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Abstract
Background: There has been a surge in the development of apps that aim to improve health, physical activity (PA), and
well-being through behavior change. These apps often focus on creating a long-term and sustainable impact on the user.
Just-in-time adaptive interventions (JITAIs) that are based on passive sensing of the user’s current context (eg, via smartphones
and wearables) have been devised to enhance the effectiveness of these apps and foster PA. JITAIs aim to provide personalized
support and interventions such as encouraging messages in a context-aware manner. However, the limited range of passive
sensing capabilities often make it challenging to determine the timing and context for delivering well-accepted and effective
interventions. Ecological momentary assessment (EMA) can provide personal context by directly capturing user assessments
(eg, moods and emotions). Thus, EMA might be a useful complement to passive sensing in determining when JITAIs are
triggered. However, extensive EMA schedules need to be scrutinized, as they can increase user burden.
Objective: The aim of the study was to use machine learning to balance the feature set size of EMA questions with the
prediction accuracy regarding of enacting PA.
Methods: A total of 43 healthy participants (aged 19‐67 years) completed 4 EMA surveys daily over 3 weeks. These surveys
prospectively assessed various states, including both motivational and volitional variables related to PA preparation (eg,
intrinsic motivation, self-efficacy, and perceived barriers) alongside stress and mood or emotions. PA enactment was assessed
retrospectively via EMA and served as the outcome variable.
Results: The best-performing machine learning models predicted PA engagement with a mean area under the curve score of
0.87 (SD 0.02) in 5-fold cross-validation and 0.87 on the test set. Particularly strong predictors included self-efficacy, stress,
planning, and perceived barriers, indicating that a small set of EMA predictors can yield accurate PA prediction for these
participants.
Conclusions: A small set of EMA-based features like self-efficacy, stress, planning, and perceived barriers can be enough to
predict PA reasonably well and can thus be used to meaningfully tailor JITAIs such as sending well-timed and context-aware
support messages.
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Introduction
In light of financial, staffing, and other pressures on societal
and health care systems linked to aging populations and the
increased prevalence of chronic diseases related to sedentary
lifestyles and other behavioral patterns [1], a growing number
of digital health apps aim to promote positive lifestyle
changes [2]. Such apps have the potential to improve health
outcomes [3], prevent diseases [4], and enhance the quality of
life for individuals [5]. For instance, encouraging physical
activity (PA) and heart-healthy habits can help prevent
serious health issues like coronary heart disease, diabetes,
and cancer [6]. Yet, long-term adherence to PA presents
a significant challenge [7]. Despite the well-documented
benefits of regular exercise for overall health and disease
prevention, many people struggle to maintain consistent PA
[7].

To improve the effectiveness and adherence to PA,
just-in-time adaptive interventions (JITAIs) are being
investigated to tailor personalized and contextualized digital
health support, often enabled by mobile health technolo-
gies such as wearable sensing devices and smartphones
[8,9]. JITAIs offer a promising solution to tackle issues
around physical inactivity, enabling effective behavior change
and habitualization by providing personalized and timely
support to individuals (eg, sending motivational messages
to incentivize movement after prolonged periods of inactiv-
ity). JITAIs are configured to use real-time data and context
awareness to deliver the “right” interventions precisely when
they are needed the most [8,9]. JITAIs based on passive
sensing have already been applied to various areas includ-
ing eating disorders [10], mental health conditions, obesity
and weight management, PA promotion [11], and smoking
cessation [12].

