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Abstract
Background: Mobile health technologies show promise in addressing metabolic syndrome, but their comparative effective-
ness in large-scale public health interventions remains unclear.
Objective: This study aims to compare the effectiveness of wearable devices (wearable activity trackers) and mobile app–
based activity trackers (built-in step counters) in promoting walking practice, improving health behaviors, and reducing
metabolic syndrome risk within a national mobile health care program operated by the Korea Health Promotion Institute.
Methods: This retrospective cohort study analyzed data from 46,579 participants in South Korea’s national mobile health
care program (2020‐2022). Participants used wearable devices for 12 weeks, after which some switched to built-in step
counters. The study collected data on demographics, health behaviors, and metabolic syndrome risk factors at baseline, 12
weeks, and 24 weeks. Outcomes included changes in walking practice, health behaviors, and metabolic syndrome risk factors.
Metabolic syndrome risk was assessed based on 5 factors: blood pressure, fasting glucose, waist circumference, triglycerides,
and high-density lipoprotein cholesterol. Health behaviors included low-sodium diet preference, nutrition label reading, regular
breakfast consumption, aerobic physical activity, and regular walking. To address potential selection bias, propensity score
matching was performed, balancing the 2 groups on baseline characteristics including age, gender, education level, occupation,
insurance type, smoking status, and alcohol consumption.
Results: Both wearable activity tracker and built-in step counter groups exhibited significant improvements across all
evaluated outcomes. The improvement rates for regular walking practice, health behavior changes, and metabolic syndrome
risk reduction were high in both groups, with percentages ranging from 45.2% to 60.8%. After propensity score matching,
both device types showed substantial improvements across all indicators. The built-in step counter group demonstrated greater
reductions in metabolic syndrome risk compared to the wearable device group (odds ratio [OR] 1.20, 95% CI 1.05‐1.36). No
significant differences were found in overall health behavior improvements (OR 0.95, 95% CI 0.83‐1.09) or walking practice
(OR 0.84, 95% CI 0.70‐1.01) between the 2 groups. Age-specific subgroup analyses revealed that the association between
built-in step counters and metabolic syndrome risk reduction was more pronounced in young adults aged 19‐39 years (OR
1.35, 95% CI 1.09‐1.68). Among Android use subgroups, built-in step counters were associated with a higher reduction in
health risk factors (OR 1.20, 95% CI 1.03‐1.39).
Conclusions: Both wearable devices and built-in step counters effectively reduced metabolic syndrome risk in a large-scale
public health intervention, with built-in step counters showing a slight advantage. The findings suggest that personalized
device recommendations based on individual characteristics, such as age and specific health risk factors, may enhance the
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effectiveness of mobile health interventions. Future research should explore the mechanisms behind these differences and their
long-term impacts on health outcomes.
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Introduction
Metabolic syndrome, a cluster of interconnected factors,
significantly increases the risk of cardiovascular disease,
stroke, and type 2 diabetes, presenting a major challenge
to global public health systems [1-3]. Its rising preva-
lence imposes substantial economic burdens on health care
systems and society [4]. In response, digital health tech-
nologies, particularly mobile apps and wearable devices,
have emerged as promising tools for health promotion and
disease prevention. These technologies offer advantages such
as real-time data collection, personalized feedback, and
continuous monitoring, potentially enhancing user engage-
ment and promoting sustainable behavior change to reduce
metabolic syndrome risks [5,6].

Recent studies have demonstrated the potential of mobile
health apps in supporting behavior change for diabetes
prevention and control. A prospective cohort study in
Singapore revealed that higher engagement with a mobile
health app led to greater weight loss and HbA1c reduction
among adults with overweight or obesity and who had
type 2 diabetes or prediabetes [7]. Similarly, a qualitative
research highlighted the importance of integrating app use
into routine care and developing guidelines for health care
professionals to maximize the benefits of these technologies
[8]. These findings underscore the growing importance of
digital interventions in chronic disease management.

However, the efficacy of these digital interventions in
public health settings remains a subject of debate. While some
studies have reported significant benefits in health promo-
tion and metabolic syndrome management [9,10], others
have found limited or no effects [11,12]. This discrepancy
underscores the need for further research to elucidate the
factors that influence the effectiveness of digital health
interventions in real-world settings.

Wearable devices are hypothesized to be more effective
in promoting health behaviors due to their ability to provide
continuous monitoring and immediate feedback, potentially
enhancing user engagement and adherence to exercise
regimens than mobile apps alone [10,13,14]. However,
evidence supporting this hypothesis in large-scale public
health interventions remains limited and inconsistent. Some
studies suggest that wearables enhance physical activity and
health monitoring more effectively than mobile apps due
to their continuous tracking and user engagement features
[15]. Conversely, other research indicates minimal differences
in health outcomes between users of wearables and mobile
apps, suggesting that the technology’s effectiveness may

heavily rely on individual user engagement and integration
into comprehensive health management strategies [16,17].

In South Korea, a nationwide mobile health care program
operated by the Korea Health Promotion Institute (KHPI)
has been operational since 2018, providing an unprecedented
opportunity to evaluate the effectiveness of digital health
interventions at a population level. This program, implemen-
ted through over 220 health centers, offers free wearable
activity trackers to eligible participants to mitigate metabolic
syndrome risks. Interestingly, some participants have opted
to switch to using mobile phone built-in step counters due
to personal preference or device loss, creating a natural
experiment to compare the efficacy of these 2 approaches.

