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Abstract

Background: Tools for measuring clinical disability status in people with multiple sclerosis (MS) are limited. Accelerometry
objectively assesses physical activity and circadian rhythmicity profiles in the real-world environment and may potentially
distinguish levels of disability in MS.

Objective: This study aims to determine if accelerometry can detect differences in physical activity and circadian rhythms
between relapsing-remitting multiple sclerosis (RRMS) and progressive multiple sclerosis (PMS) and to assess the interplay
within person between the 2 domains of physical activity (PA) and circadian rhythm (CR) in relation to MS type.

Methods: This study represents an analysis of the baseline data from the prospective HEAL-MS (home-based evaluation
of actigraphy to predict longitudinal function in multiple sclerosis) study. Participants were divided into 3 groups based on
the Expanded Disability Status Scale (EDSS) criteria for sustained disability progression: RRMS-Stable, RRMS-Suspected
progression, and PMS. Baseline visits occurred between January 2021 and March 2023. Clinical outcome measures were
collected by masked examiners. Participants wore the GT9X Link ActiGraph on their nondominant wrists for 2 weeks. After
adjusting for age, sex, and BMI, a logistic regression model was fitted to evaluate the association of each accelerometry metric
with odds of PMS versus RRMS. We also evaluated the association of accelerometry metrics in differentiating the 2 RRMS
subtypes. The Joint and Individual Variation Explained (JIVE) model was used to assess the codependencies between the PA
and CR domains and their joint and individual association with MS subtype.

Results: A total of 253 participants were included: 86 with RRMS-Stable, 82 with RRMS-Suspected progression, and 85
with PMS. Compared to RRMS, participants with PMS had lower total activity counts (f=—0.32, 95% CI -0.61 to —0.03),
lower time spent in moderate to vigorous physical activity (p=—0.01, 95% CI —0.02 to —0.004), higher active-to-sedentary
transition probability (f=5.68, 95% CI 1.86-9.5), lower amplitude (f=—0.0004, 95% CI —0.0008 to —0.0001), higher intradaily
variability (p=4.64, 95% CI 1.45-7.84), and lower interdaily stability (f=—4.43, 95% CI -8.77 to —0.10). Using the JIVE
model for PA and CR domains, PMS had higher first joint component ($=0.367, 95% CI 0.088-0.656), lower PA-1 component
($=-0.441,95% CI —-0.740 to —0.159), and lower PA-2 component (f=—0.415,95% CI —0.717 to —0.126) compared to RRMS.
No significant differences were detected between the 2 RRMS subtypes except for lower relative amplitude in those with
suspected progression (f=-5.26, 95% CI —10.80 to —0.20).

Conclusions: Accelerometry detected differences in physical activity patterns between RRMS and PMS. More advanced
analytic techniques may help discern differences between the 2 RRMS subgroups. Longitudinal follow-up is underway to
assess the potential for accelerometry to detect or predict disability progression.
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Introduction

Multiple sclerosis (MS) is a chronic disease affecting the
central nervous system in which those affected typically
have intermittent neurologic symptoms and signs early in the
course (relapsing-remitting multiple sclerosis [RRMS]) but
often, subsequently (or, less commonly, from onset), slowly
accumulate disability (progressive multiple sclerosis [PMS]).
Currently available tools to measure disability in MS are
limited. The Expanded Disability Status Scale (EDSS) is the
most widely used clinical outcome measure and is consid-
ered by the Food and Drug Administration to be the gold
standard for phase 3 trials in PMS. The EDSS, however, is
semiquantitative, has limited reliability, and only captures a
person’s state at one short point in time during a clinical visit
[1]. People with MS may have different disability states at
different times throughout the day, as symptoms can fluctuate
with temperature, fatigue, stress, and other factors [2,3]. The
limitations of the EDSS lead to long delays in confirming that
a person has transitioned from RRMS to PMS and also inflate
the sample size and follow-up time required for MS trials for
which disability progression is the primary end point [4,5].

Triaxial accelerometry is a safe and relatively inexpen-
sive tool that may offer an objective and sensitive measure
of disability in people with MS. With the use of an accel-
erometer worn on the wrist, real-time information about
physical activity and circadian rhythmicity patterns can be
collected in a person’s natural environment. Such data may
allow detection of variation in activity that may be missed
during clinical visits [6,7]. Several studies have looked at
the use of accelerometry in MS to identify associations
with sleep, fatigue, depression, or disability outcomes (EDSS
and Patient-Determined Disease Steps); however, whether
wrist-worn accelerometry can differentiate between people
with RRMS and PMS remains an existing question [8-16].
We hypothesized that people with RRMS and PMS have
different physical activity and circadian rhythmicity patterns.
Due to the interplay between physical activity and circadian
rhythm domains within person, we also aimed to study
joint and individual variations in these 2 domains and their
associations with MS subtype.

Methods
Participant Selection and Study Design

This study includes an analysis of the baseline data from
the longitudinal observational study HEAL-MS (home-based
evaluation of actigraphy to predict longitudinal function in
multiple sclerosis; Figure S1 in Multimedia Appendix 1).
Eligible participants followed at the Johns Hopkins Multi-
ple Sclerosis Precision Medicine Center of Excellence were
recruited between January 2021 and March 2023. Participants
had to have a diagnosis of MS, were aged =40 years, had no
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apparent comorbidities that may limit physical activity (eg,
heart failure and end-stage renal disease), had no MS relapse
within the last 6 months prior to enrollment, and had baseline
EDSS score <6.5. These criteria were chosen so that the
participants with RRMS were of the age at which transition
to PMS might begin within the next few years, the changes
in accelerometry measures were more likely to be due to
MS and not comorbid conditions, and the baseline measures
were not affected by recovery from a recent relapse. Medical
records were reviewed by an MS-trained neurologist to ensure
eligibility.