Tailoring JITAIs based on passively sensed contextual
factors (PSCFs), such as location, activity type or levels,
daily weather conditions, or an individual’s heart rate over
time, is commonly observed in the literature. However,
these passively sensed features face challenges in capturing
relevant signals, which enable accurate and reliable charac-
terizations of user contexts. These accurately represent what
matters to a user at a given time, for example, informing
the decision rules within a JITAI. To establish relevance,
accuracy, and reliability, it would be necessary to validate
passively sensed feature sets against the subjective user
experience, difficult to do in the context of emotions and
self-regulation that play a central part in the enactment
of health behaviors such as PA [13]. Therefore, tailoring
PA-fostering JITAIs based on PSCF comes with a consid-
erable risk of misaligning intervention timing and content
with users’ current states. Misaligned interventions may
annoy users or could hinder engagement leading to drop out
from JITAI use [9,14]. In literature, self-report measures of

momentary affect and motivation have been shown to be
closely related to actual PA [15,16]. This raises the ques-
tion whether these self-reports—referred to as ecological
momentary assessment (EMA)—could directly be used as an
addition or alternative to tailoring JITAIs via PSCF.

The EMA can present a valuable option for collect-
ing near-real-time information on the experiences, interests,
abilities, needs, behaviors, or other contextual circumstances
of individuals in their natural context [17,18]. The advan-
tages of EMA lie in providing rich, context-specific data
with reduced memory biases, facilitating a deeper understand-
ing of human behaviors and experiences directly tied to the
individual. EMAs are therefore widely used across vari-
ous fields to gain insights into psychological and behavio-
ral dynamics [18]. Although EMA has shown tremendous
potential in capturing individuals’ momentary experiences, its
use in PA adherence prediction has not been widely explored.
Additionally, EMA comes with challenges such as participant
burden and reactance [18]. Participant burden refers to the
issue that asking too many questions or asking questions
too frequently can leave participants annoyed, potentially
causing them to ignore EMA prompts or discontinue their
participation entirely [19]. Reactance, on the other hand, can
be another outcome of overly frequent or extensive inquiries,
which might also unduly influence participants’ perceptions
or behaviors [18]. Compared to EMA deployment in limited-
duration study settings, these concerns are even more relevant
when EMA is intended to inform JITAI tailoring over
prolonged periods of time (ie, months or years in real-world
applications). Thus, alongside investigating whether EMA
can be used to accurately predict PA engagement, it is critical
to identify the most predictive EMA questions that allow for
a sufficiently accurate prediction of PA engagement without
overburdening the user.

Accordingly, we investigated whether EMA can be used
to predict PA engagement and thereby inform the contextual-
ized tailoring of JITAIs. Further, from a practical perspec-
tive, we focused on understanding design implications and
strategies to balance concerns of EMA fatigue [20,21]
with traditional optimization and feature selection techni-
ques in machine learning (ML). The ML techniques can
more efficiently uncover hidden patterns and relationships in
the data compared to traditional survey validation methods.
This work is novel in exploring the viability of EMA for
the timewise tailoring of JITAIs—in terms of “when a
JITAI should optimally be delivered”—and in preparing such
tailoring not directly based on observed variable thresholds
but on prediction outcomes. These overarching aims are
reflected in the following guiding research questions (RQs):

• RQ1: How accurately can EMAs predict PA engage-
ment or adherence?

• RQ2: Which motivational, emotional, or volitional
psychological states captured through EMAs will best
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predict PA? What is the smallest set of predictors
that balances acceptable user burden with practically
sufficient prediction accuracy?

Based on the existing EMA literature [22], we expect that
EMA can inform behavioral predictions as they closely reflect
a participant’s perceived state, which can often be related
to subsequent behavior. Regarding the constructs that could
inform the prediction of PA from EMA, health behavior
models, such as the Integrated Behavior Change Model [23],
the Health Action Process Approach [24], or the Temporal
Self-Regulation Theory [13] alongside our prior work on
predictors of PA [15], suggest motivational and volitional
qualities of self-regulation are closely related to PA engage-
ment. This includes constructs such as intrinsic motiva-
tion, intention, action planning, and self-efficacy alongside
anticipated contextual barriers and momentary affect (eg,
current mood or stress). Therefore, we expect these factors
to be strong predictors of PA engagement in this study.

