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Abstract
Background: Wrist-worn photoplethysmography (PPG) sensors allow for continuous heart rate (HR) measurement without
the inconveniences of wearing a chest belt. Although green light PPG technology reduces HR measurement motion artifacts,
only a limited number of studies have investigated the reliability and accuracy of wearables in non–laboratory-controlled
conditions with actual specific and various physical activity movements.
Objective: The purpose of this study was to (1) assess the reliability and accuracy of the PPG-based HR sensor of the Fitbit
Charge 4 (FC4) in ecological conditions and (2) quantify the potential variability caused by the nature of activities.
Methods: We collected HR data from participants who performed badminton, tennis, orienteering running, running, cycling,
and soccer while simultaneously wearing the FC4 and the Polar H10 chest belt (criterion sensor). Skin tone was assessed
with the Fitzpatrick Skin Scale. Once data from the FC4 and criterion data were synchronized, accuracy and reliability
analyses were performed, using intraclass correlation coefficients (ICCs), Lin concordance correlation coefficients (CCCs),
mean absolute percentage errors (MAPEs), and Bland-Altman tests. A linear univariate model was also used to evaluate the
effect of skin tone on bias. All analyses were stratified by activity and pooled activity types (racket sports and running sports).
Results: A total of 77.5 hours of HR recordings from 26 participants (age: mean 21.1, SD 5.8 years) were analyzed. The
highest reliability was found for running sports, with ICCs and CCCs of 0.90 and 0.99 for running and 0.80 and 0.93 for
orienteering running, respectively, whereas the ICCs and CCCs were 0.37 and 0.78, 0.42 and 0.88, 0.65 and 0.97, and 0.49 and
0.81 for badminton, tennis, cycling, and soccer, respectively. We found the highest accuracy for running (bias: 0.1 beats per
minute [bpm]; MAPE 1.2%, SD 4.6%) and the lowest for badminton (bias: −16.5 bpm; MAPE 16.2%, SD 14.4%) and soccer
(bias: −16.5 bpm; MAPE 17.5%, SD 20.8%). Limit of agreement (LOA) width and artifact rate followed the same trend. No
effect of skin tone was observed on bias.
Conclusions: LOA width, bias, and MAPE results found for racket sports and soccer suggest a high sensitivity to motion
artifacts for activities that involve “sharp” and random arm movements. In this study, we did not measure arm motion, which
limits our results. However, whereas individuals might benefit from using the FC4 for casual training in aerobic sports, we
cannot recommend the use of the FC4 for specific purposes requiring high reliability and accuracy, such as research purposes.
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Introduction
Over the recent years, connected bracelet and watch sales
have been regularly increasing [1]. These tools allow
individuals to monitor various active life parameters, such
as time of activity, sleep quality, step numbers, and energy
expenditure, among others. Most of them are computed
through algorithms that use accelerometry and heart rate (HR)
data. Although these new devices are used for training by
both recreational athletes and elite athletes, chest belts remain
the gold standard, especially among high-level athletes, for
measuring HR, as they are based on R peak detection
from the QRS electrocardiogram (ECG) complex [2,3]. In
opposition to chest belts, other wearables perform additional
measurements (eg, accelerometry and positioning measure-
ments via a GPS), which, when combined with HR data
and algorithm processing, provide data on other parameters,
such as energy expenditure and quality of sleep. Moreover,
wrist-worn devices could reduce the tolerance and acceptabil-
ity issues observed with chest belts [4]. Wrist-worn devices
usually estimate continuous HR through the photoplethys-
mography (PPG) technique, which was first used in the
late 1930s [5]. PPG involves measuring light absorption
through tissues of interest [6]; red and infrared lights are
emitted by an LED through the skin, and a photoreceptor
captures the remaining emissions after tissue absorption [7].
However, even if the concept remains similar, connected
watches usually come with a green light PPG sensor for
its ability to reduce motion artifacts, contrary to the red
ones commonly used in the medical field for blood oxygen
saturation evaluation [8,9]. The reason for this is that the
deeper the light penetrates the tissue (eg, red wavelength),
the more the pulse wave is affected by limb movements
[10,11]. As light penetration depends on light wavelength,
the shorter wavelength of green light provides less informa-
tion from deeper nonpulsatile tissues [9,12]. Considering this,
green light is less prone to motion artifacts during normal
daily life [13-15]. In the case of HR monitoring via watches
or bracelets during activities, signal accuracy and reliabil-
ity may vary according to numerous factors. Among them,
gear placement on skin, strap tightening (which induces skin
compression), skin tone, and activity type and intensity can
affect HR recording [15-21]. PPG HR sensor accuracy has
been investigated during physical activity across a spectrum
of intensities. However, researchers tend to measure PPG HR
sensor accuracy with treadmill running or cycling ergome-
ters in laboratory-controlled conditions [17,22-24]. To our
knowledge, only a few evaluations of connected device
accuracy (eg, accuracy of a smartwatch, as evaluated in
this paper) were performed in ecological conditions across
different physical activity types. As this type of device is
meant to be used in non–laboratory-controlled conditions
or free-living conditions, this study aimed to evaluate the
accuracy and validity of the PPG HR data from the Fitbit
Charge 4 (FC4; Fitbit LLC) across multiple physical activity

types. Therefore, the objectives of this study were to (1)
assess the accuracy and reliability of FC4 HR measurement in
ecological conditions and (2) quantify the potential impact of
activity type on accuracy.