Participants were divided into 3 groups with a target of
85 participants each: those with stable RRMS who had no
suspected or confirmed progression (RRMS-Stable), those
with PMS who had confirmed disability worsening on EDSS
(PMS), and those with RRMS who were suspected to be
progressing clinically (inferred by an MS-trained neurologist
from medical record notes or personal knowledge of the
participant) but did not have sustained disability worsening on
exam (RRMS-Suspected progression). Confirmed disability
worsening on exam was defined as an EDSS change of
=1.0 point if baseline EDSS was <5.5, or of =0.5 points if
baseline EDSS was =6.0; this change should be sustained
for =24 weeks, not in the context of an explanatory relapse.
The 2 RRMS groups were matched based on age (target
+2 years with prespecified ability to relax the criterion if
necessary), sex at birth, race or ethnicity, and efficacy class
of current disease-modifying therapy (no treatment, first-line
treatment [injectables and oral therapies (except for cladri-
bine or ofatumumab)], or higher-efficacy treatment [infusion
therapies and cladribine]). The PMS group was expected
to be a little older and to be prescribed different (or even
no) medications due to the likely lack of neuroinflammation
and relapse activity in this group. However, enrollment of a
comprehensive cohort of participants with respect to sex and
race or ethnicity was attempted.

Clinical Measures

The EDSS exam was conducted after the fitting of the
accelerometer and was performed by a masked EDSS-trained
physician. A modified multiple sclerosis functional compo-
site (MSFC), which includes the 9-hole peg test, the timed
25-foot walk test, the high- and low-contrast letter acuity
(binocular, 2.5% contrast Sloan charts), and the Symbol
Digit Modalities Test, was performed by a masked, trained
study team member. Participants also completed patient-
reported outcomes such as the International Physical Activity
Questionnaire (IPAQ).

Accelerometry Measures

Accelerometry metrics were derived from accelerometry data
collected with the GT9X Link ActiGraph using a built-in
triaxial accelerometer [17]. All participants were instructed to
wear the ActiGraph device on the wrist of their nondominant
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hand for 24 hours a day over a duration of 2 weeks. Acceler-
ometers were set to capture 3D acceleration at 30 Hz with the
acceleration range of +8 G. The raw acceleration data (.gt3x)
were downloaded from the device using ActiLife v6.134 Lite
Edition. Binary raw activity data (Hz-level accelerometry
data) were read by read.gt3x package into an R data frame (R
Foundation for Statistical Computing) and transformed into
60-second epochs activity count data in 1440 minutes per day
(12 AM to 11:59 PM) analytic format. The activity counts are
vector magnitude-based activity counts.

The following criteria were applied to define valid days:
(1) intervals of 90 minutes or longer with all minute-level
activity counts equal to O were defined as nonwear intervals
[18], (2) valid days were defined as those with total wear-time
>90% of the day (=1296 minutes of wear), and (3) each
participant should have =3 valid days of accelerometry data.

When a wear period overlapped with the transition to or
from daylight saving time, the following adjustments were
made. If the clock was set 1 hour forward, 1 hour of data were
missing, so imputation was used by averaging the same hour
from other valid days for this participant. If the clock was set
1 hour back, duplicate data were generated for that hour; in
this instance, we used the average of the duplicated hour, and
the loss of 1 hour on the final day was imputed by averaging
the same hour from the other valid days for this participant.
The wear period overlapped with the transition to or from
daylight saving time for only 5 participants.

Accelerometry measures in this study are presented as
averages over all valid days and included (1) measures of
volume and intensity: total activity count (TAC; daily and
2-hour specific), total log-transformed activity count (TLAC),
the total daily number of nonactive minutes, the number
of minutes spent in moderate to vigorous physical activity
(MVPA), and the number of minutes spent in light inten-
sity physical activity (LIPA); (2) measures of composition:
MVPA/LIPA (the ratio of the time spent in MVPA over
the time spent in LIPA) and MVPA/nonactivity (the ratio
of the time spent in MVPA over the time spent nonactive);
(3) measures of fragmentation: sedentary-to-active transi-
tion probability (SATP) and active-to-sedentary transition
probability (ASTP) [19,20]; and (4) diurnal landmarks of
rest-activity rhythms: average log acceleration during the
most active 10 hours of the day (M10), midpoint of M10,
average log acceleration during the least active 5 hours of
the day (L5), midpoint of LS5, daytime activity ratio esti-
mate (DARE), amplitude, relative amplitude (RA), midline
estimating statistic of rhythm (MESOR), acrophase, intradaily
variability (IV), and interdaily stability (IS) [21].

The following sample-specific cut points were developed
for discriminating between nonactive, LIPA, and MVPA
minutes: (1) nonactive minute was defined as a minute with
activity counts <2000, (2) LIPA minute was defined as
activity counts >2000 and =6750, and (3) MVPA minute
was defined as activity counts >6750. These cut points
were specific to our cohort and defined based on an
internal calibration procedure that maximized concordance
between accelerometry-based estimates and the participants’
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self-reported physical activity outcomes in the IPAQ (Table
S1 and Figure S2 in Multimedia Appendix 1 [22]). Our
derived cut points were similar to those defined in other
population cohorts [22-24]. Rather than using predetermined
cutoffs reported in the literature, we believe this method
was more suitable for this study due to different cohort
demographics and clinical conditions that may alter average
physical activity intensity.