This study aims to comprehensively evaluate the compa-
rative effectiveness of wearable devices (wearable activity
trackers) versus mobile app–based activity trackers (built-in
step counters) within this public health service framework.
Specifically, we seek to examine their differential impacts
on three key outcomes: (1) the promotion of regular walking
practices, (2) improvements in overall health behaviors, and
(3) the reduction of metabolic syndrome risk factors. By
leveraging a large-scale, real-world dataset, we aim to provide
nuanced insights into how these technologies influence
various aspects of health behavior and outcomes.

Methods
Data Source
The data source is the KHPI’s health center mobile health
care program data (2020‐2022). This nationwide program
uses Information and Communication Technology to improve
preventive health care and self-health capabilities of local
residents aged 19 years and older with at least one metabolic
syndrome risk factor. The program targets individuals who
are generally healthy or without diagnosed chronic disea-
ses. Participants undergo comprehensive health assessments
at baseline, 3 months, and 6 months, supported by continu-
ous mobile health care interventions throughout the 6-month
program duration.

On enrollment, participants receive a mobile app and
an activity tracker (wristband or smartwatch) that monitors
biometric data, syncing with the app. The app features
automated exercise and dietary logging, delivers personalized
health information, and sends exercise and food diaries to
participants. From week 12, participants could opt to use their
smartphone’s built-in step counter instead of the provided
tracker, integrating with fitness tracker apps.
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Study Design and Participants
Participants receive medical check-ups, lifestyle assessments,
and expert counseling at the beginning, week 12, and week
24. Exclusion criteria included: (1) nonparticipation for over
2 weeks, (2) onset of chronic diseases during the study, (3)
incomplete final health questionnaire or pedometer loss by
week 27, and (4) moving out of the service area. The Ministry
of Health and Welfare oversees the program, with manage-
ment by the KHPI (Figure 1) [18].

This retrospective cohort study examined changes in
walking routines, health behavior patterns, and metabolic

syndrome risk factors among participants who either
continued using a wearable activity tracker or switched to
a smartphone’s built-in step counter after 12 weeks of the
program.

The study group comprised individuals with at least
1 metabolic syndrome risk factor who switched from a
wearable activity tracker to their smartphone’s built-in step
counter after 12 weeks. The control group consisted of
individuals with at least 1 metabolic syndrome risk factor
who continued using a wearable activity tracker throughout
the 24-week intervention period.

Figure 1. Health center mobile health care program and study design.

Outcome Measures
The practice of “regular walking” was defined based on
a survey as engaging in walking for at least 10 minutes
consecutively for 5 or more days in the past week. If
individuals who did not practice “regular walking” before
participating in the program started practicing it afterward, it
was considered an improvement in “regular walking.”

Health behaviors were assessed through a comprehen-
sive survey that evaluated 5 key indicators: preference for
low-salt diets, regular breakfast consumption, attentiveness
to nutritional labels, engagement in regular walking, and
participation in aerobic exercises. If any of these 5 health
behaviors were not practiced before the program but were
adopted afterward, it was considered an improvement in
health behaviors.

Metabolic syndrome risk factors were composed of the
following five criteria, adopting the diagnostic criteria used
domestically based on the National Cholesterol Education
Program Adult Treatment Panel III guidelines: (1) elevated
blood pressure (systolic blood pressure equal to or above 130

mm Hg or diastolic blood pressure equal to or above 85 mm
Hg); (2) elevated fasting blood glucose equal to or above
100 mg/dL; (3) abdominal obesity: male waist circumference
equal to or above 90 cm, female waist circumference equal
to or above 85 cm; (4) elevated triglycerides equal to or
above 150 mg/dL; and (5) decreased high-density lipoprotein
cholesterol: male less than 40 mg/dL, female less than 50
mg/dL. If 1 or more of these 5 metabolic syndrome risk
factors decreased after participation in the program com-
pared to before, it was considered a reduction in metabolic
syndrome risk [19].
Potential Confounding Variables
The following potential confounding variables were included
as covariates: gender, age group (in 10 y increments), BMI,
education level (4 levels), occupation, family type, insurance
type (as a proxy for economic status), smoking, alcohol
consumption, and mobile operating system.
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Statistical Analysis
Baseline demographic characteristics were compared between
the built-in step counter users and wearable activity tracker
users using chi-square tests. To enhance comparability
between the study group and the control group, we per-
formed propensity score matching as our primary analy-
sis method [20]. Propensity scores were estimated using
multivariable logistic regression for all variables mentioned
earlier. Matching was performed using a 1:4 nearest neighbor
method with the estimated propensity score, and the caliper
was strictly set at 0.05. The standardized mean difference was
used to compare baseline characteristics of the study group
and control group, with imbalance defined as an absolute
value greater than 0.1.

Using the propensity score-matched data, we assessed the
associations between device type and (1) regular walking
practice, (2) health behavior improvement, and (3) metabolic
syndrome risk reduction. Odds ratios (OR) with 95% CIs
were calculated to quantify these associations.

As a secondary analysis, we conducted multivariable
logistic regression with backward elimination, adjusting
for potential confounding variables, to further validate our
findings. This analysis was performed on the full dataset
before propensity score matching.