Methods
Participants
A total of 26 healthy young adults from the Sport Sciences
University of Calais, France, who were practicing physical
activities on a weekly basis, volunteered and were included in
this study, which was advertised on the university campus and
via social networks. No inclusion or exclusion criteria were
used.

A minimum HR sample size was calculated with G*Power
(version 3.1.9.6) [25] by using a significance level (α) of 5%,
a statistical power of 1 – β = 80%, and an effect size of 0.075
(computed from the expected HR mean and SD). The number
of necessary HR samples was below 6000, representing 100
minutes of recording (sample rate=1 s−1). Measurements were
performed during participants’ regular training sessions for
soccer, badminton, orienteering running, basketball, tennis,
and road biking.
Ethical Considerations
This study was approved by the National Commission
for Data Protection and Liberties (CNIL-France; registra-
tion number: 2224247). All participants gave their writ-
ten informed consent, with the possibility to opt out of
the protocol at any point. Data collected throughout the
protocol were deidentified for privacy and confidentiality
reasons. Finally, although participants could not be finan-
cially compensated for their participation, which did not
impact their usual routine, each of them personally received
an individualized analysis of their HR data, so that they could
receive information about cardiac demand during various
phases of their training sessions (intensity levels, duration,
and cardiac work zone) and adjust their sessions’ contents if
needed.
Data Collection
PPG HR signals from the FC4 were compared to those from
the Polar H10 thoracic belt (Polar Electro Oy), which was
used as the criterion sensor [26]. The assessment of skin tone
was performed with the Fitzpatrick Skin Scale, which ranges
from 1 (lightest tone) to 6 (darkest tone) [27].

Participants were asked to wear both sensors simultane-
ously at each session. The FC4 was placed on the wrist of
the nondominant arm (ie, around 2 cm away [proximal] from
the ulnar styloid process), whereas the Polar H10 thoracic belt
was placed under the thorax (ie, on the xyphoid process) and
paired with Polar V800 wristwatches for HR recording. Each
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device was placed firmly against the skin, as recommended
by the manufacturer’s instructions.
Data Extraction and Analysis
Data were extracted through both companies’ web services
(ie, the Fitbit app [28] and Polar Flow website [29] for
the FC4 and Polar H10, respectively). A MATLAB script
(The MathWorks Inc) was then used to synchronize the
two devices’ HR measurements. Record alignments were
performed by using a least square method to minimize
squared deviation between FC4 and Polar H10 records, and
they were smoothed over a 10-second window to calibrate
the sample rate from both devices, as previously described
[18,30]. Data normality was verified by a Kolmogorov-Smir-
nov test.

FC4 artifact data were defined as values that deviated from
the criterion data by 20 beats per minute (bpm). Bland-Alt-
man tests were performed on smoothed data to assess the
accuracy of FC4 HR data by participant and by activity [31].
Means (bias) and SDs of the differences between the FC4 and
H10 values were used to evaluate upper and lower limits of
agreement (LOAs), per the following formula: upper/lower
LOA = bias ± 1.96 × SD. Mean absolute error (MAE)
and mean absolute percentage error (MAPE) were calculated
to quantify mean differences between FC4 and Polar H10
HR data. Two tests were performed to evaluate the relia-
bility of the FC4: (1) 2-way random intraclass correlation

coefficients (ICCs) with an absolute consistency type were
calculated and interpreted according to current guidelines
(ICC<0.5: poor; 0.5<ICC<0.75: moderate; 0.75<ICC<0.90:
good; ICC>0.90: excellent reliability) [32], and (2) a
computation of Lin concordance correlation coefficients
(CCCs) was performed, interpreted following McBride’s
[33] recommendations (CCC<0.90: poor; 0.90<CCC<0.95:
moderate; 0.95<CCC<0.99: very good; CCC>0.99: almost
perfect strength of agreement).

All statistical analyses were stratified by activity type,
and a Kruskal-Wallis test was performed to compare activity
bias, with activity types as independent groups. Mann-Whit-
ney U tests were implemented to compare bias from 0
among activity types (independent groups). Further, a linear
univariate model was used to estimate the effect of skin tone
on bias while controlling the impact of activity type. Statistics
were performed using IBM SPSS statistics 25 software (IBM
Corp).

Results
Participants’ Characteristics
A total of 26 young adults (11 women and 15 men) were
included in this study. Their characteristics are compiled
in Table 1. In total, 77.5 hours of practice were recorded,
distributed across 55 sessions (Table 2).

