealed that both energy analysis (eg, app calculation of daily energy expenditure) and journaling (eg, users manually entering
notes and maintaining an exercise diary) were significantly associated with increases in PA. Specifically, energy analysis was
associated with an odds ratio (OR) of 1.67 (95% CI 1.05-2.64, P=.03), and journaling had an OR of 1.76 (95% CI 1.12-2.76,
P=.01). By contrast, individuals who maintained the recommended PA levels at the follow-up were more likely to use the goal
setting (OR 1.73, 95% CI 1.21-2.48, P=.003), sleep information (OR 1.66, 95% CI 1.03-2.68, P=.04), and blood pressure recording
(OR 2.05, 95% CI 1.10-3.83, P=.02) functions.

Conclusions: The results highlight the importance of continued app use in both increasing and maintaining PA levels. Different
app functions may contribute to these outcomes, with features such as goal setting and journaling playing a key role in increasing
PA, while functions related to overall health, such as sleep tracking and blood pressure monitoring, are more associated with
maintaining high PA levels.

(JMIR Mhealth Uhealth 2024;12:e59708) doi: 10.2196/59708
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Introduction

Background
Physical inactivity is highly prevalent in modern society, with
an average global prevalence of 31% [1]. It is associated with
noncommunicable diseases such as stroke, hypertension, and
diabetes [2] and is now the fourth leading risk factor for
mortality [3]. To promote physical activity (PA), behavior
change techniques (BCTs) have been developed [4], which can
be delivered either in-person (eg, by health care professionals)
or digitally (eg, through smartphones and wearable activity
trackers). These digital mobile health (mHealth) interventions
are expected to play a pivotal role in promoting PA, particularly
during and after the COVID-19 pandemic, when in-person
contact is highly restricted. These digital PA tools typically
offer measurement and monitoring (eg, activity logs),
information and analysis (eg, progress and individual exercise
data), and support and feedback (eg, advice on PA and goal
setting) [5]. The most frequently implemented BCTs include
self-monitoring, providing feedback on performance, and
goal-setting [6]. Observational studies have found that fitness
app users are more physically active than nonusers [7], with
app users having approximately twice the odds of meeting
aerobic PA guidelines compared with nonusers, even during
the COVID-19 pandemic [8]. One important limitation in the
literature is that most studies on PA apps (and health care apps
in general) have used a cross-sectional design, meaning
longitudinal evidence is still lacking. We aimed to fill this gap
and investigate whether, and how, daily use of PA apps and
wearables (not necessarily as part of a clinical intervention or
treatment) is prospectively associated with increased levels of
PA.

How Effective Is an mHealth Intervention? Evidence
From Clinical Trials
A large number of randomized and nonrandomized trials have
been published on this topic, not limited to daily use of
commercial PA apps and wearables. To our knowledge, 3
umbrella reviews have been conducted, focusing on digital
interventions for improving PA. An early umbrella review [9]
synthesized 11 systematic reviews and meta-analyses on eHealth
or mHealth interventions targeting PA, sedentary behavior, and
healthy eating for healthy individuals. The authors concluded
that the majority of eHealth/mHealth interventions were reported
as effective, although high heterogeneity was observed across
multiple studies. Another umbrella review [10] focused on
interventions using wearable activity trackers to improve PA.
A synthesis of 39 systematic reviews and meta-analyses
indicated a moderate effect size (standardized mean difference
0.3-0.6). A more recent umbrella review [11] identified 17
systematic reviews and meta-analyses on digital interventions
specifically targeting PA and sedentary behavior to prevent or
manage noncommunicable diseases. The results suggest that
digital interventions have a small to moderate effect on

increasing PA, although heterogeneity is documented across
multiple reviews. For example, 3 systematic reviews concluded
that mHealth interventions are effective, particularly those
involving gamification [12], personalization [13], or delivery
in workplace settings [14]. By contrast, a meta-analysis [15]
found no significant effects of mobile interventions on total PA,
moderate to vigorous PA, or walking. Similarly, a review of
mHealth interventions equipped with social features found a
nonsignificant effect on PA outcomes [16].