Subgroup analyses were performed based on age groups
(10-30 years: young adults; 40-50 years: middle-aged adults;
and 60 years and older: older people) and mobile operat-
ing systems (Android and iOS) using both the propensity
score-matched data and the full dataset with multivariable
logistic regression.
Ethical Considerations
This study was approved by the Bioethics Committee of
the CHA University Institutional Review Board (approval

E1705/001-003). This study used secondary data from the
Public Health Center Mobile Health Care Project, a public
health initiative in South Korea. The institutional review
board deemed this study exempt from the requirement for
additional informed consent, as it involved the secondary
analysis of deidentified data from an existing public health
program. All data were anonymized and deidentified by
the public health centers before being provided for research
purposes, with all personal identifiers removed to ensure
participant privacy and confidentiality. The data management
and analysis procedures strictly adhered to the Personal
Information Protection Act of South Korea and institutional
data security protocols. As this was a secondary analysis
of data from a public health program, participants were not
provided additional compensation for this specific research
study. Their original participation in the Mobile Health Care
Project was voluntary and part of a public health service
initiative, without monetary compensation.

Results
Compared to continuous wearable users (n=45,273, 97.2%),
the proportion of users who switched to built-in step counters
was small (n=1306, 2.8%). The built-in step counter group
had a higher proportion of younger adults (19‐39 y), iOS
users, and those with higher education levels. This group also
included more managers, professionals, and office workers.
In contrast, housewives were more likely to continue using
wearable devices. Men showed a slightly higher proportion
of built-in step counter use compared to women (n=486,
3.2% vs n=820, 2.6%). Among those with a Bachelor’s
degree or higher, built-in step counter use was slightly more
common than wearable activity tracker use (n=1037, 79.4%
vs n=33,659, 74.3%; Table 1).

Table 1. Basic characteristics of the participants by device type.

Variable and class
Wearable activity tracker
(n=45,273, 97.2%)

Built-in step counter
(n=1306, 2.8%) Overall P value

Sex, n (%) <.001
Male 14,800 (32.7) 486 (37.2) 15,286 (32.8)
Female 30,473 (67.3) 820 (62.8) 31,293 (67.2)

Age group (years), n (%) <.001
10-19 79 (0.2) 3 (0.2) 82 (0.2)
20-29 3034 (6.7) 163 (12.5) 3197 (6.9)
30-39 9652 (21.3) 357 (27.3) 10,009 (21.5)
40-49 16,850 (37.2) 426 (32.6) 17,276 (37.1)
50-59 12,509 (27.6) 280 (21.4) 12,789 (27.5)
60-69 2937 (6.5) 70 (5.4) 3007 (6.5)
70-79 206 (0.5) 7 (0.5) 213 (0.5)
80-89 6 (0) 0 (0) 6 (0)

mOSa, n (%) <.001
Android 40,208 (88.8) 976 (74.7) 41,184 (86.7)
iOS 5062 (11.2) 330 (25.3) 5392 (13.3)
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Family type, n (%) .030
Single person 3727 (8.2) 134 (10.3) 3861 (8.3)
2‐3 members 20,532 (45.4) 573 (43.9) 21,105 (45.3)
≥4 members 21,014 (46.4) 599 (45.9) 21,613 (46.4)

Insurance type, n (%) .363
Health insurance 44,652 (98.6) 1287 (98.6) 45,939 (98.6)
Medical aid 359 (0.8) 8 (0.6) 367 (0.8)
Not enrolled 262 (0.6) 11 (0.8) 273 (0.6)

Education, n (%) <.001
No education to middle school graduate 1037 (2.3) 19 (1.5) 1056 (2.3)
High school graduate 10,577 (23.4) 250 (19.1) 10,827 (23.2)
Bachelor’s degree 29,340 (64.8) 900 (68.9) 30,240 (64.9)
Master’s degree or higher 4319 (9.5) 137 (10.5) 4456 (9.6)

Occupation, n (%) <.001
Manager, expert 9301 (20.5) 319 (24.4) 9620 (20.7)
Office worker, service worker 19,542 (43.2) 579 (44.3) 20,121 (43.2)
Sales people, agricultural, forestry, and
fishery workers, technician, machine
operator, elementary occupation, military
personnel

5374 (11.9) 140 (10.7) 5514 (11.8)

Student 661 (1.5) 25 (1.9) 686 (1.5)
Homemaker 8944 (19.8) 193 (14.8) 9137 (19.6)
Unemployed 1451 (3.2) 50 (3.8) 1501 (3.2)

Smoking, n (%) .005
No smoking 36,630 (80.9) 1031 (78.9) 37,661 (80.9)
Used to smoke but currently do not smoke 5037 (11.1) 146 (11.2) 5183 (11.1)
Smoke occasionally 815 (1.8) 37 (2.8) 852 (1.8)
Smoke every day 2791 (6.2) 92 (7) 2883 (6.2)

Alcohol intake, n (%) .61
<0‐1 times/month 20,632 (45.6) 558 (42.7) 21,190 (45.5)
2‐4 times/month 16,768 (37) 486 (37.2) 17,254 (37)
2‐3 times/week 6304 (13.9) 211 (16.2) 6515 (14)
≥4 times/week 1569 (3.5) 51 (3.9) 1620 (3.5)

General or intensive management neededc, n (%) .98
General 29,584 (65.4) 853 (65.3) 30,437 (65.3)
Intensive 15,689 (34.7) 453 (34.7) 16,142 (34.7)

BMIb (kg/m2), mean (SD) 25.4 (3.8) 25.7 (4) 25.4 (3.8) .01
Waist circumference (cm), mean (SD)

Male 92.6 (8.9) 93.7 (9.8) 92.6 (9.0) .02
Female 85.2 (9.6) 84.5 (10.2) 85.1 (9.6) .06