Statistical Analyses

All statistical analyses were conducted using R (version
4.3.1; R Foundation for Statistical Computing). Descriptive
statistics of the demographics, clinical data, and accelerom-
etry measures for each of the 3 groups were summarized
as mean (SD) or median (IQR). Differences between the
combined RRMS group (RRMS-Stable and RRMS-Suspected
progression) and PMS group were compared using ¢ tests and
Pearson y? test as appropriate. After adjusting for age, sex,
and BMI, a logistic regression model was fitted to evalu-
ate the association of each accelerometry metric with odds
of PMS (vs RRMS). We also evaluated the association of
accelerometry metrics in differentiating the RRMS subtypes
(RRMS-Suspected progression vs RRMS-Stable). To account
for differences in duration and timing of sleep, sensitivity
analyses were performed by re-exploring the same accelerom-
etry-derived measures within the most active 10 hours of each
day (M10) rather than the 24-hour daily total.

Functional Principal Component Analysis

Functional principal component (fPC) analysis, applied to
diurnal rest-activity rthythms (minute-level activity profiles),
captures main patterns of temporal allocation of activity and
provides important diurnal landmarks. The choice of the
first 5 fPCs as measures of circadian rhythmicity is based
on 2 factors. First, they capture most of the diurnal variabil-
ity (76%) in our data. Second, the use of fPC analysis in
accelerometry studies of diurnal rest-activity rhythms in large
national cohorts such as the National Health and Nutri-
tion Examination Survey (NHANES) and the UK Biobank
mostly focuses on the first 4 fPCs since functional principal
components beyond the 4th typically capture a relatively low
proportion of variance in the data, and their shapes tend to
be very difficult to interpret due to their very dynamic shape
[25-27]. Nevertheless, in our case, the fifth fPC explained a
significant proportion of the total variability (4%) and was
also included. Figure S3 in Multimedia Appendix 1 shows
that the additional fPCs beyond the 5th did not provide
meaningful explanations of variability.

Joint and Individual Variation Explained

The Joint and Individual Variation Explained (JIVE) is an
integrative dimension reduction technique that can be applied
to multiple features grouped within several domains [28]. The
physical activity (PA) domain was characterized by measures
of total volume of physical activity, times spent in different
intensities of activity and composition ratios of those times,
measures of activity fragmentation/continuity, and temporal-
local measures of total activity presented in 2-hour bins.
The circadian rhythmicity (CR) domain was characterized by
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measures of the strength of circadian rhythms (RA and related
components such as M10 and timing of M10), measures of
variability including IS and IV, parametric measures extracted
from the cosinor model (MESOR, amplitude, acrophase), and
the first 5 fPCs. There is a significant amount of interdepend-
ence between the PA and CR domains since the measures
belong to the same participants over the same time frame.
Variations in PA and CR domains that are independent from
each other are also expected. JIVE is a model developed
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to explore such situations and to decompose the joint and
individual effects [29]. Figure 1 demonstrates the conceptual
representation of the benefits of JIVE to better understand the
association between MS subtype and the joint and individ-
ual variation of PA and CR domains. We applied JIVE to
the domains of PA and CR to create three groups of latent
variables that explain (1) joint variation shared across PA and
CR, (2) individual variation specific to each of the domains,
and (3) remaining unexplained variation.

Figure 1. Conceptual representation of associations between multiple sclerosis (MS) subtype and the physical activity (PA) and circadian rhythm
(CR) domains performed in standard regression modeling (left) versus the associations between MS subtype and 3 sets of independent (uncorrelated)
latent variables representing joint-PA-CR, individual-PA, and individual-CR information after JIVE (Joint and Individual Variation Explained)
decomposition (right). Regression analysis with JIVE components as predictors can reveal and distinguish joint and individual associations between

the PA and CR domains and MS subtype.

Ethical Considerations

The study was approved by the institutional review board at
Johns Hopkins University (IRB00243681). All participants
provided written informed consent and had the ability to opt
out at any point. All data are stored on REDCap (Research
Electronic Data Capture), and only study members who are
approved by the institutional review board have access to the
data. The data are deidentified to the greatest extent possi-
ble. All participants received US $40 as compensation for
the baseline visit to offset study-related travel and parking
costs. All study procedure costs, including shipping of the
ActiGraph, were covered as part of the study.

PA-
individual

CR-
individual

Joint

Results

Demographics and Clinical Outcomes

A total of 275 people with MS completed a baseline study
visit as part of the HEAL-MS study; 253 had retrievable
accelerometry data and were included in this baseline analysis
(16 never returned the device, while 6 had insufficient valid
days). Participants were divided into three groups: 86 with
RRMS-Stable, 82 with RRMS-Suspected progression, and 85
with PMS. Baseline visits occurred between January 2021
and March 2023. Table 1 shows the demographic and clinical
data for the 3 groups.

Table 1. Demographics and clinical data collected at the baseline visit for HEAL-MS? participants.