Methods
Study Design
The EMA data used in this paper were collected in our
prior investigation [15], aimed at understanding the determi-
nants and barriers of PA engagement. Following informed
consent and after completing psychometric and demographic
(see Table S1 in Multimedia Appendix 1) questionnaires in
an web-based survey, participants began the study’s EMA
phase. During this phase, 4 EMA prompts were sent to the
participants on a daily basis at fixed time points (9 AM,
1 PM, 5 PM, and 9 PM) over the course of a 3-week
study period. Additionally, participants were also able to
report PA independently of those fixed EMA prompts. After
the 3 weeks of EMA, another web-based questionnaire was
sent to the participants, to assess compliance and reactivity.
However, the analyses in this study focus on the EMA data.

Ethical Considerations
The study received ethics approval from the University
of Salzburg, Austria (GZ 11/2020). Informed consent was
provided by all participants prior to study enrollment and
covered all primary and secondary analyses. Study partici-
pants were compensated with US $32 and received personal-
ized feedback based on their data after the study concluded
[25]. All data in this paper were anonymized.

EMA Measures
While selecting EMA items, we aimed to align with
the structure proposed in contemporary models of health
behavior, such as the Health Action Process Approach [26],
the Integrated Behavior Change Model for PA [23], or
the Temporal Self-Regulation Theory [13]. These models
propose a 2-step process to explain the implementation of
health behaviors such as PA. This process consists of (1) a
motivational phase, which leads to the formation of inten-
tions and (2) a volitional phase that bridges the gap between
intention and health behavior enactment.

To reflect these 2 steps in our study design, we first
sampled candidate predictors proposed by these models as
relevant to the motivational phase at each EMA prompt.
This included measures of momentary mood (10 items from
the Positive and Negative Affect Schedule [27]: happy,
relaxed, active, irritated, concerned, depressed, nervous,
stressed, energetic, and tired) and stress :2 items from the
Perceived Stress Scale (PSS) [28]. The German version by
Schneider et al [29] anticipated barriers to PA (“How well
would your given circumstances allow you to be physically
active at the moment?”; BarrPA), and pain as a barrier
to PA (“At the moment, do you have physical complaints
that impede physical activity?”). Furthermore, the morning
prompt contained items assessing sleep quality (“How good
was your sleep?”; SleepQlt), the time of falling asleep
(“When did you fall asleep?”; ST), and the waking time
(“When did you wake up in the morning?”; WT), which could
also be either barriers or resources for PA engagement.

Next, we prospectively asked the participants about their
intentions to be physically active (“Do you intend to be
physically active in the next 4 hours?,” yes or no). Only
if they responded with “yes,” we further assessed volitional
determinants of health behavior enactment such as planning
specificity (“How specifically did you plan this physical
activity?”; ActPlan), self-efficacy (“How strongly do you
believe you can enact your plan under the given circum-
stances?”; ActPlanSE), and momentary intrinsic motivation
(“Independent of the circumstances, how motivated are
you right now to be physically active?”). Given the practi-
cal purpose around supporting adherence or enactment of
planned and intended PA, selecting for positive PA intention
provides reasonable grounds.