Blood pressure (mm Hg), mean (SD)
Systolic 126.3 (13.5) 125.4 (13.4) 126.3 (13.5) .01
Diastolic 80.4 (10.4) 79.8 (10.5) 80.4 (10.4) .06

FBGd (mg/dL), mean (SD) 98.0 (13.2) 97.8 (11.9) 98.0 (13.1) .60
Triglyceride (mg/dL), mean (SD) 150.0 (84.9) 150.0 (80.9) 150.0 (84.8) .99
HDLe cholesterol (mg/dL), mean (SD) 55.7 (14.6) 54.9 (14.6) 55.7 (14.6) .07

amOS: mobile operating system.
bBMI: body mass index
cIndividuals exhibiting 1-2 metabolic syndrome risk factors were allocated to a standard management group, whereas those presenting with 3-5 risk
factors were assigned to an intensive management group.
dFBG: fasting blood glucose.
eHDL: high-density lipoprotein.
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Overall, 54% (n=25,158) of participants showed a reduc-
tion in metabolic syndrome risk, with women demonstrat-
ing a higher rate than men (n=17,371, 55.5% vs n=7787,
50.9%). The reduced risk group had slightly higher propor-
tions of young adults (10‐39 years), built-in step counter
users, and iOS users. Participants with healthier baseline

lifestyle indicators (nonsmoking, lower alcohol consumption,
and lower BMI) were more prevalent in the reduced-risk
group. The proportion of individuals showing a reduction
in metabolic syndrome risk was slightly higher among those
who practiced fewer health behaviors at baseline (Table 2).

Table 2. Characteristics of the participants by the reduction in metabolic syndrome risk.

Characteristic

No metabolic syndrome
risk reduction
(n=21,421, 46%), n (%)

Metabolic syndrome
risk reduction
(n=25,158, 54%), n (%)

Overall (n=46,579,
100%), n (%) P value

Sex <.001
Male 7499 (35) 7787 (31) 15,286 (32.8)
Female 13,922 (46) 17,371 (69.1) 31,293 (67.2)

Age (years) <.001
10‐29 1334 (6.2) 1945 (7.7) 3279 (7)
30-39 4612 (21.5) 5397 (21.5) 10,009 (21.5)
40-49 7979 (37.3) 9297 (37) 17,276 (37.1)
50-59 5912 (27.6) 6877 (27.3) 12,789 (27.5)
60-69 1470 (6.9) 1537 (6.1) 3007 (6.5)
70‐89 114 (0.5) 105 (0.4) 219 (0.5)

Family type .47
Single person 1749 (8.2) 2112 (8.4) 3861 (8.3)
2‐3 members 9762 (45.6) 11,343 (45.1) 21,105 (45.3)
≥4 members 9910 (46.3) 11,703 (46.5) 21,613 (46.4)

Education .03
No education to middle school graduate 508 (2.4) 548 (2.2) 1056 (2.3)
High school graduate 5062 (23.6) 5765 (22.9) 10,827 (23.2)
Bachelor’s degree 13,762 (64.3) 16,478 (54.5) 30,240 (64.9)
Master’s degree or higher 2089 (9.8) 2367 (9.4) 4456 (9.6)

Insurance .79
Health insurance 21,125 (98.6) 24,814 (98.6) 45,939 (98.6)
Medical aid 174 (0.8) 193 (0.8) 367 (0.8)
Not enrolled 122 (0.6) 151 (0.6) 273 (0.6)

Device type .007
Wearable 20,868 (97.4) 24,405 (97) 45,273 (97.2)
Switched to app 553 (2.6) 753 (3) 1306 (2.8)

mOSa <.001
Android 19,097 (89.2) 22,087 (87.8) 41,184 (88.4)
iOS 2323 (10.9) 3069 (12.2) 5392 (11.6)

Smoking <.001
No smoking 17,020 (79.5) 20,641 (82.1) 37,661 (80.9)
Used to smoke but currently do not smoke 2516 (11.8) 2667 (10.6) 5183 (11.1)
Smoke occasionally 426 (2) 426 (1.7) 852 (1.8)
Smoke every day 1459 (6.8) 1424 (5.7) 2883 (6.2)

Alcohol intake .001
<0‐1 times/month 9597 (44.8) 11,593 (46.1) 21,190 (45.5)
2‐4 times/month 7970 (37.2) 9284 (36.9) 17,254 (37)
2‐3 times/week 3073 (14.4) 3442 (13.7) 6515 (14)
≥4 times/week 781 (3.7) 839 (3.3) 1620 (3.5)

BMI <.001
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Characteristic

No metabolic syndrome
risk reduction
(n=21,421, 46%), n (%)

Metabolic syndrome
risk reduction
(n=25,158, 54%), n (%)

Overall (n=46,579,
100%), n (%) P value

<18.5 221 (1) 381 (1.5) 602 (1.3)
18.5‐23 4597 (21.5) 6657 (26.5) 11,254 (24.2)
23‐25 4346 (20.3) 5887 (23.4) 10,233 (22)
25‐30 9176 (42.8) 9849 (39.2) 19,025 (40.9)
30‐35 2551 (11.9) 1998 (7.9) 4549 (9.8)
≥35 530 (2.5) 385 (1.5) 915 (2)

Number of metabolic syndrome risk factors at baseline <.001
1 9439 (44.1) 6784 (27) 16,223 (34.8)
2 6705 (31.3) 7509 (29.9) 14,214 (30.5)
3 3641 (17) 6176 (24.6) 9817 (21.1)
4 1420 (6.6) 3602 (14.3) 5022 (10.8)
5 216 (1) 1087 (4.3) 1303 (2.8)