Researchers have also explored specific components or features
of apps and wearables that are key to improving PA. Apps and
digital interventions offering richer content and a larger number
of BCTs are found to be more favored by users [17] and are
associated with better health outcomes [18,19], although users
also appreciate simplicity (eg, ease of use) [20]. Researchers
have also found that certain app features and characteristics are
more favored than others, such as data export, usability, and
cost [20]; tracking (eg, steps, heart rate, and ovulation) [21,22];
and health information and medical reminders [23]. However,
the umbrella reviews [9,11] concluded that the evidence for the
effectiveness of specific BCTs or combinations of BCTs in
digital PA interventions is largely mixed. In the search for
successful digital implementations of BCTs, meta-regressions
and systematic reviews highlighted the importance of behavioral
goals and self-monitoring [24]; SMS text messaging,
personalization, goal setting and planning, and graded tasks
[25]; goal setting, prompts/cues, feedback on behavior, and
action planning [26]; and personalized goal setting with
motivational feedback [27]. By contrast, several meta-analyses
reported no significant associations between intervention
efficacy and the number or types of BCTs implemented [28,29].

Note that these analyses typically targeted clinical trials focused
on specific populations, such as patients, older adults, and
individuals with low socioeconomic status. Only a few studies
have investigated how the spontaneous use of commercial apps
and wearables can help improve PA in a community sample.
Investigating app use in uncontrolled settings is particularly
important to assess the potential efficacy of PA apps and
wearables on the market. Studies have highlighted substantial
differences in user behavior between controlled clinical contexts
and real-world settings. For example, the average retention rate
of mHealth interventions in published randomized controlled
trials is about 91% [25], which is surprisingly high compared
with the user engagement observed with commercial health care
apps (eg, 4%, the median percentage of daily active users of
mental health apps) [30]. An exceptional longitudinal study
[31] investigated user engagement with a commercial app that
rewards users with digital incentives for walking. The results
showed that 60% of participants engaged with the app for at
least 6 months. Interestingly, users who actively engaged with
the app experienced larger increases in daily step count
compared with less frequent users. These findings highlight the
importance of continuous, long-term use of PA apps or
wearables for users to fully benefit from these digital tools.
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Study Overview
The general purpose of this study was to identify app-use
patterns prospectively associated with increased levels of PA.
To achieve this, we conducted a 2-wave longitudinal survey
with a 6-month interval. At each survey point, participants
reported their current levels of PA and whether they were using
any PA apps or wearables. Each participant was classified into
1 of 4 categories: continued users (those who used apps or
wearables at both baseline and follow-up), new users (those
who started using apps before the follow-up), discontinued users
(those who used apps at baseline but not at follow-up), and
continued nonusers (those who had never used apps). We were
particularly interested in (1) whether continued and new users
would increase their PA levels or maintain high-level PA at the
6-month follow-up, and (2) whether any features of the PA apps
would predict increases in PA.

Our recent cross-sectional study found that users typically
engaged with a limited number of functions within an app
(median 2 functions, IQR 1-4 functions). Physically active users
tended to use functions such as sensor information (eg, step
count and heart rate), goal setting (eg, setting a daily step goal),
energy analysis (eg, estimating calories burned), journaling (eg,
manually recording daily exercise), and global positioning
system (GPS)/maps. We did not have a specific hypothesis
regarding the prospective effects of individual app functions,
so the overall analyses were conducted in an exploratory
manner. However, we expected that sensor information (closely
related to self-monitoring/tracking in the BCT taxonomy) and
other functions implementing regulatory techniques [32] would
be associated with increases in PA. Additionally, we expected
that the number of functions might be linked to PA increases,
as some studies have suggested that the amount of app content
or the number of implemented BCTs is associated with the
efficacy of mobile interventions [18,19].

Objectives
In this study, we had 2 objectives: the primary objective was to
investigate whether new and continued users would increase
PA or maintain high levels of PA over 6 months. The secondary
objective was to identify the functions and features of PA apps
that would predict increases in and maintenance of PA.

Methods

Participants and Procedure
Participants were recruited from the respondents who completed
the first (baseline) survey, the results of which have been
published elsewhere [33,34]. The baseline survey was conducted
in 2023. Invitations to participate were sent to potential
participants (residents of Japan who were registered in a
database for online surveys) [33,34]. At baseline, 20,573 online
respondents completed questionnaires regarding general health
and health-related behaviors, including PA levels and use of
mHealth apps. The only eligibility criterion was age (>18 years),
with no additional criteria. Proficiency in Japanese was assumed,
as the survey was written in Japanese. All participants were
invited to the second (follow-up) survey, which took place
approximately 6 months after the baseline survey. The follow-up

survey, which included the same questions on PA and mHealth
use, was completed by 16,286 of the 20,573 participants. Data
from those who completed the follow-up were used for statistical
analyses. Because of the online nature of the surveys, the reasons
for dropout could not be tracked. Specifically, we had no means
of reminding participants about the follow-up survey other than
via email. Tracking dropouts was technically impossible, as
they no longer responded to our emails. Participants received
a small compensation for each survey (an online shopping
voucher valued at approximately US $0.31).