All of these items were developed or adjusted to fit
the specific needs of this study. Except intention and sleep
duration, they were measured on a horizontal slider from
0-not at all to 100-very much. Within each EMA prompt,
participants finally reported their PA retrospectively, (“Have
you been physically active in the last 4 hours?,” yes or no),
which we used as the primary outcome in our analyses (see
Haag et al [15] for cross-validation of these PA self-reports
against wearable data). For this EMA sampling, we first used
the Smarteater app (internally developed by the University of
Salzburg), and in a later recruitment phase, switched to the
m-Path platform [30]. However, each participant only used 1
platform, and assessments were identical on both platforms.
Therefore, data quality was not impaired due to switching
between the two platforms. For the full list of EMA items,
please refer to Table S2 in Multimedia Appendix 1.
Study Participants
Participants were healthy individuals who self-reported
having no limitations in their ability to perform PA, and
did not describe themselves as competitive athletes. As of
June 2022, a total of 49 participants were enrolled in the
data collection, which was conducted in a phased manner.
Of these, 10 participants dropped out before completing all
3 weeks. However, the data from 4 of the 10 dropouts were
still used for this investigation since they filled out enough
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EMA prompts to be included over 1 week. The final sample
included 43 participants (31 female and 12 male) between 19
-67 years of age (mean 39.14, SD 15.53) years. In total, 16
reported high, 22 moderate, and 5 low activity levels in the
International Physical Activity Questionnaire [31] completed
at the beginning of the study. Based on the participants’
self-reported height and weight, their BMI ranged from 19.0
to 39.6 (mean 24.4, SD 3.4) kg/m2, with 2 participants being
obese (BMI≥30.0 kg/m2), 11 overweight (BMI=25.0‐29.9 kg/
m2), and 29 with normal weight (BMI=18.5‐24.9 kg/m2). The
BMI for 1 participant was omitted due to being unrealistic (ie,
unreasonable self-reported height and weight).

For further details on study setup, procedure, as well as the
primary outcomes, please see Haag et al [15].

Data Cleaning and Feature Engineering
Each EMA prompt contained at least 16 questions. Some
questions in the EMA prompts included conditional subques-
tions (eg, planning specificity only when a PA was intended)
Questions requiring per-day-level measurements (eg, sleep
quality and duration) were limited to 1 morning prompt
per day. This approach resulted in 41 distinct questions
that were assessed in the EMA. For practical reasons, we
only considered the prospective and momentary questions
as predictors of retrospectively assessed PA in the subse-
quent analysis since they are better suited for modeling the
likelihood of upcoming PA adherence at runtime. Further
details of the EMA questions can be found in Table S2 in
Multimedia Appendix 1.

During the data cleaning process, EMA questions with less
than a 30% response compliance rate were dropped as data
augmentation on such low compliance rates could introduce a
bias in the models [32]. EMA prompts for which participants
did not report whether they performed the PA were also
discarded; this was done retrospectively. For example, if a
participant did not report engaging in PA within the last 4
hours at 1 PM, their 9 AM prompt data were excluded from
the analysis. The times participants fell asleep and woke up
were self-reported once only in the first EMA of the day.
Therefore, empty cells for sleep and wake time for EMA
prompts 2, 3, and 4 were populated with values from the first
EMA of each day. Any remaining missing values for sleep
hours, wakeup time, and sleep qualitywhen participants did
not respond to the day’s first EMA prompt were replaced
with their respective median values up to that point in time.
The categorical EMA questions with “yes or no” answers
were transformed to binary values (1/0). The StandardScaler
from the Scikit-learn package [33] was used to scale all the
continuous variables to unit variance. This standardization
of input features can be beneficial for the performance and
convergence of ML algorithms.

Model Training and Validation
For modeling, a representative selection of common ML
methods, including logistic regression, decision tree, support
vector machine [34], k-nearest neighbor (KNN) [35], random
forest (RF) [36], and extreme gradient boosting (XGBoost
or XGB) [37] was used to compare the model prediction

performances. The decision to choose traditional ML models
for exploration over neural networks was made, given the
relatively small size of the dataset, since neural networks
typically require an extensive dataset for training. The data
were split into training or test sets (in a ratio of 80:20) using
the Scikit-learn package [33]. A stratified 5-fold cross-vali-
dation method on the training dataset was used to evaluate
model performance and hyperparameter tuning [38]. The
stratified k-fold cross validation method was chosen to ensure
that each fold’s class distribution similar to the overall class
distribution in the dataset. This is particularly useful when
dealing with imbalanced datasets, where one class may have
significantly more instances than the others. All models were
then evaluated on the test dataset. The GridSearchCV scoring
method from Scikit-learn [33] was used to find the optimal
hyperparameters.