RRMSP PMS® (n=85) P valued
RRMS-Stable (n=86) RRMS-Suspected progression (n=82)
Demographics
Age (years), mean (SD) 53 (7) 54 (8) 57 (9) <.001¢
Sex (female), n (%) 61 (71) 61 (74) 57 (67) 36
Race, n (%) 67
White 64 (74) 63 (77) 67 (79)
Black 19 (22) 14 (17) 13 (15)
Other 34) 5(6) 5(6)
Hispanic or Latino, n (%) 4(5) 34 34 79
BMI, mean (SD) 294 (64) 28.2 (5.6) 28 (6.2) 35
Employment status, n (%) 18
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RRMSP PMS® (n=85) P valued
RRMS-Stable (n=86) RRMS-Suspected progression (n=82)
Full time 45 (58) 37 (51) 32 (43)
Part time 4(5) 6(8) 709)
Homemaker 709) 2 (3) 4(5)
Retired 13 (17) 13 (18) 18 (24)
Unemployed 34) 3(4) 0 ()
Disability 6 (8) 12 (16) 14 (19)
Clinical data
EDSS! score, median (IQR) 2.0(1.5-3.0) 3.0(2.0-3.5) 50 (3.5-6.0) <.001¢
MSFC8, median (IQR)
25-foot walk 45(4.0-5.1) 53(4.3-6.2) 7.2(5.8-9.5) <.001¢
Dh-9hpgl 21.3 (19.4-24.0) 23.8 (20.9-27.3) 269 (22.1-344) <.001°¢
NDJ-9hpg 22.7 (20.8-25.2) 25.5(21.9-28.9) 274 (23.5-34.6) <.001°
SDMTK 51 (47-59) 48 (38-57) 42 (34-50) <.001¢
Tremor!, median (IQR) 0 (0-0.5) 0 (0-0.5) 0 (0-1) 20

AHEAL-MS: home-based evaluation of actigraphy to predict longitudinal function in multiple sclerosis.

PRRMS: relapsing-remitting multiple sclerosis.
°PMS: progressive multiple sclerosis.

dp value from ¢ test or Pearson y2 test comparing RRMS (RRMS-Stable and RRMS-Suspected progression) vs PMS.

°p<.05

fEDSS: Expanded Disability Status Scale.

EMSFC: multiple sclerosis functional composite.

bD: dominant hand.

i9hpg: 9-hole peg test.

IND: nondominant hand.

kSDMT: Symbol Digit Modalities Test.

IBain Score for Tremor Severity (BSTS) was used for tremor evaluation.

Accelerometry Measures Over 24 Hours

Figure S4 in Multimedia Appendix 1 shows the raw
accelerometry data for 1 participant over the course of the
week. The fPCs captured important temporal or diurnal
landmarks (Figure 2) and are comparable to those captured
in large national surveys such as UK Biobank and NHANES
[25,27]. Accelerometry metrics for the 3 groups are shown
in Table 2. TAC and MVPA, the 2 main measures of daily
physical activity volume, as well as M10, amplitude, and
MESOR, measures of circadian rhythmicity, were signifi-
cantly different between the RRMS and PMS groups, with
greater intensity of activity in the RRMS groups compared

https://mhealth.jmir.org/2025/1/e57599

to the PMS group. ASTP was also significantly different,
with higher values (more frequent transitions to sedentary
time) in the PMS group. When TAC was divided into 2-hour
windows, it was significantly lower in the PMS group at
specific times of the day (6 AM to 12 PM and 2 PM
to 10 PM; Figure 3). Figure S5 in Multimedia Appendix
1 demonstrates the correlation plot for all accelerometry
measures; the green box demonstrates the temporal profiles of
the circadian measures associated with TAC over 24 hours.
MESOR, amplitude, and fPC1 are highly correlated with
TAC between 9 AM and 8 PM.
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Figure 2. First 5 functional principal components (fPCs). fPC 2, 3, and 4 values are multiplied by —1.
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Table 2. Mean (SD) baseline accelerometry metrics over 24 hours for HEAL-MS? participants.

RRMSP PMS® (n=85) P valued
RRMS-Stable (n=86) RRMS-Suspected progression (n=82)

Metrics of physical activity volume and fragmentation

TACS (x10%) 2113 (566) 2181 (724) 1909 (717) 008°¢
TLACS 6277 (868) 6278 (933) 6196 (999) Sl
Nonactive minutes 1067 (102) 1052 (114) 1087 (130) 08
MVPAP 59 (34) 61 (52) 41 (43) <.001¢
LIPA 314 (84) 327 (83) 312 (105) 52
SATP 0.09 (0.03) 0.09 (0.03) 0.09 (0.03) 21
ASTPX 0.27 (0.06) 0.26 (0.06) 0.30 (0.11) 003¢
Metrics of circadian rhythm
Mi0! 2482 (665) 2540 (844) 2161 (806) <.001¢
Midpoint of M10™ 2:20 PM (85) 2:15 PM (86) 2:14 PM (77) 72
L3" 111 (67) 135 (109) 146 (124) 09
Midpoint of L5™ 3:58 AM (68) 3:58 AM (80) 4:05 AM (76) 57
RA° 0.91 (0.05) 0.89 (0.07) 0.87 (0.09) <.001¢
DAREP 0.70 (0.05) 0.70 (0.05) 0.69 (0.05) 049°¢
Amplitude 2290 (1081) 2218 (847) 1923 (839) .008°¢
MESORY 1313 (623) 1264 (390) 1120 (429) 01¢
Acrophase 14.56 (1.92) 14.61 (1.35) 14.76 (1.31) 40
Iv* 0.52(0.11) 0.49 (0.09) 0.49 (0.08) 02¢
IS8 0.26 (0.07) 0.27 (0.07) 0.25 (0.06) 08
fPC1! 1912 (17.,574) 4242 (22,747) —5206 (21,441) 003¢
fPC2 933 (11,249) —1596 (11,922) 507 (10,181) 59
fPC3 235 (9505) —-166 (8702) —108 (6432) .89
fPC4 —1489 (6339) —585 (8694) 451 (4989) .10
fPC5 49 (6677) —489 (5772) 677 (5744) 27

YHEAL-MS: home-based evaluation of actigraphy to predict longitudinal function in multiple sclerosis.
PRRMS: relapsing-remitting multiple sclerosis.