Ethics Approval
The study protocol was approved by the Ethics Committee of
the National Institute of Advanced Industrial Science and
Technology (approval ID 2022-1279).

Measures

International Physical Activity Questionnaire-Short
Form
At each survey, participants reported how many days and
minutes per day they engaged in (1) walking, (2)
moderate-intensity activity, and (3) vigorous-intensity activity
over an average week [35,36]. The reported duration and
frequency of each activity were then multiplied and converted
into metabolic equivalent task (MET) hours per week. To
determine whether each participant had a sufficient level of PA,
the MET score was dichotomized to represent adherence to the
national PA criteria recommended by the Ministry of Health,
Labour and Welfare of Japan: 23 MET hours/week for adults
aged <65 years and 10 MET hours/week for older adults [37].
Although there has been debate about dichotomization, we chose
this approach because using an established cutoff helps clarify
whether each participant achieved a clinically meaningful level
of PA. Another advantage is that it explicitly distinguished those
who maintained low or high levels of PA over time, which could
not be separated using a simple numeric change score.

Stages of Change Questionnaire
Participants completed the Japanese version [38] of the Stages
of Change questionnaire for PA, based on the transtheoretical
model [39,40]. The questionnaire asked participants to select
the most applicable statement from the following 5 statements:
I currently do not exercise and do not intend to start exercising
in the future (Precontemplation); I currently do not exercise but
I am thinking about starting to exercise in the next 6 months
(Contemplation); I currently exercise some, but not regularly
(Preparation); I currently exercise regularly, but have only begun
doing so within the last 6 months (Action); and I currently
exercise regularly and have done so for longer than 6 months
(Maintenance). Regular exercise was explicitly defined in the
questionnaire instructions as engaging in PA for at least 20
minutes, twice or more per week.

Use of Apps and Wearables
At baseline, participants provided a binary response indicating
whether they used any apps or wearables to support their PA
and exercise. Those who answered affirmatively were then
asked for details on how they used the apps and wearables. The
questions included the duration of app use, with the following
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response options: <1 week, <1 month, <3 months, <6 months,
<1 year, and ≥1 year. Participants were also asked about the
functions and features of the apps they were using. They were
presented with a list of 41 app functions (eg, sensor information,
goal setting, and energy analysis) [33] and indicated any that
applied to their usage [20,29]. However, as most of the listed
functions were rarely used [33], we focused exclusively on the
most frequently used functions for the current analysis: sensor
information (eg, step count and heart rate), goal setting and
progress tracking (eg, steps achieved), energy analysis (eg,
estimated daily energy expenditure), weight recording,
journaling (eg, manually entered diary or notes), GPS/maps,
sleep information, reward points, and blood pressure recording.

At the 6-month follow-up, participants completed a similar
questionnaire asking whether they were using apps and
wearables. Unlike at baseline, participants were given 3 response
options: (1) have been using apps and wearables for the past 6
months, (2) used them previously but no longer, and (3) have
never used any app or wearable. Participants were also asked
about the duration and frequency of app use (ie, how long and
how often they had used/been using the app). However,

questions regarding individual app functions and features were
omitted due to limited space in the follow-up survey.

Responses from baseline and follow-up were interpreted as a
2×2 factorial matrix (user vs nonuser; baseline vs follow-up),
classifying each participant into 4 categories (Figure 1): new
users (those who began using apps before the follow-up),
continued users (those who used apps or wearables at both
baseline and follow-up), discontinued users (those who used
apps at baseline but not at follow-up), and continued nonusers
(those who never used apps). Participants who indicated at
follow-up that they had used apps or wearables but were no
longer using them (ie, those who selected option 2) were
classified as discontinued users if they were identified as app
users at baseline. If they were identified as nonusers at baseline,
they were excluded from the statistical analyses for ease of
interpretation. These participants were considered temporary
app users—they may have used apps for a short period between
baseline and follow-up but did not show significant changes in
PA levels (P=.29; see Figure S1 in Multimedia Appendix 1 for
details). We did not consider their usage comparable to that of
the other participant groups.