Model prediction performances were compared using the
area under the receiver operating characteristic curve, as it
is a more appropriate measure compared to simple accu-
racy, especially for imbalanced datasets [39]. The area under
the receiver operating characteristic curve visualizes the
performance of the model at various probability thresholds for
classification and helps in selecting an appropriate threshold
that balances the trade-off between true positives and false
positives.

To overcome data imbalance, we attempted upsampling
with the synthetic minority oversampling technique (SMOTE)
[40] that is implemented in the Python library imbalanced-
learn [41] on the training data. We trained the models with
the upsampled data and compared their internal validation
results on the test dataset.

For identifying the top features predicting whether PA
took place within a given EAM slot, we used the recursive
feature elimination (RFE) technique from Scikit-learn [33].
RFE is primarily used in ML to select the most relevant and
important features from a given dataset. It recursively trains
the model using subsets of features and ranks them based
on their contribution to improving prediction outcomes. By
iteratively eliminating less important features, RFE provides
an optimal subset of features that maximizes the model’s
performance. After the RFE, we used the Shapley Additive
Explanations (SHAP) framework [42] for understanding the
feature importance within the best-performing models. The
models were built in Python 3.8 using Scikit-learn (ver-
sion 1.2.0) package [33]. The entire training process was
conducted on a Windows 11 operating system with 64 GB
RAM, a dual-core Intel Core i9 processor, and an Nvidia
graphics card (Nvidia RTX A4000) with 16 GB memory.

Results
Overview
Following data cleaning, 23 of 41 EMA questions fulfilled
the minimum data compliance requirements and were used as
features for building the models and predicting the compli-
ance or noncompliance of PA. In this section, we first outline
the performance of the range of selected candidate ML
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models in predicting PA engagement when all the features
were used in training. Thereafter, we will show the results
of feature importance in predicting PA engagement using the
RFE technique and a SHAP value visualization. We conclude
with a practical discussion on selecting an appropriate model
or ensemble and feature set, contextualizing the work around
more general concerns in model training and selection for
dynamic personalization based on EMA.
PA Prediction Performance of Various
Model Using All Available Features
Figure 1 shows the area under the receiver operat-
ing characteristic curve of various models in a 5-fold

cross-validation on training data, and Table 1 presents their
area under the curve (AUC) scores on training and test sets.
XGB, KNN, and RF models have shown the best perform-
ance and achieved a mean AUC score of 0.87 (SD 0.02)
on 5-fold cross-validation. However, among them, XGB
achieves a slightly higher AUC score (0.87) on the unseen
test set. We also tested the upsampling technique SMOTE
on the training data; however, as shown in the 2 rightmost
columns in Table 1, this did not significantly improve the
test set AUC score. Since SMOTE does not improve the
performance on the test set, it was not used for further
analysis.
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Figure 1. (A) XGB, (B) SVM, (C) KNN, (D) LR, (E) DT, and (F) RF show the performance of selected machine learning models in 5-fold
cross-validation using all the features. AUC: area under the curve; DT: decision tree; KNN: k-nearest neighbor; LR: logistic regression; RF: random
forest; ROC: receiver operating characteristic curve; SVM: support vector machine; XGB: extreme gradient boosting.
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Table 1. Performance of various models on 5-fold cross-validation and test seta.

Model name
AUCb score 5-fold
cross-validation, mean (SD) AUC score on test set

SMOTE AUC score 5-fold
cross-validation, mean (SD) SMOTE AUC score on test set

XGBc 0.87 (0.02) 0.87 0.93 (0.01) 0.86
RFd 0.87 (0.02) 0.86 0.94 (0.01) 0.86
KNNe 0.87 (0.03) 0.86 0.92 (0.01) 0.85
LRf 0.84 (0.02) 0.85 0.86 (0.02) 0.83
SVMg 0.86 (0.02) 0.86 0.86 (0.03) 0.84
DTh 0.83 (0.01) 0.83 0.86 (0.01) 0.81

aContrasted with performance following synthetic minority oversampling technique (SMOTE) [8] of training data.
bAUC: area under the curve.
cXGB: extreme gradient boosting.
dRF: random forest.
eKNN: k-nearest neighbor.
fLR: logistic regression.
gSVM: support vector machine.
hDT: decision tree.