Table 1. Participants’ characteristics.
Male (n=15), mean (SD) Female (n=11), mean (SD) All participants (N=26), mean (SD)

Age (y) 21.2 (7.0) 20.8 (3.7) 21.1 (5.8)
Weight (kg) 75.8 (9.6) 57.6 (8.9) 68.1 (12.9)
Height (cm) 183 (6) 166 (8) 176 (11)
BMI (kg/m2) 22.6 (1.8) 20.9 (1.7) 21.9 (1.9)
Skin tone (Fitzpatrick Skin Scale score) 2.9 (0.6) 2.8 (0.6) 2.9 (0.6)

Table 2. Descriptive data of recorded sessions.
Activity Sessions, n Recorded time, h Participants, n
Racket sports

Badminton 10 15.07 7
Tennis 3 4.90 2
Total 13 19.96 9

Running sports
Orienteering running 5 7.02 5
Run 11 14.09 3
Total 16 21.10 8

Other sports
Bike 13 18.39 2
Soccer 13 18.01 12

Accuracy and Artifact Percentage
Biases, LOAs, and artifact percentages are shown in Table 3.
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Table 3. Bland-Altman analyses, mean absolute error (MAE), and mean absolute percentage error (MAPE) by activity.
Activity Bland-Altman analyses, bpma Artifact ratios, % bpm, MAE (SD) bpm, MAPE (SD)

Bias Upper LOAb; lower LOA LOA width
Racket sports

Badminton −16.5 35.2; −68.2 103.5 39.3 21.7 (22.3) 16.2 (14.4)
Tennis −6.2 24.8; −37.2 62.0 22.7 12.8 (11.2) 8.9 (7.4)
Total −14.0 34.3; −62.3 96.6 35.2 19.5 (20.5) 14.4 (13.4)

Running sports
Orienteering running −8.6 26.0; −43.3 69.4 17.0 11.7 (15.9) 9.5 (10.4)
Run 0.1 10.9; −10.7 21.6 2.5 1.7 (5.2) 1.2 (4.6)
Total −2.8 20.5; −26.1 46.6 7.3 5.0 (11.1) 4.0 (8.1)

Other sports
Bike 4.8 36.8; −27.3 64.1 18.1 10.4 (10.4) 8.1 (11.0)
Soccer −16.5 26.7; −59.6 86.3 35.5 19.2 (19.7) 17.5 (20.8)

abpm: beats per minute.
bLOA: limit of agreement.

Biases were different between each activity (P<.001), with
all of them also being different from 0 (P<.001). The lowest
bias values, MAEs, and MAPEs were found for running and
cycling, and the highest ones were found for badminton and
soccer. Furthermore, the narrowest LOA width was found for
running, and the widest was found for badminton (Figure 1).

We found similar results by grouping activities; the lowest
bias, MAE, MAPE, and LOA width were found for running
activities (running and orienteering running), and the largest
ones were found for racket sports (badminton and tennis;
Table 3).
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Figure 1. Bland-Altman plots for (A) badminton and (B) running. Badminton exhibits the highest bias, and the bias for running is the closest to the
origin. Each activity represents, respectively, 14 and 15.07 hours of recording. bpm: beats per minute; FC4: Fitbit Charge 4; HR: heart rate; LOA:
limit of agreement; Polar: Polar H10.
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Reliability
ICCs and CCCs are presented in Table 4. ICCs and CCCs
indicated poor reliability (<0.50 and <0.90, respectively) for
racket sports and soccer but excellent reliability for running
overall (the total ICC and CCC for all running activities
overall were >0.90 and >0.99, respectively). The largest

percentages of artifact HR data were found for badminton
and soccer, whereas running exhibited the lowest (Table 3).
The results were similar when pooling activities; the highest
rate of artifact HR data was found for racket sports, and the
lowest was found for running sports (Table 3).

Table 4. Intraclass correlation coefficients (ICCs) and Lin concordance correlation coefficients (CCCs) by single and pooled activities.
Activity ICC (95% CI) CCC
Racket sports

Badminton 0.365 (0.517-0.154) 0.778
Tennis 0.421 (0.320-0.421) 0.884
Total 0.435 (0.237-0.574) 0.883

Running sports
Orienteering running 0.801 (0.865-0.801) 0.932
Run 0.900 (0.898-0.900) 0.999
Total 0.926 (0.915-0.935) 0.996

Other sports
Bike 0.658 (0.702-0.603) 0.971
Soccer 0.487 (0.158-0.487) 0.809

Effect of Skin Tone
Mean Fitzpatrick Skin Scale scores are shown in Table 1. No
overall interaction and no interaction in each activity were
found between bias and skin tone, while being standardized
by activity type.

Discussion
Main Results
In this study, we evaluated the HR accuracy and reliability of
the FC4 by comparing it to the Polar H10 chest belt (criterion
sensor) in non–laboratory-controlled conditions. Our results
showed negative biases for most activities (except running
and cycling; Table 3), the presence of artifact data, and
HR underevaluation by the FC4 (Figure 2). These results
are similar to earlier findings that show the tendency of
PPG wrist sensors to overestimate or underestimate HR
[34-36]. ICCs and CCCs were fluctuant, mainly depending
on the activity type. The FC4 shows good reliability for
running activities, with almost perfect and moderate CCCs
and excellent and good ICCs for running and orienteering
running, respectively. Additionally, running was the activity
with the lowest bias, the lowest MAPE, and the smallest
LOA width. On the other hand, we found lower ICCs for
badminton, soccer, and cycling, which also showed higher