Figure 1. Overview of user type classification.

Statistical Analyses
First, we explored demographic and descriptive differences
between the 4 types of users based on gender, age, education
level, household income, PA level, and readiness. Second,
logistic regression analyses were conducted to examine how
continued and discontinued app usage are associated with
changes in PA levels. Two binary dependent variables were
used to represent the following contrasts: (1) individuals who
maintained underrecommended levels of PA (<23 or 10 METs)
at the 6-month follow-up versus those who increased their PA
to recommended or higher levels over time, and (2) individuals
who maintained the recommended PA levels versus those who
showed decreases and no longer met the recommended levels
at follow-up. We also calculated simple change scores for PA
(follow-up minus baseline) to clarify the magnitude of change
experienced by each type of user over time. Finally, 2
independent logistic regression analyses were conducted to

determine which app features were associated with changes in
PA levels. The logistic regression models predicted the 2 binary
dependent variables, specifically changes in (and maintenance
of) adherence to the recommended PA levels, based on the
individual 10 app features and functions used at baseline. All
analyses were conducted using R (version 4.2.2; R Foundation)
with the following specific packages: chisq.posthoc.test [41],
finalfit [42], ggpubr [43], and tidyverse [44].

Results

Demographics
Table 1 shows the demographic characteristics for each type of
app users (N=16,286). We identified 1462 (8.98%) new users,
2150 (13.20%) continued users, 1899 (11.66%) discontinued
users, and 10,775 (66.16%) continued nonusers in the data set.
A 1-way analysis of variance indicated significant age
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differences between the user types (partial η2=.009, P<.001),
implying that new users were older than continued users and
continued nonusers, and discontinued users were the youngest
among the 4 types of users (P<.001; adjusted by the Tukey
method). The descriptives per age group showed that, among
older participants (eg, ≥60 years) who were identified as app
users at baseline, 899 continued app use to follow-up, whereas
675 discontinued their use. Younger app users at baseline (eg,
<30 years) were, however, more likely to discontinue than
continue app use (n=250 vs 203). Chi-square tests revealed
overall significant gender differences (P<.001). Residual
analyses detected significant gender differences (P<.001) within

continued users, men (1295/2150, 60.23%) versus women
(855/2150, 39.77%). However, within continued nonusers,
women (5770/10,775, 53.55%) were more dominant than men
(5005/10,775, 46.45%; P<.001). Furthermore, continued users
were the most prevalent among individuals with the highest
household income (≥10 million JPY; 1 JPY=US $0.0065) and
education level (university or above). At baseline, most
continued users (1609/2150, 74.84%) reported that they had
been using an app for longer than 6 months (1128/1899, 59.39%,
for discontinued users). Similarly, most continued users
(1654/2150, 76.93%) reported using a PA app once or more
each day (1153/1899, 60.71%, for discontinued users).
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Table 1. Demographic statistics of app users and nonusers.

F test or chi-square (df),
P value

Total (N=16,286)Current nonuserCurrent app userVariable

Continued nonus-
er (nonuser at
baseline;
n=10,775)

Discontinued us-
er (user at base-
line; n=1899)

New user (nonus-
er at baseline;
n=1462)

Continued user
(user at baseline;
n=2150)

50.16a (3, 16,282),
<.001

54.7 (16.8)55.2 (16.7)50.9 (17.3)57.3 (16.8)53.8 (16.3)Age (years), mean (SD)

161.86 (9), <.001Age (years; categorical), n (%)

1544 (9.48)965 (8.96)250 (13.16)126 (8.62)203 (9.44)<30

3273 (20.10)2093 (19.42)502 (26.43)226 (15.46)452 (21.02)30-44

4260 (26.16)2859 (26.53)472 (24.86)333 (22.78)596 (27.72)45-59

7209 (44.27)4858 (45.09)675 (35.55)777 (53.15)899 (41.81)≥60

142.56 (3), <.0018289 (50.90)5770 (53.55)915 (48.18)749 (51.23)855 (39.77)Women, n (%)

7.27a (3, 16,282), <.00122.1 (3.7)22.0 (3.7)22.3 (3.8)22.3 (3.9)22.4 (3.5)BMI, mean (SD)