Feature Importance

Overview
To reduce potential questionnaire fatigue [20] caused by the
extensive EMA survey length and finding the smallest but
accurate subset of EMA questions for predicting the PA, after
finalizing the best-performing model on all 23 features, we
focused on understanding the feature importance in predicting
PA. Since the XGB model showed slightly better perform-
ance on the test dataset (Table 1) compared to RF and KNN,
explorations into feature importance were done exclusively
for XGB .

Recursive Feature Elimination
Figure 2 shows the selected top-n (n=number 1, 2, 3, etc)
features identified by RFE, alongside with a box plot of
the corresponding AUC scores for the XGB classifier. As
depicted in Figure 2 , for the XGB models, the highest
mean AUC score (0.87) is achieved when using 13 features
and remains the same even when all 23 features are used.
Interestingly, a competitive AUC score of 0.85 is achieved
with just 3 features, which combine ActPlan and ActPlanSE
as indicators of volitional intention, along with PSS2 as a
marker of stress. An increase to an AUC score of 0.86 is only
achieved when using 10 or more features.

JMIR MHEALTH AND UHEALTH Kumar et al

https://mhealth.jmir.org/2025/1/e57255 JMIR Mhealth Uhealth 2025 | vol. 13 | e57255 | p. 7
(page number not for citation purposes)

https://mhealth.jmir.org/2025/1/e57255


Figure 2. XGB models with growing feature set sizes: boxplots of AUC scores with a number of features using recursive feature elimination.
The numbers (1, 2, 3, etc) indicate the top n-number of features and their names. Feature sets are listed as “additonal_feature & X (identifier of
compounded prior features).” AUC: area under the curve; XGB: extreme gradient boosting.

SHAP Value–Based Feature Importance
Figure 3 shows a SHAP value graph of the top 13 fea-
tures and their contributions in PA prediction by the XGB
model. For brevity, we present SHAP values of 13 features,
as subsequent features do not improve the AUC score (as
apparent in Figure 2). SHAP value graph indicates the
correlations through which different features contribute to the
model’s output for individual predictions.

Similar to the RFE (Figure 2), items ActPlanSE (self-
efficacy) and ActPlan (PA planning specificity) remain the
top 2 features with the most notable impact on model

output (indicated by wide impact score spread combined
with decisive directionality on the horizontal axis). The
positive SHAP values indicate that the feature increases the
PA enactment prediction, while negative values indicate the
opposite. The color of the bar represents the feature value
(red for high and blue for low). The slight difference in the
feature ranking by RFE and SHAP value is due to differen-
ces in their feature selection methodology and objective of
feature selection. RFE focuses on improving overall model
performance metrics, whereas SHAP values aim to provide
interpretable explanations for individual prediction by a given
feature.
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Figure 3. SHAP values graph of top 13 features indicating how each feature is contributing to the extreme gradient boosting model’s output. SHAP:
Shapley Additive Explanations.

Discussion
Principal Findings
In this study, we explored the viability of predicting PA
engagement based on common supervised ML methods with
features drawn from EMA data collected in the partici-
pants’ natural contexts. Conceptually, if PA engagement
or nonengagement can be predicted, this can inform the
timing of issuing JITAIs. For instance, if negative engage-
ment is predicted, motivational messages of encouragement,
or more specific planning or replanning, can be sent. Since
EMA requires the active involvement of the user, we also
explored which features or questions of the EMA were
key determinants for effectively predicting PA engagement.
This exploration offers a framework for informing trade-off
decisions that can help in designing JITAI systems that take
valuable information derived from EMA without overburden-
ing the users.
EMA and PA Engagement Prediction
Regarding RQ1 on how accurately EMAs and ML models
can help predict PA engagement, all the ML models (Table
1) produce AUC scores of 80 or higher on test data that
were not seen by the models in training. When considering

smaller performance differences, both XGB and RF models
performed best on both cross-validation (mean 0.87, SD 0.2)
and test sets (AUC 0.87 and 0.86, respectively), broadly
indicating that the questions used in the current EMA could
be a viable option for PA engagement prediction and can
complement the tailoring of passive sensing–based JITAIs to
foster PA.