artifact ratios. Thus, we suggest that the excessive amount of
arm movement in these activities could affect HR record-
ing, as previously shown [37]. Badminton and tennis are
characterized by “sharp” movements and rotations of the
nondominant arm, whereas soccer can induce some instability
of the sensor due to random arm and wrist actions, which can
result in watches sliding over skin and the transient loss of
HR signals (Figure 2). Furthermore, although cycling shows
an overall good CCC (0.971), the ICC (0.658), MAPE (8.1%,
SD 11.0%), and LOA width (64.03 bpm) indicate a lack of
reliability during this activity. Since cycling remains a lower
limb cyclic activity, there are little to no arm movements
that may affect sensor placement. However, wrist position
on handlebars (eg, during road cycling) and the contractil-
ity of wrist muscle flexors and extensors could alter vascu-
lar arteriovenous system detection and lower signal quality
while enhancing compression forces [6,8,16,17]. ICCs and
CCCs were calculated for pooled activities—running sports
(running and orienteering running) and racket sports (tennis
and badminton). These activities mostly rely on the same
corporal pattern, and grouping them allowed us to equilibrate
the time of practice between other activities. Our data showed
no differences in ICC or CCC parameters, with those for
running sports and racket sports showing excellent and poor
reliability, respectively (ICC: 0.926 vs 0.435; CCC: 0.996 vs
0.883; Table 4).

JMIR MHEALTH AND UHEALTH Ceugniez et al

https://mhealth.jmir.org/2025/1/e54871 JMIR Mhealth Uhealth 2025 | vol. 13 | e54871 | p. 6
(page number not for citation purposes)

https://mhealth.jmir.org/2025/1/e54871


Figure 2. Examples of synchronized heart rate signals (Polar H10: light grey; Fitbit Charge 4: black; A: orienteering running; B: soccer). Soccer heart
rate data show recurrent sudden uncoupling between Fitbit Charge 4 and Polar H10 data, as well as heart rate underevaluations by the Fitbit Charge 4
throughout the recording session. bpm: beats per minute.

Overall, artifacts and random movements could highly affect
a sensor’s precision. Some studies tried to reduce motion
artifacts by using novel techniques, such as accelerometry
coupling or algorithm-based processing, but there is no
consensus yet on which one should be used [38-42]. Even by
varying numbers of diodes, lights colors, and algorithms, the
technical aspect for measuring HR remains similar, suggest-
ing that some FC4 characteristics could increase the presence
of motion artifacts. For example, the materials used for the
strap was slippery on skin, amplified by exercise-induced
sudation. In addition, from a general standpoint, algorithms
used by manufacturers can also affect the recordings, but we
did not have access to these proprietary processing scripts.
Limitations
We observed no influence of skin tone on bias, unlike
previous works that highlighted some effects on HR error
rates [21]. However, our study is in line with another paper
that was based on analyses of the signal to noise ratio,
which showed no effect of skin tone when using a proper

PPG wavelength (520 nm) [15]. More recently, another study
did not find an effect of skin tone on beat-to-beat interval
quality while separating skin types into two major groups
(group 1: 1 to 4 on the Fitzpatrick Skin Scale; group 2: 5
and 6 on the Fitzpatrick Skin Scale) [43]. Even if our study
findings are consistent with these results, no generalization
can be made, since participants’ skin types ranged from 2
(n=6) to 4 (n=3) on the Fitzpatrick Skin Scale. Moreover,
we did not take into account physiological and environment
factors, such as local temperature, humidity, and sudation,
which may impact peripheral vasomotricity and therefore
increase or decrease PPG signal intensity [44-46]. It would
also have been relevant to assess the influence of motion
parameters, such as acceleration measured at the wrist, on
HR accuracy and reliability of the FC4; however, we could
not access raw data produced by the proprietary processes
for further analyses, and it was not possible to use inertial
units because these could have resulted in discomfort for the
participants, and inertial units are not a commodity among the
public. Furthermore, we chose to place the FC4 on the wrist
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of the nondominant arm, as this placement is recurrent in
daily life and research, although we knew that the movements
would be inferior to those of the dominant wrist and therefore
would reduce the artifact rate. Finally, the low number of
participants included for the running activity (n=3) should be
considered while interpreting our results, although the pooled
analysis lowered this potential bias while providing similar
reliability and accuracy results.
Comparison With Previous Works
A recent study evaluated the accuracy of the FC4 HR
sensor against an ECG Holter monitor for activities of daily
living (sitting, walking, typing, lying down, etc) and showed
acceptable HR measurement capabilities [47]. The added
value of our protocol comes from the ecological approach to
the gear sensor validation, which included additional physical
activities with various intensities and limb movements. To
our knowledge, no study has evaluated the FC4 in this
manner during multiple sports or activities yet. However,
further studies should be conducted to measure the reliabil-
ity of the FC4 and its parameters for activities of daily
living (number of steps, number of stairs climbed, number
of calories burned, and quality of sleep), especially among
persons or patients whose physical activities are restricted, as
observed in sedentary individuals, people with obesity, people
with heart failure, etc.

Considering our results (ie, the lack of precision and
reliability in specific activities), the FC4 should not be used
for research or athlete training purposes, including those
related to running, which showed the lowest LOA width and
artifact ratio. However, the FC4 could be useful for track-
ing HR during daily activities, which does not require such
accurate monitoring, and it may be considered for patients’
reeducation. However, for the latter, further studies should
inspect the FC4’s reliability according to the characteristics of
the population. For example, obesity affects the physiological
factors necessary for proper PPG signal intensity and quality,
such as capillary density and recruitment, blood flow, and
skin thickness [44].
Conclusion
The FC4 shows excellent reliability for measuring HR during
activities with slow and predictive arms movements, such as
running. However, it should not be used for activities with
“sharp” and random arm and wrist movements, such as soccer
and racket sports, due to its sensitivity to motion artifacts.
Hence, in ecological conditions, this device should not be
used for research or training purposes due to the high artifact
rate and LOA width.