30.68 (3), <.00110,520 (64.60)6846 (63.54)1213 (63.88)964 (65.94)1497 (69.63)Married, n (%)

14.48 (3), .00210,389 (63.79)6782 (62.94)1211 (63.77)984 (67.31)1412 (65.67)Child/childrenb, n (%)

231.79 (12), <.001Education level, n (%)

391 (2.40)290 (2.69)38 (2.00)36 (2.46)27 (1.26)Middle school

5047 (30.99)3546 (32.91)531 (27.96)453 (30.98)517 (24.05)High school

3682 (22.61)2572 (23.87)441 (23.22)287 (19.63)382 (17.77)College or vocation-
al school

7040 (43.23)4293 (39.84)864 (45.50)673 (46.03)1210 (56.28)University or above

126 (0.77)74 (0.69)25 (1.32)13 (0.89)14 (0.65)Other

146.85 (3), (<.001)391 (2.40)290 (2.69)38 (2.00)36 (2.46)27 (1.26)Job, n (%)

335.43 (15), (<.001)Household income, n (%)

3545 (21.77)2487 (23.08)416 (21.91)320 (21.89)322 (14.98)<3 million JPYc

3957 (24.30)2656 (24.65)455 (23.96)350 (23.94)496 (23.07)3-5 million JPY

2438 (14.97)1550 (14.39)295 (15.53)228 (15.60)365 (16.98)5-7 million JPY

1910 (11.73)1135 (10.53)236 (12.43)179 (12.24)360 (16.74)7-10 million JPY

1313 (8.06)701 (6.51)183 (9.64)115 (7.87)314 (14.60)≥10 million JPY

3123 (19.18)2246 (20.84)314 (16.54)270 (18.47)293 (13.63)No response

1239 (3), <.00116.5 (3.3-41.7)11.6 (0.6-33.0)23.3 (7.7-53.5)23.3 (9.9-49.6)34.6 (16.5-67.1)Physical activity (base-
line, MET hours/week),
median (IQR)

1419.6 (3), <.00114.8 (1.1-38.1)9.9 (0.0-29.7)16.5 (2.5-43.1)24.2 (11.6-51.7)34.0 (16.2-65.2)Physical activity (follow-

up, MET hours/weekd),
median (IQR)

aF test.
bData are from a follow-up survey.
c1 JPY=US $0.0065.
dMetabolic equivalent task hours per week.

Relationship Between App Use and Adherence to the
Recommended PA Level
Table 2 illustrates changes in PA levels for each user type over
6 months. Continued nonusers generally maintained

underrecommended levels of PA over time (5259/10,775,
48.81%). Among the 4 types of users, new users had the largest
proportion of individuals who increased their PA to
recommended levels (178/1462, 12.18%), although achieving
these levels was uncommon in the current sample. Continued
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users typically maintained the recommended PA levels over
time (1327/2150, 61.72%), while discontinued users had the

largest proportion of individuals who failed to adhere to the
recommended levels at follow-up (330/1899, 17.38%).

Table 2. The number of participants who increased, decreased, or maintained physical activity over 6 months as a function of the app user types.a

Current nonuserCurrent userPA change category (baseline → follow-up)

Continued nonuser
(n=10,775), n (%)

Discontinued user
(n=1899), n (%)

New user (n=1462),
n (%)

Continued user
(n=2150), n (%)

5259 (48.81)638 (33.60)370 (25.31)390 (18.14)Maintained underrecommended level (not adhered → not
adhered)

931 (8.64)159 (8.37)178 (12.18)211 (9.81)Increased (not adhered → adhered)

1269 (11.78)330 (17.38)144 (9.85)222 (10.33)Decreased (adhered → not adhered)

3316 (30.77)772 (40.65)770 (52.67)1327 (61.72)Maintained recommended level (adhered → adhered)

aAdherence to the recommended physical activity level is equal to or larger than 23 metabolic equivalent task hours per week for adults or 10 metabolic
equivalent task hours per week for older adults aged ≥65 years.