While such performance levels would not satisfy strong
reliability requirements (eg, in health diagnostics), they
can arguably be reasonably used in JITAI settings around
fostering long-term PA, where occasional type 1 or type 2
errors do not have grave consequences. Compared to previous
work on the same dataset, which used non-ML models to
investigate determinants of PA enactment in a theory-driven
manner [15], this study adopts a practical approach on
the potential of operationalizing EMA for actively driving
JITAIs independently of preconditions, such as the PA being
explicitly intended. Thereby, favoring model performance
over analyses intended to inform theory building for feature
composition.

The outcomes of automated feature selection corroborate
earlier findings [15] with non-ML modeling, as feature
importance analysis indicates that self-efficacy (ActPlanSE)
and planning specificity (ActPlan) are the key relevant
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predictors of PA engagement. Here, self-efficacy represents
a participant’s confidence in their ability to engage in the
intended activity, and planning specificity refers to how
specifically they had planned that activity. This result also
falls in line with other previous publications indicating a close
relationship between PA engagement and these volitional
components [43-45]. Further, analysis based on RFE on the
XGB model (Figure 2) indicates stress (PSS1 and PSS2)
as another potentially relevant factor that can be a qualifier
for PA outcomes. This association of stress and PA is also
consistent with previous EMA literature [16].
Psychological Considerations and
Contextualization in Theory
In light of the dual-process models of health behavior
[13,23] that the present data collection was based upon, it
is not surprising to see the volitional constructs (ActPlanSE
and ActPlan) ending up having greater feature importance.
However, even though we found a resemblance to these
psychological models, our results are not to be confused
with an evaluation of such models. Instead, our findings
represent a practical investigation of the ML methodology
being applied to determine which ones (within a given set of
candidate EMA items) could be used for a runtime system
to predict PA adherence and control adaptive interventions
accordingly. This implies that the proposed feature selection
might be very different in another set of potential predictors
and necessitates the interpretation of our findings in light of
our specific EMA design.

For example, consider the intention item or feature that
was ranked at the very bottom of our RFE (Figure 2).
From a theoretical point of view, intention would often be
seen as the pivotal point in health behavior engagement
[24]. Therefore, it may seem very surprising that intention
(Figure 2) is being ranked the least predictive feature in our
dataset. This discrepancy originates in the structure of our
EMA, with ActPlanSE and ActPlan only being assessed if
participants report to have the intention for PA. Therefore,
these features would have missing values for each episode
where no intention is reported. In these cases, values of the
volitional determinants were replaced with zeros. Thus, the
binary intention data are encoded in ActPlanSE and ActPlan.
In the RFE process, the presented models will have picked
up on this characteristic and ranked intention itself very low
since it does not contain additional information if ActPlan
or ActPlanSE is included. However, this does not imply that
we can forgo the assessment of intention since it is only
meaningfully possible to assess planning and self-efficacy
when an intention is given. In practical terms, this would
imply that the precondition of intention being given would be
wrapped into the wording for an ActPlan item if it were to
be presented without an explicit item on intention preceding
it (ie, “In case you are intending to exercise, how specifically
have you planned”).