CPMS: progressive multiple sclerosis.

dp value from ¢ test comparing RRMS (RRMS-Stable and RRMS-Suspected progression) vs PMS.
€p<.05

fTAC: total activity count.

8TLAC: total log-transformed activity count.

"MVPA: moderate to vigorous physical activity.

ILIPA: light intensity physical activity.
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ISATP: sedentary-to-active transition probability.

KASTP: active-to-sedentary transition probability.

IM10: average log acceleration during the most active 10 hours of the day.
MMidpoints of M10 and L35 are represented as time of the day in hour:minutes (+SD in minutes).
NL5: average log acceleration during the least active 5 hours of the day.
ORA: relative amplitude.

PDARE: daytime activity ratio estimate.

IMESOR: midline estimating statistic of rhythm.

"IV: intradaily variability.

SIS: interdaily stability.

YPC: functional principal component.

Figure 3. Total activity counts (TAC) for each 2-hour interval over the course of 24 hours for PMS versus RRMS. The 2-sample ¢ test P values
show the 2-hour intervals when TAC was significantly different between the 2 groups. As an additional reference, the logistic regression P values are
shown with the TAC 2-hour intervals used as predictors, after adjusting for age, sex, and BMI. MS: multiple sclerosis; PMS: progressive multiple

sclerosis; RRMS: relapsing-remitting multiple sclerosis.
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In multivariable-adjusted models (Table 3), participants with
PMS had lower TAC (f=-0.32, 95% CI -0.61 to —0.03;
P=03), lower MVPA (f=-01, 95% CI -0.02 to —0.004;
P=.004), lower M10 (f=-0.0006, 95% CI -0.001 to —0.0002;
P=003), and higher ASTP (B$=5.68, 95% CI 1.86-9.50;
P=004) when compared to those with RRMS. PMS (vs
combined RRMS) was also associated with lower TAC
from 8 AM to 12 PM and from 2 PM to 8 PM (Figure
3). Lower values of compositional ratios MVPA/LIPA and
MVPA/nonactive were also associated with PMS (vs RRMS),
indicating that individuals with PMS tend to spend relatively
less time in moderate/vigorous activity compared to the time

https://mhealth.jmir.org/2025/1/e57599

in light intensity activity or nonactivity (Table 3). Participants
with PMS also had lower amplitude ($=—0.0004, 95% CI
—0.0008 to —-0.0001; P=.01), lower MESOR (=—0.0009,
95% CI -0.002 to —0.0002; P=.01), higher IV (f=4.64,
95% CI 1.45-7.84; P=.004), lower IS (p=—4.43, 95% CI
-8.77 to —0.10; P=.045), and lower fPC1 ($=-0.39, 95%
CI -0.69 to —0.09; P=.01) (Table 3). There were no signifi-
cant associations of accelerometry measures between RRMS
subgroups except for a difference in RA (f=-5.26, 95% CI
—10.80 to —0.20; P=.049), with lower RA in RRMS-Suspec-
ted progression (Table 3; Figure S6 in Multimedia Appendix
1).
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Table 3. Multivariable logistic regression model to evaluate the association of each accelerometry metric with multiple sclerosis subtype. The

multivariable logistic regression models were adjusted for age, sex, and BMI.

PMS? vs RRMSP (reference group)

RRMS-Suspected progression vs RRMS-Stable (reference group)

Estimate P value 95% C1 Estimate P value 95% C1
TACd’e -0.32 03¢ -0.61 to —0.03 0.14 42 —-0.20 to 0.50
TLAC™ ~0.04 79 03110023 0.05 77 ~028100.38
Nonactive minutes ~ 0.002 .16 —0.0007 to 0.004  -0.002 29 —0.005 to 0.001
MVPAS -0.01 004¢ -0.02 to —0.004 0.002 .70 -0.006 to 0.009
LIPAD -0.0006 .69 -0.004 to 0.002 0.002 25 -0.002 to 0.006
SATP! -3.004 59 -13.84t0 7.83 1.60 81 —11.16 to 1447
ASTP 5.68 .004¢ 1.86 t0 9.50 -4.44 A3 -10.47 to 1.05
MVPA/LIPA -4.25 .002¢ -6.99 to —1.51 -0.31 81 -291t02.27
MVPA/nonactive -7.90 02¢ -14.53 to -1.27 2.35 A6 -3.731t09.04
LIPA/nonactive -0.36 T4 -2.50to0 1.78 1.74 22 -0.98 to0 4.58
M10k -0.0006 .003¢ —-0.001 to —0.0002  0.0001 .63 -0.0003 to 0.0005
Midpoint of M10 —-0.0004 82 —-0.004 to 0.003 —-0.0006 75 —-0.004 to 0.003
L5! 0.002 A1 —-0.0005 to 0.005  0.004 07 0 to 0.008
Midpoint of L5 0.0009 71 -0.004 to 0.005 -0.004 .16 -0.01 to 0.002
RA™ -6.00 002¢ -9.73 to -2.26 -5.26 049¢ -10.80 to —0.20
DARE" -5.80 04¢ -11.25t0-0.34 -0.34 91 -6421t05.74
Amplitude -0.0004 01°¢ -0.0008 to —-0.0001 59 —-0.0004 to —0.0002