Authors’ Contributions
MC and EH designed the research. MC collected and analyzed the data. MC wrote the manuscript. EH and HD revised the
manuscript. All authors have read and agreed to publish this version of the paper.
Conflicts of Interest
None declared.
References
1. Costello K. Gartner says worldwide wearable device sales to grow 26 percent in 2019. Gartner. Nov 29, 2018. URL:

https://www.gartner.com/en/newsroom/press-releases/2018-11-29-gartner-says-worldwide-wearable-device-sales-to-
grow-#:~:text=Gartner%2C%20Inc.,billion%20will%20be%20on%20smartwatches [Accessed 2024-12-12]

2. Gilgen-Ammann R, Schweizer T, Wyss T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest
and during exercise. Eur J Appl Physiol. Jul 2019;119(7):1525-1532. [doi: 10.1007/s00421-019-04142-5] [Medline:
31004219]

3. Speer KE, Semple S, Naumovski N, McKune AJ. Measuring heart rate variability using commercially available devices
in healthy children: a validity and reliability study. Eur J Investig Health Psychol Educ. Jan 10, 2020;10(1):390-404.
[doi: 10.3390/ejihpe10010029] [Medline: 34542492]

4. Andre D, Wolf DL. Recent advances in free-living physical activity monitoring: a review. J Diabetes Sci Technol. Sep
2007;1(5):760-767. [doi: 10.1177/193229680700100522] [Medline: 19885145]

5. Hertzman AB. Photoelectric plethysmography of the fingers and toes in man. Exp Biol Med (Maywood). Dec 1,
1937;37(3):529-534. [doi: 10.3181/00379727-37-9630]

6. Alian AA, Shelley KH. Photoplethysmography. Best Pract Res Clin Anaesthesiol. Dec 2014;28(4):395-406. [doi: 10.
1016/j.bpa.2014.08.006] [Medline: 25480769]

7. Bartels K, Thiele RH. Advances in photoplethysmography: beyond arterial oxygen saturation. Can J Anesth. Dec
2015;62(12):1313-1328. [doi: 10.1007/s12630-015-0458-0] [Medline: 26286382]

8. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. Mar
2007;28(3):R1-R39. [doi: 10.1088/0967-3334/28/3/R01] [Medline: 17322588]

9. Maeda Y, Sekine M, Tamura T, Moriya A, Suzuki T, Kameyama K. Comparison of reflected green light and infrared
photoplethysmography. Presented at: 2008 30th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society; Aug 20-25, 2008:2270-2272; Vancouver, BC. [doi: 10.1109/IEMBS.2008.4649649]

JMIR MHEALTH AND UHEALTH Ceugniez et al

https://mhealth.jmir.org/2025/1/e54871 JMIR Mhealth Uhealth 2025 | vol. 13 | e54871 | p. 8
(page number not for citation purposes)

https://www.gartner.com/en/newsroom/press-releases/2018-11-29-gartner-says-worldwide-wearable-device-sales-to-grow-#:~:text=Gartner%2C%20Inc.,billion%20will%20be%20on%20smartwatches
https://www.gartner.com/en/newsroom/press-releases/2018-11-29-gartner-says-worldwide-wearable-device-sales-to-grow-#:~:text=Gartner%2C%20Inc.,billion%20will%20be%20on%20smartwatches
https://doi.org/10.1007/s00421-019-04142-5
http://www.ncbi.nlm.nih.gov/pubmed/31004219
https://doi.org/10.3390/ejihpe10010029
http://www.ncbi.nlm.nih.gov/pubmed/34542492
https://doi.org/10.1177/193229680700100522
http://www.ncbi.nlm.nih.gov/pubmed/19885145
https://doi.org/10.3181/00379727-37-9630
https://doi.org/10.1016/j.bpa.2014.08.006
https://doi.org/10.1016/j.bpa.2014.08.006
http://www.ncbi.nlm.nih.gov/pubmed/25480769
https://doi.org/10.1007/s12630-015-0458-0
http://www.ncbi.nlm.nih.gov/pubmed/26286382
https://doi.org/10.1088/0967-3334/28/3/R01
http://www.ncbi.nlm.nih.gov/pubmed/17322588
https://doi.org/10.1109/IEMBS.2008.4649649
https://mhealth.jmir.org/2025/1/e54871


10. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. Jul 1981;77(1):13-19. [doi: 10.1111/1523-1747.
ep12479191] [Medline: 7252245]

11. Cui WJ, Ostrander LE, Lee BY. In vivo reflectance of blood and tissue as a function of light wavelength. IEEE Trans
Biomed Eng. Jun 1990;37(6):632-639. [doi: 10.1109/10.55667] [Medline: 2354845]

12. Giltvedt J, Sira A, Helme P. Pulsed multifrequency photoplethysmograph. Med Biol Eng Comput. May
1984;22(3):212-215. [doi: 10.1007/BF02442745] [Medline: 6738126]

13. Maeda Y, Sekine M, Tamura T. Relationship between measurement site and motion artifacts in wearable reflected
photoplethysmography. J Med Syst. Oct 2011;35(5):969-976. [doi: 10.1007/s10916-010-9505-0] [Medline: 20703691]