Logistic regression analyses were performed to examine how
the 4 types of users were associated with adherence to the
recommended PA levels (23 or 10 MET hours/week) over 6
months (primary objective). Discontinued users were used as
the reference group, as they showed the largest proportion of
individuals who decreased their PA to underrecommended levels
at follow-up. Results (Table 3) showed that, compared with
discontinued users, continued users (odds ratio [OR] 2.171,
95% CI 1.71-2.76, P<.001) and new users (OR 1.93, 95% CI
1.50-2.48, P<.001) were more likely to increase PA to the

recommended levels at follow-up. Continued nonusers,
compared with discontinued users, were more likely to maintain
underrecommended PA levels at follow-up (OR 0.71, 95% CI
0.59-0.86, P<.001). Another logistic regression analysis showed
that continued users (OR 2.56, 95% CI 2.11-3.10, P<.001) and
new users (OR 2.29, 95% CI 1.84-2.85, P<.001) were more
likely to maintain the recommended PA levels compared with
discontinued users. Continued nonusers did not significantly
differ from discontinued users (OR 1.12, 95% CI 0.97-1.29,
P=.11).

Table 3. Logistic regressions predicting physical activity changes based on 23 (or 10) metabolic equivalent task hours per week.

P valueOdds ratio (95% CI)Outcome and predictor

Increased to versus maintained at below the recommended level (n=8136)

<.0010.249 (0.209-0.297)Intercept (reference: discontinued user)

<.0012.171 (1.705-2.763)Continued user

<.0011.930 (1.504-2.477)New user

<.0010.710 (0.589-0.857)Continued nonuser

Maintained the recommended level versus decreased (n=8150)

<.0012.339 (2.056-2.661)Intercept (reference: discontinued user)

<.0012.555 (2.109-3.096)Continued user

<.0012.286 (1.835-2.847)New user

.1331.117 (0.967-1.290)Continued nonuser

Changes in PA Level at the 6-Month Follow-Up
We then calculated the simple change scores for PA levels (ie,
follow-up minus baseline in MET hours/week) to estimate the
changes experienced by each user type over 6 months (Figure
2). New users were the only group to show increases in PA

levels (mean 1.71, SD 57.76), which was significantly larger
than the changes (decreases) observed in continued nonusers
(mean –2.95, SD 50.76; t1,780.5= 2.94, P=.003). Continued users
showed a decrease in PA on average (mean –3.85, SD 58.53),
while discontinued users exhibited even larger decreases (mean
–7.95, SD 60.52; t3,949.1=2.19, P=.03).
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Figure 2. Change in physical activity level (in METs hours/week) at the 6-month follow-up among the 4 types of users and nonusers. The error bar
indicates the SE. MET: metabolic equivalent of tasks.

Function-Wise Analyses Predicting Changes in PA
At baseline, app users most frequently reported using sensor
information, followed by goal setting, goal progress, energy
analysis, and weight recording (see Table S1 in Multimedia
Appendix 1 for details). To explore which app functions are
associated with increases in or maintenance of PA levels
(secondary objective), we estimated 2 logistic regression models.
These analyses targeted continued users exclusively (ie,
individuals who reported using apps at both baseline and
follow-up), with nonusers excluded. The results (Table 4)
showed that energy analysis and journaling were significantly

associated with increases in PA to the recommended levels (OR
1.67, 95% CI 1.05-2.64, P=.03 and OR 1.76, 95% CI 1.12-2.76,
P=.01, respectively). Maintenance of the recommended levels
(vs a decrease to underrecommended levels) was predicted by
goal setting (OR 1.73, 95% CI 1.21-2.48, P=.003), sleep
information (OR 1.66, 95% CI 1.03-2.68, P=.04), and blood
pressure recording (OR 2.05, 95% CI 1.10-3.83, P=.02). We
also tested the association between the number of app functions
in use (at baseline) and changes in PA level (simple change
score, ie, follow-up minus baseline) among continued users,
which did not reach statistical significance (r=–0.02, P=.48).
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Table 4. Logistic regression predicting physical activity change based on 23 metabolic equivalent task hours per week.