Hypertension risk <.001
Yes 10,157 (47.4) 14,846 (59) 25,003 (53.7)
No 11,264 (52.6) 10,312 (41) 21,576 (46.3)

Diabetes mellitus risk <.001
Yes 7079 (33.1) 11,379 (45.2) 18,458 (39.6)
No 14,342 (67) 13,779 (54.8) 28,121 (60.4)

High waist circumference .16
Yes 12,298 (57.4) 14,607 (58.1) 26,905 (57.8)
No 9123 (42.6) 10,551 (42) 19,674 (42.2)

High TGb <.001
Yes 6703 (31.3) 11,806 (46.9) 18,509 (39.7)
No 14,718 (68.7) 13,352 (53.1) 28,070 (60.3)

Low HDLc cholesterol
Yes 4295 (20.1) 7535 (30) 11,830 (25.4)
No 17,126 (80) 17,623 (70.1) 34,749 (74.6)

Number of health behaviors being practicing at baseline <.001
0 221 (1) 381 (1.5) 602 (1.3)
1 4597 (21.5) 6657 (26.5) 11,254 (24.2)
2 4346 (20.3) 5887 (23.4) 10,233 (22)
3 9176 (42.8) 9849 (39.2) 19,025 (40.9)
4 2551 (11.9) 1998 (7.9) 4549 (9.8)
5 530 (2.5) 385 (1.5) 915 (2)

amOS: mobile operation system.
bTG: triglyceride.
cHDL: high density lipoprotein.

After ensuring comparability between the wearable activity
tracker and built-in step counter groups through propensity
score matching, an analysis was conducted. Before match-
ing, there were differences in various variables such as age,
insurance type, and education level. However, after matching,
the absolute values of the standardized mean differences were
all below 0.1, indicating no significant differences between
the 2 groups (Multimedia Appendix 1).

Table 3 presents the results of the propensity score-
matched analysis. For regular walking practice, there was no
significant difference between the 2 groups (OR 0.84, 95% CI

0.70‐1.01). Similarly, no significant differences were found
in overall health behavior improvements (OR 0.95, 95% CI
0.83‐1.09).

Notably, the built-in step counter group demonstrated
greater reductions in metabolic syndrome risk compared to
the wearable device group (OR 1.20, 95% CI 1.05‐1.36). This
significant association was particularly pronounced among
young adults aged 10‐30 years (OR 1.35, 95% CI 1.09‐1.68).
The effect was less pronounced and not statistically signif-
icant for the 40‐50 years age group (OR 1.15, 95% CI
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0.97‐1.38) and the 60‐80 years age group (OR 1.08, 95%
CI 0.61‐1.94).

When analyzed by the mobile operating system, Android
users showed a significant association between built-in step
counter use and metabolic syndrome risk reduction (OR 1.20,

95% CI 1.03‐1.39). For iOS users, the association was in the
same direction but not statistically significant (OR 1.14, 95%
CI 0.88‐1.50), possibly due to the smaller sample size in this
subgroup (Table 3).

Table 3. Propensity score-matched analysis of device type association with walking practice, health behaviors, and metabolic syndrome risk
reduction.

Study population and number of participants by device type

Propensity score
matched model ORa
(95% CI)

Not practicing regular walking at baselineb

Wearable activity tracker (n=2468, 79.9%) reference
Built-in step counter (n=621, 20.1%) 0.84 (0.70‐1.01)

Not practicing any health behaviors at baselinec

Wearable activity tracker (n=4951, 80%) reference
Built-in step counter (n=1244, 20%) 0.95 (0.83‐1.09)

One or more metabolic syndrome risk factors at baselined

Overall
Wearable activity tracker (n=5195, 80%) reference
Built-in step counter (n=1308, 20%) 1.20 (1.05‐1.36)

10‐39 years
Wearable activity tracker (n=2035, 83%) reference
Built-in step counter (n=516, 17%) 1.35 (1.09‐1.68)

40‐59 years
Wearable activity tracker (n=2808, 80%) reference
Built-in step counter (n=704, 20%) 1.15 (0.97‐1.38)

60‐89 years
Wearable activity tracker (n=288, 79.9%) reference
Built-in step counter (n=75, 20.1%) 1.08 (0.61‐1.94)

Android
Wearable activity tracker (n=3893, 80%) reference
Built-in step counter (n=975, 20%) 1.20 (1.03‐1.39)

iOS
Wearable (n=1250, 79.3%) reference
Built-in step counter (n=326, 21.7%) 1.14 (0.88‐1.50)

aOR: odds ratio.
bOutcome: practicing walking.
cOutcome: improved in 1 or more health behaviors.
dOutcome: reduced in 1 or more metabolic syndrome risk factors.

Across all outcomes—regular walking practice, health
behavior improvements, and metabolic syndrome risk
reduction—both wearable activity tracker and built-in step

counter groups showed high improvement rates, ranging from
45.2% to 60.8% (Table 4).

Table 4. Sensitivity analysis: multivariable analysis of device type association with walking practice, health behaviors, and metabolic syndrome risk
reduction.