14. Lee J, Matsumura K, Yamakoshi KI, Rolfe P, Tanaka S, Yamakoshi T. Comparison between red, green and blue light
reflection photoplethysmography for heart rate monitoring during motion. Presented at: 2013 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Jul 3-7, 2013:1724-1727; Osaka, Japan.
[doi: 10.1109/EMBC.2013.6609852]

15. Fallow BA, Tarumi T, Tanaka H. Influence of skin type and wavelength on light wave reflectance. J Clin Monit Comput.
Jun 2013;27(3):313-317. [doi: 10.1007/s10877-013-9436-7] [Medline: 23397431]

16. Rafolt D, Gallasch E. Influence of contact forces on wrist photoplethysmography--prestudy for a wearable patient
monitor. Biomed Tech (Berl). 2004;49(1-2):22-26. [doi: 10.1515/BMT.2004.005] [Medline: 15032494]

17. Jo E, Lewis K, Directo D, Kim MJ, Dolezal BA. Validation of biofeedback wearables for photoplethysmographic heart
rate tracking. J Sports Sci Med. Aug 5, 2016;15(3):540-547. [Medline: 27803634]

18. Hermand E, Cassirame J, Ennequin G, Hue O. Validation of a photoplethysmographic heart rate monitor: Polar OH1. Int
J Sports Med. Jul 2019;40(7):462-467. [doi: 10.1055/a-0875-4033] [Medline: 31189190]

19. Spierer DK, Rosen Z, Litman LL, Fujii K. Validation of photoplethysmography as a method to detect heart rate during
rest and exercise. J Med Eng Technol. 2015;39(5):264-271. [doi: 10.3109/03091902.2015.1047536] [Medline:
26112379]

20. Dooley EE, Golaszewski NM, Bartholomew JB. Estimating accuracy at exercise intensities: a comparative study of self-
monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth. Mar 16, 2017;5(3):e34. [doi: 10.
2196/mhealth.7043] [Medline: 28302596]

21. Shcherbina A, Mattsson CM, Waggott D, et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and
energy expenditure in a diverse cohort. J Pers Med. May 24, 2017;7(2):3. [doi: 10.3390/jpm7020003] [Medline:
28538708]

22. Stahl SE, An HS, Dinkel DM, Noble JM, Lee JM. How accurate are the wrist-based heart rate monitors during walking
and running activities? Are they accurate enough? BMJ Open Sport Exerc Med. Apr 25, 2016;2(1):e000106. [doi: 10.
1136/bmjsem-2015-000106] [Medline: 27900173]

23. Hough P, Glaister M, Pledger A. The accuracy of wrist-worn heart rate monitors across a range of exercise intensities. J
Phys Act Res. Nov 25, 2017;2(2):112-116. [doi: 10.12691/jpar-2-2-8]

24. Lee CM, Gorelick M. Validity of the Smarthealth watch to measure heart rate during rest and exercise. Meas Phys Educ
Exerc Sci. Jan 29, 2011;15(1):18-25. [doi: 10.1080/1091367X.2011.539089]

25. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social,
behavioral, and biomedical sciences. Behav Res Methods. May 2007;39(2):175-191. [doi: 10.3758/bf03193146]
[Medline: 17695343]

26. Schaffarczyk M, Rogers B, Reer R, Gronwald T. Validity of the Polar H10 sensor for heart rate variability analysis
during resting state and incremental exercise in recreational men and women. Sensors (Basel). Aug 30,
2022;22(17):6536. [doi: 10.3390/s22176536] [Medline: 36081005]

27. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. Jun
1988;124(6):869-871. [doi: 10.1001/archderm.124.6.869] [Medline: 3377516]

28. Fitbit. Google Play. URL: https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile&hl=en [Accessed
2024-12-23]

29. Polar Flow. URL: https://flow.polar.com/ [Accessed 2024-12-23]
30. Mühlen JM, Stang J, Lykke Skovgaard E, et al. Recommendations for determining the validity of consumer wearable

heart rate devices: expert statement and checklist of the INTERLIVE Network. Br J Sports Med. Jul
2021;55(14):767-779. [doi: 10.1136/bjsports-2020-103148] [Medline: 33397674]

31. Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies. Journal of the Royal
Statistical Society: Series D (The Statistician). Sep 1983;32(3):307-317. [doi: 10.2307/2987937]

32. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J
Chiropr Med. Jun 2016;15(2):155-163. [doi: 10.1016/j.jcm.2016.02.012] [Medline: 27330520]