Nonetheless, the indicated feature combination including
ActPlan and stress items corresponds well with expectations
that can be derived from the aforementioned dual-process
models of health behavior [13,23,26], representing elements

that can be seen to capture aspects of both a motivational
phase and a volitional phase.
Trade-Off Between EMA Burden and PA
Prediction Accuracy
The potential viability of the sets of EMA questionnaires
selected for this study was informed by psychological
theories. However, the list of questions as a whole is clearly
too burdensome for being of practical use in guiding JITAIs.
As indicated in the EMA literature [19-21], questionnaire
fatigue or overload is a real concern for practicality. As
shown in Figure 2, an AUC of over 0.85 is achieved by
just using the top 3 features (ie, ActPlanSE, ActPlan, and
PSS2) as compared to the maximal achievable AUC of
0.87 when all the 23 features were used. Moreover, as
evidenced by the RFE process, the maximal AUC score of
0.87 is already achieved with 13 features, indicating that
beyond these 13 features, the rest other features are not
adding additional benefit for predicting PA engagement. Even
within these 13 features, after adding an item from the
stress questions (PSS1 and PSS2), Positive and Negative
Affect Schedule mood questions (P7_nerves, P5_concern,
P1_happy, P6_depressed, and P7_energetic) are arguably not
adding significant improvements in AUC score to justify their
inclusion as frequently asked items in a practical longer-
term deployment. The PA-friendly external circumstances
(BarrPA) and the absence of barriers and sleep quality
(SleepQlt) do minor improvement of the AUC score and
could be candidates for inclusion with the EMA for research
purposes but would likely not be included in a production
system, as the improvements are negligible for practical
purpose.

For most practical purposes and keeping the EMA
questionnaire burden to the minimum, in settings where an
intention for PA is given (eg, supporting the engagement of a
PA plan), a deployed JITAI model could be driven by just 3
EMA items (ActPlanSE, ActPlan, and PSS2). If the intention
is not given, the first item could be rephrased as indicated
earlier.
Design Implications
For the practicality of JITAIs or any intervention intended
for fostering PA to be driven by regular EMA in live
deployment situations, it is essential to select EMA questions
effectively and avoid causing EMA fatigue. In relation to
RQ2, about which concepts will best inform PA engagement
prediction (as shown in the Feature Importance section),
features (EMA questions) related to self-efficacy, planning,
and stress have reasonable PA prediction power. These
outcomes indicate that the long list of potentially relevant
EMA questions used in PA prediction can be effectively cut
short to a degree where real-world deployments of JITAIs
with decision rules or trigger points [14] being informed
by EMAs appear plausible. In addition, the proposed XGB
model can be integrated into existing digital health platforms
or mobile apps for effective EMA-based JITAIs and fostering
PA engagement.
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Limitations and Future Work
This study is formative with regard to surveying potentially
relevant EMA constructs and measures. It does not include
observations or testing of the app of the derived models
in practical deployment, which is a clearly indicated step
for future work. The study also included a relatively small
number of participants (n=43) and a limited time frame (3
weeks). To ensure the generalizability of the ML model
(XGB) for automated physical activity prediction and the
customization of JITAIs across diverse demographics, further
research with larger sample sizes and longer study dura-
tions is needed. Additionally, in this study setup, the EMA
frequency was established at 4 times a day. Future work
should explore the impact of varying EMA frequencies per
day on the predictive capabilities of the model for PA.
Conclusions
This paper presents a formative investigation into EMA’s
effectiveness in predicting PA implementation and whether

EMA can be of practical use in gathering temporal con-
text for JITAI decision-making. The outcomes with com-
mon supervised ML models, especially XGB with a mean
AUC score of 0.87 (SD 0.02), indicate that EMA can offer
relevant PA prediction power and thereby has the potential to
complement more common passive sensing JITAI-tailoring
approaches. Furthermore, the investigation around finding
the right trade-off between EMA question load and PA
engagement, prediction-accuracy of ML models indicates that
self-efficacy (ActPlanSE) and planning specificity (ActPlan)
play the most important role in determining the PA prediction
under the assumption that initial intention to perform PA
was already given. Three features, ActPlanSE, ActPlan, and
PSS2 (stress), allowed for achieving an AUC score of 0.85 as
compared to the maximum AUC score of 0.87 when all the 23
EMA questions were used.
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