Study population and number of participants by device type Improved, n (%)
Crude model,
ORa (95% CI)

Covariates
model Ib, OR
(95% CI)

Covariates
model IIc, OR
(95% CI)

Not practicing regular walking at baselined

Wearable activity tracker (n=22,795, 97.3%) 11,705 (51.3) reference reference reference
Built-in step counter (n=624, 2.7%) 282 (45.2) 0.78 (0.67‐0.92) 0.82 (0.70‐0.96) 0.83 (0.66‐1.06)
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Study population and number of participants by device type Improved, n (%)
Crude model,
ORa (95% CI)

Covariates
model Ib, OR
(95% CI)

Covariates
model IIc, OR
(95% CI)

Not practicing any health behaviors at baselinee

Wearable activity tracker (n=43,666, 96.5%) 26,569 (60.8) reference reference reference
Built-in step activity tracker (n=1253, 2.8%) 730 (58.3) 0.89 (0.80‐1.00) 0.92 (0.82‐1.03) 0.94 (0.84‐1.04)

One or more metabolic syndrome risk factors at baselinef

Wearable activity tracker (n=45,273, 97.2%) 24,405 (53.9) reference reference reference
Built-in step counter (n=1306, 2.8%) 753 (57.7) 1.16 (1.04‐1.30) 1.16 (1.04‐1.29) 1.15 (1.03‐1.30)

aOR: odds ratio.
bCovariates model Ⅰ: adjusted for age, sex.
cCovariates model Ⅱ: adjusted for age, sex, education, family type, insurance type, occupation, BMI, smoking, alcohol intake, mobile operation
system type.
dOutcome: regular walking practice.
eOutcome: improved in 1 or more health behaviors.
fOutcome: reduced in 1 or more metabolic syndrome risk factors.

To further validate our findings, we conducted multivaria-
ble logistic regression analyses, presented in Table 4. These
results were generally consistent with the propensity score-
matched analysis. For regular walking practice, wearable
activity trackers showed a slight advantage over built-in
step counters in the crude model (OR 0.78, 95% CI 0.67‐
0.92). However, this association weakened after adjusting
for multiple covariates (fully adjusted OR 0.83, 95% CI
0.66‐1.06). No significant association was found between
device type and overall health behavior improvement across
all models (fully adjusted OR 0.94, 95% CI 0.84‐1.04).
Interestingly, the use of built-in step counters was associated
with greater reductions in metabolic syndrome risk compared
to wearable activity trackers. This relationship remained
consistent and statistically significant across all 3 models
(crude OR 1.16, 95% CI 1.04‐1.30; fully adjusted OR 1.15,
95% CI 1.03‐1.30; Table 4).

Table 5 presents the results of subgroup analyses using
multivariable logistic regression. These analyses revealed

nuanced differences across age groups and mobile operat-
ing systems. Wearable activity trackers were significantly
associated with better improvements in regular walking
practice only in the 40-59 year old group (OR 0.80,
95% CI 0.64‐0.99). The device type did not significantly
impact health behavior improvement across any age group.
For metabolic syndrome risk, built-in step counters were
significantly associated with greater risk reduction only
among young adults (10-39 years; OR 1.21, 95% CI 1.01‐
1.45), aligning with the findings from the propensity score-
matched analysis.

In analyses by the mobile operating system, Android users
showed a significant association between built-in step counter
use and (1) less regular walking practice (OR 0.81, 95%
CI 0.67‐0.97), and (2) metabolic syndrome risk reduction
(OR 1.13, 95% CI 1.00‐1.29). iOS users demonstrated no
significant differences between device types for any outcome,
possibly due to limited statistical power.

Table 5. Sensitivity analysis: multivariable analysis in subgroup for the association of device type with regular walking practice, improvement in
health behaviors, and metabolic syndrome risk reduction.
Study population, subgroup, and number of participants by device type Covariates model II, ORa (95% CI)
Not practicing walking at baselineb

10-39 years
Wearable activity tracker (n=6458, 96.1%) reference
Built-in step counter (n=261, 3.9%) 0.89 (0.69‐1.14)

40-59 years
Wearable activity tracker (n=15,144, 97.8%) reference
Built-in step counter (n=337, 2.2%) 0.80 (0.64‐0.99)

60-89 years
Wearable activity tracker (n=1193, 97.9%) reference
Built-in step counter 26 (2.1) 0.61 (0.27‐1.37)

Android
Wearable activity tracker (n=20,287, 97.7%) reference
Built-in step counter (n=477, 2.3%) 0.81 (0.67‐0.97)

iOS
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Study population, subgroup, and number of participants by device type Covariates model II, ORa (95% CI)

Wearable activity tracker (n=2507, 94.5%) reference
Built-in step counter (n=147, 5.5%) 0.89 (0.63‐1.25)

Not practicing any health behaviors at baselinec

10-39 years
Wearable activity tracker (n=12,270, 96.1%) reference
Built-in step counter (n=505, 4%) 0.86 (0.72‐1.03)

40-59 years
Wearable activity tracker (n=27,856, 97.7%) reference
Built-in step counter (n=668, 2.3%) 1.00 (0.85‐1.17)

60-89 years
Wearable activity tracker (n=2788, 97.5%) reference
Built-in step counter (n=73, 2.5%) 0.72 (0.45‐1.17)

Android
Wearable activity tracker (n=38,190, 97.6%) reference
Built-in step counter (n=932, 2.4%) 0.94 (0.83‐1.08)

iOS
Wearable activity tracker (n=4811, 93.9%) reference
Built-in step counter (n=314, 6.1%) 0.85 (0.67‐1.07)

One or more Metabolic syndrome risk factors at baselined

10-39 years
Wearable activity tracker (n=12,765, 96.1%) reference
Built-in step counter (n=523, 3.9%) 1.21 (1.01‐1.45)