-0.0001

MESOR° -0.0009 01°¢ -0.002 to —0.0002  -0.0002 A48 —0.0009 to 0.0004
Acrophase 0.08 37 -0.10 t0 0.27 0.02 84 -0.17 t0 0.20
IvP 4.64 004¢ 1.45t0 7.84 -0.30 88 -4.21103.62
1S4 -4.43 .045¢ —-8.77 to —0.10 0.53 82 -3.971t05.03
fPC1" -0.39 01¢ -0.69 to —0.09 0.14 39 —-0.19 to 0.47
fPC2 0.04 79 -0.23 t0 0.31 -0.25 12 -0.58 to 0.07
fPC3 0.08 57 -0.19 t0 0.35 0.009 96 -0.30 t0 0.32
fPC4 0.19 18 -0.08 t0 0.46 0.11 51 -0.21t0 042
fPC5 0.15 27 -0.12t0 042 -0.05 T4 -0.36 t0 0.26

4PMS: progressive multiple sclerosis.
PRRMS: relapsing-remitting multiple sclerosis.
€pP<.05.

dRegression inputs were scaled by dividing TAC and TLAC values by 1 SD.

°TAC: total activity count.

fTLAC: total log-transformed activity count.

EMVPA: moderate to vigorous physical activity.

MLIPA: light intensity physical activity.

%SATP: sedentary-to-active transition probability.

JASTP: active-to-sedentary transition probability.

XM10: average log acceleration during the most active 10 hours of the day.
ILs: average log acceleration during the least active 5 hours of the day.
MRA: relative amplitude.

"DARE: daytime activity ratio estimate.

OMESOR: midline estimating statistic of rhythm.

PIV: intradaily variability.

41S: interdaily stability.

"fPC: functional principal component.

Accelerometry Measures Within M10

To account for differences in duration and timing of sleep,
the accelerometry metrics were explored within the M10
period. The results are summarized in Table S2 in Multimedia
Appendix 1. TAC, MVPA, and ASTP remained significantly

https://mhealth.jmir.org/2025/1/e57599

different between the RRMS and PMS groups. Additionally,
the PMS group displayed more nonactive time compared
to the RRMS group. Logistic regression identified signifi-
cant associations between the MS subtype (PMS vs RRMS)
and TAC, MVPA, nonactive minutes, ASTP, and MVPA/
LIPA (Table S3 in Multimedia Appendix 1). No significant
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associations were identified when comparing the 2 RRMS
subgroups.

The JIVE Components

We also applied JIVE, a novel integrative dimension
reduction technique. Figure 1 presents the conceptualized
diagram of JIVE decomposition and how JIVE can be
used to better understand codependencies between PA and
CR domains and their joint and individual association with
MS subtype. Figure 4 shows the estimated JIVE compo-
nents obtained from the accelerometry-derived domains of
PA and CR. The directions of loadings (+ or —) and
squares of loadings for the estimated JIVE joint compo-
nent and individual PA and CR components are shown in
Tables 4 and 5, and Table S4 in Multimedia Appendix 1,

Bou Rjeily et al

respectively. Higher positive scores of the first joint JIVE
component primarily represent lower volume of physical
activity (captured by TAC) and weaker circadian rhythms
(captured by M10, MESOR, amplitude, and fPC1) (Table 4).
Higher positive individual PA-1 scores capture less frequent
transitions to active behavior (SATP), less time spent in
LIPA (LIPA, LIPA/nonactive, TLAC), and more time spent
nonactive. Higher positive individual PA-2 scores capture
more time spent in MVPA (MVPA, MVPA/LIPA, MVPA/
nonactive) and more activity in the morning and evening
hours (TAC 8 to 10 AM and TAC 6 PM to 12 AM)
(Table 5). Joint JIVE component and individual PA-1 and
PA-2 components were found to be significantly associated
with MS subtype (Table 6). No significant associations were
identified when comparing the 2 RRMS subgroups.

Figure 4. Joint and Individual Variation Explained (JIVE) by the 2 JIVE accelerometry-derived domains of circadian rhythm (CR) and physical

activity (PA).

OJoint @Individual CR @lIndividual PA @ Residual

0.6 -

0.4 +

Variation explained

0.2

Circadian rhythm

Physical activity

Table 4. JIVE? joint component with variables with more than 5% of proportional variation.

Variable Joint component loading Relative magnitude of joint component loading
M10P —-0.2665385 0.0710428
fPC1¢ —0.2608276 0.0680310
MESORY —-0.2519508 0.0634792
Amplitude —-0.2408992 0.0580324
TAC® —-0.2256510 0.0509184

4JIVE: Joint and Individual Variation Explained.

PM10: average log acceleration during the most active 10 hours of the day.

¢fPC: functional principal component.
dMESOR: midline estimating statistic of rhythm.
®TAC: total activity count.

Table 5. Individual JIVE® components of physical activity with variables with more than 5% of proportional variation.