JMIR MHEALTH AND UHEALTH Ceugniez et al

https://mhealth.jmir.org/2025/1/e54871 JMIR Mhealth Uhealth 2025 | vol. 13 | e54871 | p. 9
(page number not for citation purposes)

https://doi.org/10.1111/1523-1747.ep12479191
https://doi.org/10.1111/1523-1747.ep12479191
http://www.ncbi.nlm.nih.gov/pubmed/7252245
https://doi.org/10.1109/10.55667
http://www.ncbi.nlm.nih.gov/pubmed/2354845
https://doi.org/10.1007/BF02442745
http://www.ncbi.nlm.nih.gov/pubmed/6738126
https://doi.org/10.1007/s10916-010-9505-0
http://www.ncbi.nlm.nih.gov/pubmed/20703691
https://doi.org/10.1109/EMBC.2013.6609852
https://doi.org/10.1007/s10877-013-9436-7
http://www.ncbi.nlm.nih.gov/pubmed/23397431
https://doi.org/10.1515/BMT.2004.005
http://www.ncbi.nlm.nih.gov/pubmed/15032494
http://www.ncbi.nlm.nih.gov/pubmed/27803634
https://doi.org/10.1055/a-0875-4033
http://www.ncbi.nlm.nih.gov/pubmed/31189190
https://doi.org/10.3109/03091902.2015.1047536
http://www.ncbi.nlm.nih.gov/pubmed/26112379
https://doi.org/10.2196/mhealth.7043
https://doi.org/10.2196/mhealth.7043
http://www.ncbi.nlm.nih.gov/pubmed/28302596
https://doi.org/10.3390/jpm7020003
http://www.ncbi.nlm.nih.gov/pubmed/28538708
https://doi.org/10.1136/bmjsem-2015-000106
https://doi.org/10.1136/bmjsem-2015-000106
http://www.ncbi.nlm.nih.gov/pubmed/27900173
https://doi.org/10.12691/jpar-2-2-8
https://doi.org/10.1080/1091367X.2011.539089
https://doi.org/10.3758/bf03193146
http://www.ncbi.nlm.nih.gov/pubmed/17695343
https://doi.org/10.3390/s22176536
http://www.ncbi.nlm.nih.gov/pubmed/36081005
https://doi.org/10.1001/archderm.124.6.869
http://www.ncbi.nlm.nih.gov/pubmed/3377516
https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile&hl=en
https://flow.polar.com/
https://doi.org/10.1136/bjsports-2020-103148
http://www.ncbi.nlm.nih.gov/pubmed/33397674
https://doi.org/10.2307/2987937
https://doi.org/10.1016/j.jcm.2016.02.012
http://www.ncbi.nlm.nih.gov/pubmed/27330520
https://mhealth.jmir.org/2025/1/e54871


33. McBride GB. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. National
Institute of Water and Atmospheric Research; 2005. NIWA client report: HAM2005-062.

34. Gillinov S, Etiwy M, Wang R, et al. Variable accuracy of wearable heart rate monitors during aerobic exercise. Med Sci
Sports Exerc. Aug 2017;49(8):1697-1703. [doi: 10.1249/MSS.0000000000001284] [Medline: 28709155]

35. Benedetto S, Caldato C, Bazzan E, Greenwood DC, Pensabene V, Actis P. Assessment of the Fitbit Charge 2 for
monitoring heart rate. PLoS One. Feb 28, 2018;13(2):e0192691. [doi: 10.1371/journal.pone.0192691] [Medline:
29489850]

36. Boudreaux BD, Hebert EP, Hollander DB, et al. Validity of wearable activity monitors during cycling and resistance
exercise. Med Sci Sports Exerc. Mar 2018;50(3):624-633. [doi: 10.1249/MSS.0000000000001471] [Medline: 29189666]

37. Ahmadi AK, Moradi P, Malihi M, Karimi S, Shamsollahi MB. Heart rate monitoring during physical exercise using
wrist-type photoplethysmographic (PPG) signals. Presented at: 2015 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC); Aug 25-29, 2015:6166-6169; Milan, Italy. [doi: 10.1109/EMBC.
2015.7319800]

38. Zhu S, Tan K, Zhang X, Liu Z, Liu B. MICROST: a mixed approach for heart rate monitoring during intensive physical
exercise using wrist-type PPG signals. Presented at: 2015 37th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC); Aug 25-29, 2015:2347-2350; Milan, Italy. [doi: 10.1109/EMBC.2015.
7318864]

39. Mashhadi MB, Asadi E, Eskandari M, Kiani S, Marvasti F. Heart rate tracking using wrist-type photoplethysmographic
(PPG) signals during physical exercise with simultaneous accelerometry. IEEE Signal Process Lett. Feb
2016;23(2):227-231. [doi: 10.1109/LSP.2015.2509868]

40. Fujita Y, Hiromoto M, Sato T. PARHELIA: particle filter-based heart rate estimation from photoplethysmographic
signals during physical exercise. IEEE Trans Biomed Eng. Jan 2018;65(1):189-198. [doi: 10.1109/TBME.2017.
2697911] [Medline: 28459679]

41. Biswas D, Simoes-Capela N, Van Hoof C, Van Helleputte N. Heart rate estimation from wrist-worn
photoplethysmography: a review. IEEE Sensors J. Aug 15, 2019;19(16):6560-6570. [doi: 10.1109/JSEN.2019.2914166]

42. Arunkumar KR, Bhaskar M. Heart rate estimation from wrist-type photoplethysmography signals during physical
exercise. Biomed Signal Process Control. Mar 2020;57:101790. [doi: 10.1016/j.bspc.2019.101790]

43. Puranen A, Halkola T, Kirkeby O, Vehkaoja A. Effect of skin tone and activity on the performance of wrist-worn optical
beat-to-beat heart rate monitoring. Presented at: 2020 IEEE SENSORS; Oct 25-28, 2020:1-4; Rotterdam, Netherlands.
[doi: 10.1109/SENSORS47125.2020.9278523]