40-59 years
Wearable activity tracker (n=29,359, 97.7%) reference
Built-in step counter (n=706, 2.4%) 1.11 (0.96‐1.29)

60-89 years
Wearable activity tracker (n=3149, 97.2%) reference
Built-in step counter (n=77, 2.8%) 1.17 (0.74‐1.86)

Android
Wearable activity tracker (n=40,208, 97.6%) reference
Built-in step counter (n=976, 2.4%) 1.13 (1.00‐1.29)

iOS
Wearable activity tracker (n=5062, 93.9%) reference
Built-in step counter (n=330, 6.1%) 1.18 (0.94‐1.49)

aOR: odds ratio.
bOutcome: regular walking practice.
cOutcome: improved in 1 or more health behaviors.
dOutcome: reduced in 1 or more metabolic syndrome risk factors.

Discussion
Principal Results
This study compared the effects of continuously using
wearable devices versus switching to built-in step counters
after 12 weeks on walking practice, health behaviors, and
metabolic syndrome risk reduction. Both groups showed
substantial improvements across all indicators, with 45%‐
61% of participants demonstrating positive changes.

Using propensity score-matched analysis, we found that
the group that switched to built-in step counters showed
better results in metabolic syndrome risk reduction (OR 1.20,
95% CI 1.05‐1.36). This effect was particularly pronounced
among young adults aged 10‐30 years (OR 1.35, 95% CI
1.09‐1.68). There were no significant differences between
groups in walking practice (OR 0.84, 95% CI 0.70‐1.01) or
overall health behaviors (OR 0.95, 95% CI 0.83‐1.09).

Age-specific subgroup analyses revealed that the effects
of device type varied across age groups, with the association
between switching to built-in step counters and metabolic
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syndrome risk reduction being more pronounced in young
adults (10-30 years).
Comparison With Previous Studies
Our research findings contribute to the evidence support-
ing the effectiveness of mobile technology in promoting
physical activity and health behaviors. The substantial
improvements observed across all indicators in both groups
align with previous studies demonstrating the positive impact
of smartphone apps and activity trackers on physical activity
levels and health outcomes [17,21-24]. Recent research
further supports this, showing that higher engagement with
mobile health apps led to greater weight loss and HbA1c
reduction in adults with overweight or obesity and type 2
diabetes or prediabetes [7].

Our analysis showed no significant difference in walk-
ing practice between wearable device users and built-in
step counter users (OR 0.84, 95% CI 0.70‐1.01). This
result contrasts with some previous studies demonstrating
greater benefits of wearable devices. A randomized control-
led trial (RCT) found that among inactive overweight or
obese postmenopausal women, a Fitbit-based intervention
significantly increased moderate to vigorous physical activity
compared to standard pedometers (Fitbit: +62 min/week vs
pedometer: –3 min/week; P=.01) [25]. Similarly, another
RCT reported significantly higher daily average step counts
in a group using both app and wearable devices compared
to an app-only group (8165 vs 6034 steps; P=.02) [26]. The
differences between our results and those of previous studies
may stem from variations in study design, target population,
and intervention duration. For instance, while Cadmus-Ber-
tram et al [25] focused on a specific population (postmeno-
pausal women) and measured moderate to vigorous physical
activity as the primary outcome, this study included a broader
population and evaluated walking practice and overall health
behaviors.

Regarding health behavior improvements, our propen-
sity score-matched analysis found no significant differences
between the 2 groups (OR 0.95, 95% CI 0.83‐1.09). This
partially aligns with findings from a previous study, which
reported no difference in energy intake changes between
mobile app and wearable “Bite Counter” device groups [27].
However, the same study observed a significant increase in
physical activity in the wearable device group (mean 2015.4,
SD 684.6 metabolic equivalent (METs) min/week; P=.02),
which contrasts with our findings. Recent research found
that both synchronous (videoconference) and asynchronous
(prerecorded videos) digital interventions demonstrated good
acceptability among inactive adults, suggesting various digital
tools can effectively promote physical activity [28]. The
importance of integrating app use into routine care has been
highlighted, which may explain the similar improvements in
both groups in this study [8]. These findings underscore the
complexity of digital health interventions and the need for
tailored approaches.

In metabolic syndrome risk reduction, our propensity
score-matched analysis revealed significant decreases in both
groups, with a slight advantage in the group that switched

to built-in step counters (OR 1.20, 95% CI 1.05‐1.36).
This contrasts with some previous studies, where mobile
phone–based health coaching showed more effectiveness
in improving metabolic syndrome–related indicators [29].
However, our results align with other studies demonstrating
the potential of mobile software and wearable devices in
reducing metabolic syndrome risk [9].

A notable aspect of our findings is the high rate of
metabolic syndrome risk reduction (over 50%) in both
groups, possibly due to the well-designed intervention
characteristics of the national-level public health program.
These results are similar to a 12-week RCT where the
intervention group receiving physical activity feedback
through wearable devices showed significant improvements
in key clinical indicators of metabolic syndrome [22]. This
supports the potential effectiveness of well-designed mobile
health interventions in reducing metabolic syndrome risk.

However, mixed results are also present in the litera-
ture. Some studies report that mobile interventions have no
significant impact on physical activity or health outcomes
[12,30]. For instance, a study on overweight Taiwanese adults
found that activity promotion systems provided short-term
benefits for physical activity but did not significantly affect
metabolic abnormalities [31]. Similarly, an RCT of multidi-
mensional physical activity feedback intervention for primary
care patients at risk of chronic diseases showed no effect on
physical activity or health outcomes [32].