Variable PA component loading

Relative magnitude of PA component loading

Physical activity component 1

https://mhealth.jmir.org/2025/1/e57599
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Variable PA component loading Relative magnitude of PA component loading
SATP® —0.4493703 0.2019337
LIPA® —0.4141149 0.1714912
LIPA/nonactive -0.3664975 0.1343204
TLACY -0.3365927 0.1132946
MVPA/LIPA® 0.3293182 0.1084505
Nonactive minutes 0.2448185 0.0599361

Physical activity component 2
MVPA/LIPA 0.4728996 0.2236340
MVPA 0.3970161 0.1576218
MVPA/nonactive 0.3673462 0.1349432
TAC! 8 PM to 10 PM 0.3341579 0.1116615
TAC 8 AM to 10 AM 0.3099402 0.0960629
TAC 10 PM to 12 AM 0.2477134 0.0613620
TAC 6 PM to 8 PM 0.2430202 0.0590588

Physical activity component 3
TAC 12 AM to 2 AM 0.6035690 0.3642955
TAC 10 PM to 12 AM 0.4550918 0.2071086
TAC 4 AM to 6 AM —0.3500618 0.1225433
TAC2 AM to 4 AM —0.3085089 0.0951777

Physical activity component 4
ASTPe —-0.5134849 0.2636667
TAC 8 PM to 10 PM 0.3803549 0.1446698
TAC 2 PM to 4 PM —0.3588593 0.1287800
SATP —0.3283307 0.1078011
TLAC —0.2739182 0.0750312
TAC 10 AM to 12 PM 0.2516689 0.0633372

4JIVE: Joint and Individual Variation Explained.
bSATP: sedentary-to-active transition probability.
CLIPA: light intensity physical activity.

dTLAC: total log-transformed activity count.
®MVPA: moderate to vigorous physical activity.
fTAC: total activity count.

EASTP: active-to-sedentary transition probability.

Table 6. Multivariable logistic regression model to evaluate the association of each JIVE* component with multiple sclerosis subtype. The
multivariable logistic regression models were adjusted for age, sex, and BMI.

PMSP vs RRMS® (reference group) RRMS-Suspected progression vs RRMS-Stable (reference group)

Estimate P value 95% CI Estimate P value 95% CI
Joint component 0.3665 014 0.0881 to 0.6558 -0.1266 A4 —0.4525 t0 0.1897
PA-1¢ —0.441 0034 —0.7397 to -0.159 -0.0183 91 —0.3404 to 0.3034
PA-2 —0.4147 0064 —0.7174 to -0.1255  -0.3066 07 —0.6502 to 0.0207
PA-3 —-0.0527 71 —0.3282 to 0.2204 -0.2622 A1 —0.5887 t0 0.0529
PA-4 0.235 11 —0.046 t0 0.5272 0.1849 25 —0.129 to 0.5098
CR-1f 0.2588 07 —0.0162 to 0.5411 0.0107 95 —-0.3044 t0 0.3275
CR-2 -0.2732 052 —0.5536 t0 0.0001 -0.2991 07 —0.6344t0 0.019
CR-3 -0.142 32 —0.4266 t0 0.135 0.0815 61 —0.2345 t0 0.4031

4JIVE: Joint and Individual Variation Explained.
bpMS: progressive multiple sclerosis.

‘RRMS: relapsing-remitting multiple sclerosis.
dp<05.

€PA: individual physical activity component.
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fCR: individual circadian rhythm component.
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Discussion

Principal Findings

This cross-sectional analysis was conducted to determine if
a set of detailed accelerometry-derived summary measures
of physical activity and circadian rhythmicity distinguishes
between MS subtypes. As an extension of the work we and
others had previously published, in which physical activity
counts were on average lower in those with MS who were
more disabled [9-11], we show here that participants with
PMS exerted less total daily volume of physical activity
than those with RRMS, and that these differences seemed
more pronounced during specific times of the day. Sensitivity
analyses to account for differences in timing and duration of
sleep using the accelerometry metrics during the M10 period
demonstrated very similar findings, which, if confirmed in
subsequent studies, might help improve the feasibility of data
collection (eg, if participants are not eager to wear the device
overnight).

This work newly demonstrates that beyond average overall
activity measures, specific PA indices had stronger discrim-
inative properties than others in distinguishing PMS from
RRMS. For example, those with PMS were more likely to
transition from active to nonactive behavior (higher ASTP)
and had less time spent in MVPA, instead favoring a greater
amount of time in which they are inactive or only lightly
active. ASTP may be a complementary measure of function-
ality to the measures of volume of daily activity such as
TAC and MVPA. In the general population, higher ASTP is
associated with worse health and functional status and higher
fatiguability in older adults [20]. Our findings are consis-
tent, as people with PMS have overall greater disability and
symptoms. Therefore, it may be useful for future studies to
explore novel measures of fragmentation of physical activity
to determine indices that could better distinguish MS subtype.

Although differences in patterns of activity were dem-
onstrated between the PMS and RRMS subgroups, explor-
ing accelerometry-measured sleep and circadian/diurnal
rhythmicity may discern even more significant differences.
For example, we previously demonstrated that among people
with MS, diurnal variability is greater in those with higher
EDSS [9]. Herein, we confirmed that differences in TAC
within specific times of the day (8 AM to 12 PM; 2
PM to 8 PM) appeared to drive the daily average activity
measures. Participants with PMS also had higher IV and
lower IS, further demonstrating the importance of detecting
differences in diurnal rhythmicity between the 2 groups. The
observed differences in our cohort herein serve as motiva-
tion for further exploration with more advanced analytical
techniques beyond the use of averages of daily CR meas-
ures. Our next steps will include further investigation of
more complex measures of fragmentation of physical activity,
distributional and temporally local distributional character-

https://mhealth.jmir.org/2025/1/e57599

istics of activity, and parameters of sleep and circadian
disruptions [19,28,30-32].