44. Fine J, Branan KL, Rodriguez AJ, et al. Sources of inaccuracy in photoplethysmography for continuous cardiovascular
monitoring. Biosens (Basel). Apr 16, 2021;11(4):126. [doi: 10.3390/bios11040126] [Medline: 33923469]

45. Jeong IC, Yoon H, Kang H, Yeom H. Effects of skin surface temperature on photoplethysmograph. J Healthc Eng.
2014;5(4):429-438. [doi: 10.1260/2040-2295.5.4.429] [Medline: 25516126]

46. Johnson JM. Exercise in a hot environment: the skin circulation. Scand J Med Sci Sports. Oct 2010;20 Suppl 3:29-39.
[doi: 10.1111/j.1600-0838.2010.01206.x] [Medline: 21029188]

47. Nissen M, Slim S, Jäger K, et al. Heart rate measurement accuracy of Fitbit Charge 4 and Samsung Galaxy Watch
Active2: device evaluation study. JMIR Form Res. Mar 1, 2022;6(3):e33635. [doi: 10.2196/33635] [Medline: 35230250]

Abbreviations
bpm: beats per minute
CCC: Lin concordance correlation coefficient
ECG: electrocardiogram
FC4: Fitbit Charge 4
HR: heart rate
ICC: intraclass correlation coefficient
LOA: limit of agreement
MAE: mean absolute error
MAPE: mean absolute percentage error
PPG: photoplethysmography

Edited by Lorraine Buis; peer-reviewed by Luca Ardigò, Michael Nissen, Muhammad Etiwy, Shusuke Okita; submitted
25.11.2023; final revised version received 10.10.2024; accepted 24.10.2024; published 08.01.2025

Please cite as:

JMIR MHEALTH AND UHEALTH Ceugniez et al

https://mhealth.jmir.org/2025/1/e54871 JMIR Mhealth Uhealth 2025 | vol. 13 | e54871 | p. 10
(page number not for citation purposes)

https://doi.org/10.1249/MSS.0000000000001284
http://www.ncbi.nlm.nih.gov/pubmed/28709155
https://doi.org/10.1371/journal.pone.0192691
http://www.ncbi.nlm.nih.gov/pubmed/29489850
https://doi.org/10.1249/MSS.0000000000001471
http://www.ncbi.nlm.nih.gov/pubmed/29189666
https://doi.org/10.1109/EMBC.2015.7319800
https://doi.org/10.1109/EMBC.2015.7319800
https://doi.org/10.1109/EMBC.2015.7318864
https://doi.org/10.1109/EMBC.2015.7318864
https://doi.org/10.1109/LSP.2015.2509868
https://doi.org/10.1109/TBME.2017.2697911
https://doi.org/10.1109/TBME.2017.2697911
http://www.ncbi.nlm.nih.gov/pubmed/28459679
https://doi.org/10.1109/JSEN.2019.2914166
https://doi.org/10.1016/j.bspc.2019.101790
https://doi.org/10.1109/SENSORS47125.2020.9278523
https://doi.org/10.3390/bios11040126
http://www.ncbi.nlm.nih.gov/pubmed/33923469
https://doi.org/10.1260/2040-2295.5.4.429
http://www.ncbi.nlm.nih.gov/pubmed/25516126
https://doi.org/10.1111/j.1600-0838.2010.01206.x
http://www.ncbi.nlm.nih.gov/pubmed/21029188
https://doi.org/10.2196/33635
http://www.ncbi.nlm.nih.gov/pubmed/35230250
https://mhealth.jmir.org/2025/1/e54871


Ceugniez M, Devanne H, Hermand E
Reliability and Accuracy of the Fitbit Charge 4 Photoplethysmography Heart Rate Sensor in Ecological Conditions:
Validation Study
JMIR Mhealth Uhealth 2025;13:e54871
URL: https://mhealth.jmir.org/2025/1/e54871
doi: 10.2196/54871

© Maxime Ceugniez, Hervé Devanne, Eric Hermand. Originally published in JMIR mHealth and uHealth (https://
mhealth.jmir.org), 08.01.2025. This is an open-access article distributed under the terms of the Creative Commons Attribu-
tion License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work, first published in JMIR mHealth and uHealth, is properly cited. The complete
bibliographic information, a link to the original publication on https://mhealth.jmir.org/, as well as this copyright and license
information must be included.

JMIR MHEALTH AND UHEALTH Ceugniez et al

https://mhealth.jmir.org/2025/1/e54871 JMIR Mhealth Uhealth 2025 | vol. 13 | e54871 | p. 11
(page number not for citation purposes)

https://mhealth.jmir.org/2025/1/e54871
https://doi.org/10.2196/54871
https://mhealth.jmir.org
https://mhealth.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://mhealth.jmir.org/
https://mhealth.jmir.org/2025/1/e54871

	Reliability and Accuracy of the Fitbit Charge 4 Photoplethysmography Heart Rate Sensor in Ecological Conditions: Validation Study
	Introduction
	Methods
	Participants
	Ethical Considerations
	Data Collection
	Data Extraction and Analysis

	Results
	Participants’ Characteristics
	Accuracy and Artifact Percentage
	Reliability
	Effect of Skin Tone

	Discussion
	Main Results
	Limitations
	Comparison With Previous Works
	Conclusion