P valueOR (95% CI)Outcome and predictor

Increased to versus maintained at below the recommended level (n=601)

.971.008 (0.694-1.464)Show sensor info

.981.005 (0.649-1.557)Goal setting

.351.243 (0.789-1.957)Show goal progress

.031.665 (1.051-2.637)Energy analysis

.340.785 (0.474-1.299)Weight recording

.011.755 (1.116-2.760)Journaling

.740.922 (0.567-1.500)Global positioning system/maps

.970.991 (0.624-1.573)Show sleep info

.271.350 (0.790-2.308)Reward points

.191.574 (0.795-3.117)Blood pressure recording

Maintained the recommended level versus decreased (n=1549)

.251.200 (0.878-1.640)Show sensor info

.0031.729 (1.206-2.480)Goal setting

.161.307 (0.900-1.897)Show goal progress

.900.975 (0.672-1.416)Energy analysis

.481.164 (0.766-1.770)Weight recording

.661.086 (0.748-1.575)Journaling

.071.484 (0.963-2.287)Global positioning system/maps

.041.658 (1.025-2.684)Show sleep info

.621.127 (0.701-1.812)Reward points

.022.046 (1.095-3.825)Blood pressure recording

Discussion

Principal Findings
This study investigated whether continued use of commercial
PA apps and wearables over 6 months contributes to increasing
or maintaining PA levels. Overall, the results emphasize the
importance of continued app use in maintaining PA levels. Most
continued users (1538/2150, 71.53%) either maintained or
improved their PA to the recommended levels over 6 months,
whereas 51% (968/1899) of discontinued users failed to meet
the recommended levels at follow-up (compared with 797/1899,
41.96%, who were nonadherent at baseline). New users were
found to experience the largest increase in PA levels, while
discontinued users showed the largest reduction among the 4
types of users. These results suggest that individuals who
recently started using apps and wearables saw the greatest
improvement in their PA levels. By contrast, continued app use
helped maintain PA levels (despite slight decreases), whereas
discontinuation led to a substantial reduction in PA levels,
equivalent to a decrease of more than 1 hour of vigorous PA
per week [45].

Characteristics of Continued Versus Discontinued
Users
More than half (2150/4049, 53.09%) of the app users identified
at baseline reported continuing to use the app at the 6-month

follow-up. While this retention rate may seem high compared
with the reported daily engagement rates for health care apps
[30], it is comparable to the 60% active user engagement rate
observed in a longitudinal study of a commercial PA app over
6 months [31]. Our analysis of the demographic characteristics
of continued (vs discontinued) users indicated that continued
users were older, more likely to be men, and had higher
education levels and incomes. Previous cross-sectional studies
have found that mHealth/eHealth users tend to be younger, more
educated, and have higher (digital) health literacy than nonusers
[46-48]. Educational attainment is thought to reflect both literacy
and skills (including confidence with digital and smart devices)
as well as social norms related to the perceived value of health
[47]. In general, women are the dominant users of health care
apps (for diet, nutrition, and self-care), while fitness apps tend
to be more popular among men [46]. Older adults typically
avoid new technologies and mHealth services [49]. However,
our results showed that continued users were more prevalent
than discontinued users among older participants, suggesting
that older users were more likely to continue using apps. We
do not have data to readily explain this unexpected finding.
However, given that most of the continued users in our data had
already been using PA apps for a long time (>6 months) at
baseline, even older users may have developed high self-efficacy
and perceived ease of use, which could reduce technology
anxiety. Studies have identified various facilitators and barriers
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to technology adoption among older adults (eg, personal
experiences and subjective norms) [50], which could serve as
a basis for future research to explore how older users
successfully adapt and integrate mHealth tools into their daily
routines.

App Functions Predictive of an Increase in PA
We found that energy analysis and journaling were predictive
of increases in PA to the recommended levels over 6 months.
Additionally, goal setting, sleep information, and blood pressure
recording were commonly used by individuals who maintained
the recommended PA levels at follow-up. In a previous
cross-sectional analysis, we reported associations between PA
levels and individual app functions [33], which indicated that
individuals with health-enhancing PA levels typically used
functions such as sensor information (eg, step count and heart
rate), goal setting, goal progress, energy analysis, journaling,
and GPS/maps. The current prospective analyses emphasize the
particular importance of energy analysis and journaling in
improving PA over time. While sensor information was
commonly used by PA app users (Table S1 in Multimedia
Appendix 1), the findings suggest that, in addition to the
automatically recorded PA data (eg, step count), users may
benefit from additional analyses of physiological data (eg,
energy expenditure calculations) and more deliberate
engagement with the app, such as journaling and manually
logging daily exercise and PA.