An application of JIVE demonstrated a significant overlap
between variation in physical activity and circadian rhythmic-
ity domains. Joint component 1 was significant and was
primarily driven by the total volume of PA along with
measures of strength of CR (M10, fPC1, MESOR, ampli-
tude), suggesting that a joint study of these 2 domains may
provide a more accurate picture and capture the interdepend-
ence between the domains and their combined association
with MS subtype. The significant association of MS subtype
with the individual PA-1 and PA-2 components confirmed
the results from the standalone associations of individual
measures with MS subtype. Specifically, more fragmented
physical activity profiles with lower times spent in MVPA
and LIPA can be used to differentiate PMS and RRMS.

Accelerometry did not distinguish between the RRMS
subgroups cross-sectionally. Correctly classifying people with
MS as having transitioned from RRMS to PMS often takes
several years and is usually done retrospectively [33]. In
designing this cohort, we hypothesized that data acquired in
the early phase of cohort follow-up would predict subsequent
worsening as measured by EDSS and that accelerometry may
help to reduce the time of diagnostic uncertainty. Since we
report only cross-sectional data, we did not expect substantial
differences between the RRMS groups, especially as these
groups were matched for key characteristics (age, sex, race or
ethnicity, and disease modifying therapy class). Longitudinal
tracking of the participants will allow for tracking within-
person changes in disability trajectories. Whether including
additional features of accelerometry data, such as more
advanced measures of sleep or circadian rhythm, will better
distinguish RRMS subpopulations even at a single time point
will be an important next step.

Finally, although our findings are currently not immedi-
ately applicable in clinical practice, the study suggests it
may be possible to alert clinicians about certain patterns
in 24-hour behaviors that may affect the lives of people
with MS. Though it can be difficult to clinically distin-
guish PMS from RRMS, accelerometry measures appear to
detect distinct patterns of activity. People with PMS seem to
have increased variability and fragmentation of their activity
patterns, and intermittently reduced function is commonly
reported, subjectively, by people with more advanced MS
during clinical visits. This increases the confidence that
accelerometry can in fact measure clinically meaningful
patterns in people with MS. It is important for future efforts
to recapitulate these findings with commercial accelerometers
in order to support scalability and to translate the findings
into results that clinicians and patients can easily understand
and monitor over time. For instance, the increased variabil-
ity in people with PMS indicates that their experience of
their disease may be very different from the clinical pic-
ture evident during their clinical visits. A discussion with
patients regarding their physical activity, supplemented by
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accelerometry data, could shed light on other aspects of
their lives that should be acknowledged. Understanding when
patients are likely to be at their peak activity levels may
help plan their day better (when to plan effortful tasks or
schedule breaks) and may inform lifestyle modifications such
as exercise or even physical therapy interventions to evaluate
for improvements.

Limitations

There are limitations to the study. The classification of RRMS
as stable versus suspected progression is subjective, and it
is likely that some of these individuals were misclassified,
where a stable person was deemed as having suspected
progression or vice versa, which could contribute to the lack
of ability to detect differences in accelerometry measures
between the 2 RRMS groups. We chose to create this
subclassification to mirror the “clinical intuition” whereby
physicians and, often, their patients worry they are progress-
ing even if they do not meet the criteria for sustained EDSS
worsening, and we wanted to be sure that sufficient numbers
of such people were enrolled in the study. The longitudinal
trajectories of the participants with RRMS will be informa-
tive; since all are at risk, based on age, of transitioning to
a PMS phenotype, we can evaluate this risk as it relates
to accelerometry measures not only using these subjective
subtypes but also using a more agnostic, data-driven approach
within the participants with RRMS subgroup as a whole.
Another potential bias related to our study is the Hawthorne
effect, where participants could potentially alter their physical
activity because they were being monitored. Although this
risk cannot be eliminated, it was minimized by disabling the
features that display activity levels on the ActiGraph monitors
(ie, the number of steps); only the time of day was displayed.

Bou Rjeily et al

It is possible that relevant comorbidities were missed during
chart review although this is unlikely to affect a substan-
tial enough proportion of individuals to meaningfully have
influenced results. Finally, this is a cross-sectional study, and
we will be able to better explore the dynamic changes in
activity measured by accelerometry as well as fluctuations in
the EDSS with the longitudinal follow-up, which will provide
deeper insight into the evolution of MS progression measures.

Conclusions

In conclusion, accelerometry-derived measures captured
differences in physical activity and circadian rhythm profiles
between people with PMS and RRMS. Further analytic
approaches that consider more sophisticated approaches to
time (such as circadian patterns) may help further refine
the ability to detect differences between these subgroups at
a single time point, whereas longitudinal follow-up is most
likely to allow for the identification of accelerometry patterns
that portend subsequent disability worsening as defined by
EDSS. We specifically hypothesize that the measures that
distinguish PMS from RRMS at baseline will be those to
change first in the participants with RRMS who transition to
PMS in the longitudinal follow-up of this cohort. Enabling
the identification of MS progression or risk may help with
clinical decision-making (such as choosing an appropriate
disease-modifying therapy for a given person) or may enable
advancements in telemedicine by tracking functions remotely.
More importantly, these technologies will likely facilitate
therapeutic development for PMS by improving disability
detection and worsening, alone or in combination with other
metrics such as neuroimaging, which will enable faster and
smaller trials of promising interventions.
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