These conflicting results highlight the complexity of using
technology for health risk management and physical activity
promotion. The effectiveness of such interventions may
depend on various factors, including intervention design, user
engagement, and individual health status [9]. Our findings,
along with these recent studies, highlight the potential of
digital health interventions in chronic disease management.
They suggest that the effectiveness of such interventions
may not solely depend on the specific technology used (eg,
wearable devices vs built-in step counters), but also on how
well these technologies are integrated into comprehensive
health programs and how they engage users in multiple
aspects of health management. Our findings align with recent
research on digital health interventions for chronic disease
management. The mobile health care program incorporated
gamification elements, defined as “the use of game design
elements in nongame contexts” [33]. This was evident in
features like national step count rankings and health behavior
scores, which were designed to engage users and encourage
healthier behaviors. These gamified components, along with
performance-based rewards, likely enhanced user engage-
ment and motivation. Our results support the effectiveness
of gamification strategies in health interventions, consistent
with findings from a systematic review on type 2 diabetes
self-management, which reported improvements in key health
outcomes, such as glycated hemoglobin levels and BMI
[34]. This underscores the importance of considering these
elements when implementing mobile health interventions in
public health settings and suggests that while mobile health
technologies show promise, their impact may vary across
different contexts and populations.
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Potential Mechanisms and Explanations
The differential effects observed between wearable devices
and built-in step counters in this study can be explained by
several potential mechanisms. The marginal advantage of
wearable devices in promoting walking activity may stem
from their continuous and real-time data collection capabili-
ties. These devices provide immediate feedback, which has
been shown to enhance user engagement and motivation
[15]. This instant feedback loop can heighten awareness of
physical activity levels and encourage users to be more active
throughout the day.

The noninferiority or similar health impact of built-in
step counters compared to wearable trackers suggests that
simplicity and accessibility play crucial roles in promot-
ing health behaviors. This aligns with findings emphasiz-
ing that simple pedometers could be more effective than
complex wearable trackers or smartphone apps in public
health interventions. A meta-regression analysis of 57 RCTs
revealed that body-worn trackers or smartphone apps were
less effective than pedometers in interventions lasting less
than 4 months (–834 steps/day; 95% CI –1542 to –126]) [35].
This underscores the potential value of straightforward, easily
accessible tools in promoting physical activity within public
health initiatives.

In this study, younger individuals, those with higher
education, and iOS users showed higher rates of switching
to built-in step counters. This may reflect these groups’
higher understanding and adherence, potentially relating to
the slightly better health risk factor reduction observed in
the built-in step counter group. However, the possibility of
selection or residual bias should be considered.

Multivariable logistic regression analysis confirmed an
association between built-in step counter use and greater
metabolic syndrome risk reduction, though no difference was
found in health behaviors between the 2 groups, and the
strength of the association was weak. Subgroup analyses
revealed differences only in specific groups, limiting result
generalizability and suggesting the need for personalized
interventions.
Limitations
This study provides valuable insights into the real-world
effectiveness of wearable devices and built-in step counters
within a national public health program. Using a large-scale
nationwide dataset enhances statistical power and generaliza-
bility. The application of diverse statistical methodologies,
including propensity analysis, strengthens the reliability of the
results.

However, several limitations should be noted. As an
observational study, it has inherent limitations in establishing
causality. The small number of participants who switched
to built-in step counters may limit statistical power in some
analyses. Reliance on self-reported data and the inability to

assess long-term effects are significant limitations. Addition-
ally, the study design, where all participants initially used
wearable devices for 12 weeks before some switched to
built-in step counters, limits the ability to compare effects
from the intervention’s start. This design feature means
that the effects of built-in step counters cannot be com-
pletely isolated from the potential carryover effects of initial
wearable device use. Finally, our analysis may be limited by
unmeasured confounding factors not available in our dataset.
Implications and Future Research
Directions
Our findings provide important implications for the design
and implementation of public mobile health care initia-
tives. While wearable devices may offer some advantages
in promoting physical activity, built-in step counters can
be equally effective, particularly in reducing metabolic
syndrome risk among young adults.

These results support a more personalized approach to
device recommendations in public health programs, align-
ing with the growing trend toward personalized digital
health interventions [36,37]. Programs could offer options
between wearable devices and built-in step counters based
on individual preferences, age, and other relevant factors,
potentially improving intervention adherence and outcomes.

The high rate of metabolic syndrome risk reduction
observed (over 50% in both groups) suggests that well-
designed technology-supported public health interventions
can significantly impact population health, especially when
integrated into comprehensive national health programs.

Future research should explore the mechanisms behind
age-related differences in device effectiveness. Longitudinal
studies with longer follow-up periods could provide insights
into the long-term effects of various device types on health
outcomes, addressing gaps identified in previous research
[38].
Conclusions
This study compared the effectiveness of wearable devices
and built-in step counters in a large-scale national mobile
health care program. Both device types were effective in
reducing metabolic syndrome risk, with the group switch-
ing to built-in step counters showing slightly better results
(OR 1.20, 95% CI 1.05‐1.36). Wearable devices showed
a marginal advantage in promoting walking practice, but
there was no significant difference in overall health behavior
improvement.

These findings suggest the importance of providing device
selection options based on individual characteristics and
preferences in public mobile health care programs. The
high rate of metabolic syndrome risk reduction observed
in both groups (over 50%) demonstrates the potential of
well-designed mobile health interventions.
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