Interestingly, maintenance of the recommended PA level was
associated with the use of sleep information, blood pressure
recording, and goal setting. This suggests that users who are
already sufficiently active may value functions that support
general health care, rather than those focused solely on fitness
and exercise. It is also possible that some users were prompted
to use PA apps due to specific health concerns. Published
meta-analytic studies have identified key app components that
enhance PA, including self-monitoring, goal setting and
planning, prompts/cues, feedback on behavior, and action
planning [24-27], most of which are specifically designed to
support PA. It may be important for future research to broadly
explore app functions and features (not limited to PA-related
functions) to identify more effective combinations, especially
when the focus is on maintaining rather than increasing PA
levels. This could reinforce the usefulness of the stages of
change model [39,51] (eg, to guide the best interventions for
those in the action or maintenance stages) and highlight the
importance of tailoring digital behavior interventions.

Another interesting finding from this analysis is that the number
of app functions reported as being in use was not significantly
associated with increases in PA over 6 months. While several
studies have suggested that the amount of app content or the
number of implemented BCTs is linked to the efficacy of
mHealth interventions [18,19], this association has not always
been replicated [29]. As our analyses utilized self-report data
rather than actual logs of user behavior, we cannot exclude the
possibility that participants may not have accurately or
exhaustively reported all the functions they used. However, our
findings suggest that (1) users may not be fully aware of every
function available in an app (or, at least, they do not consciously

use them all), and (2) they may not necessarily benefit from
multifunctionality. Instead, a limited number of functions (eg,
goal setting and journaling) may be more effective in improving
PA. Indeed, it is known that users appreciate the simplicity of
an app [20], and as Michie et al [32] found, interventions that
combine self-monitoring with at least one regulatory technique
(eg, goal setting) can form the most cost-effective, minimal set
of interventions.

Limitations
The results reported here should be interpreted with caution due
to several important limitations. First, we targeted
Japanese-speaking adults exclusively, which may limit the
generalizability of the findings. The apps and products available
on the Japanese eHealth/mHealth market may differ from those
in other regions and countries. While there are similarities in
user behavior between Japan and Western countries, exploring
country- or culture-specific aspects would be an interesting
direction for future research. Second, we cannot rule out the
possibility of sampling bias. As reported elsewhere [33], the
current sample exhibited higher PA levels than the general
population in Japan, likely because the study was advertised as
a survey on PA and health. Additionally, attrition could
introduce bias, as some participants (4287/20,573, 20.83%)
dropped out by the follow-up. Third, the follow-up survey did
not include questions regarding how participants used specific
app functions and features (assessed only at baseline). As this
study was part of a larger project, there was a limit on the length
of each survey. Future research should explore how changes in
PA influence the use patterns of individual app functions, which
could provide insights into how tailoring and personalization
can be incorporated during app use adaptation. Fourth, we relied
exclusively on self-reported PA, which may not always align
with objective measures, such as accelerometers, due to
self-reporting bias and other assessment artifacts. Similarly,
user behavior and individual app function usage can be
monitored automatically or made publicly available (eg, [52]).
However, a downside of such an approach is that the analysis
would be limited to a specific app or platform, potentially
sacrificing the generalizability of the results. Finally, we cannot
rule out the possibility of selection bias. As the surveys were
administered online, participants were likely familiar with the
internet and possibly mobile technology as well. This could
explain the unexpected finding that older individuals were more
likely to continue using the app.

Conclusions
This study demonstrated that continued use of apps and
wearables contributes to both increasing and maintaining PA
levels over 6 months. The results also revealed that app features
associated with increases in PA differ from those linked to the
maintenance of PA, highlighting the importance of tailoring
apps to users’PA levels and readiness. We believe these findings
make a meaningful contribution to the literature by highlighting
the continued use of apps and wearables as key factors in
enhancing and maintaining high levels of PA. Additionally, it
is noteworthy that more than half of the users continued using
the apps through the 6-month follow-up, despite the poor
retention rates and barriers commonly reported in the literature
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(eg, [53,54]). This may suggest that attitudes toward and the
acceptability of mHealth apps are changing, with the COVID-19
pandemic potentially serving as an opportunity. Health care
practitioners could increasingly rely on app-based approaches
in their intervention repertoires, although integrating mHealth

into routine practice remains a challenge [55]. Unfortunately,
we did not assess the barriers preventing users from continuous
engagement (eg, [56,57]), and these should be explored in future
research to identify effective strategies for maintaining active
user engagement.
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Abbreviations
BCT: behavior change technique
GPS: global positioning system
MET: metabolic equivalent task
mHealth: mobile health
OR: odds ratio
PA: physical activity
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