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Abstract

Background: Cardiovascular diseases remain the leading cause of mortality worldwide, accounting for 18 million deaths
annually. Detection and prediction of cardiovascular conditions are essential for timely intervention and improved patient outcomes.
Wearable devices offer a promising, noninvasive solution for continuous monitoring of cardiovascular signals, vital signs, and
physical activity. However, the large data volumes generated by these devices and the rapid fluctuations in cardiovascular signals
necessitate advanced artificial intelligence (AI) techniques for real-time analysis and effective clinical decision-making.

Objective: The objective of this scoping review was to identify the main challenges of AI-driven platforms for real-time
cardiovascular condition monitoring with wearable devices and explore potential solutions. In addition, this review aimed to
examine how AI algorithms are developed for robust monitoring and how deployment pipelines are optimized to enable real-time
cardiovascular condition monitoring.

Methods: A comprehensive search was conducted in the following electronic databases: MEDLINE(R) ALL (Ovid), Embase
(Ovid), Cochrane Central Register of Controlled Trials (Ovid), Web of Science Core Collection (Clarivate), IEEE Xplore, and
ACM Digital Library, yielding 2385 unique records. Inclusion criteria focused on studies that used wearable devices for participant
data collection and applied AI algorithms for real-time analysis to detect or predict cardiovascular events and diseases. After title
and abstract screening, 153 papers remained, and following a full-text review, 19 studies met the inclusion criteria.

Results: The findings indicate that despite the promise of AI and wearable devices, research on real-time cardiovascular
monitoring remains limited and lacks comprehensive validation. Most studies relied on publicly available wearable datasets rather
than real-world validation with recruited participants in community settings. Studies that deployed AI algorithms in real time
frequently failed to report operational characteristics and challenges. Electrocardiography-based wearable sensors were the most
frequently used devices, primarily in hospital settings. A variety of AI techniques, ranging from traditional machine learning to
lightweight deep learning algorithms, were deployed either on wearable devices or via cloud-based processing.

Conclusions: Robust, interdisciplinary research is needed to harness the full potential of AI-driven, real-time cardiovascular
health management using wearable devices. This includes the development and validation of scalable solutions for continuous
community-based deployment. Furthermore, real-world challenges such as participant compliance, hardware and connectivity
constraints, and AI model optimization for real-time continuous monitoring must be carefully addressed.

(JMIR Mhealth Uhealth 2025;13:e73846) doi: 10.2196/73846
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Introduction

Background
Cardiovascular diseases (CVDs) continue to be the leading
cause of mortality worldwide, causing more than 18 million
deaths each year [1]. The number of deaths attributed to CVDs
has increased significantly over the past decades, rising by
53.7% from 12.1 million in 1990 to 18.6 million in 2019 [2].
This trend is expected to continue, with an estimated 35.6
million cardiovascular deaths by 2050, an increase of 90%
compared with 2025 [2]. This escalating trend underscores the
urgent need for comprehensive prevention and management
strategies to address the global impact of CVDs.

Detection and prediction of CVDs and cardiovascular events
are critical for reducing the morbidity and mortality associated
with these conditions [3-5]. CVDs, such as coronary artery
disease, hypertensive heart disease, and cardiomyopathies, often
develop silently over years, with patients exhibiting minimal
or no symptoms until a significant event occurs [6]. Identifying
risks at an early stage allows for timely intervention, lifestyle
modifications, and treatment, which can dramatically reduce
the likelihood of severe outcomes [7]. Real-time detection and
prediction of cardiovascular events, such as heart attacks, cardiac
arrest, and strokes, is particularly essential because it provides
actionable insights during critical windows when interventions
can have the greatest impact. Delays in recognizing and
responding to subtle physiological changes can mean the
difference between prevention and a life-threatening event [8,9].

Wearable devices equipped with sensors for continuous
monitoring of vital signs such as heart rate, blood pressure, and
oxygen saturation offer the potential to identify abnormal
patterns indicative of cardiovascular stress or disease [10]. These
devices enable remote monitoring for people in the community,
allowing health care providers to track patients’ health in real
time and intervene promptly, even outside of clinical settings.
Coupled with artificial intelligence (AI), these devices can
analyze large amounts of data in real time, detecting and
predicting potential cardiovascular events before they occur [9].
Advanced machine learning and deep learning techniques play
a critical role in processing and interpreting the large and
complex data captured by wearable devices, identifying subtle

patterns and trends that may go unnoticed by human observation.
Their ability to learn from historical data and continuously
improve predictions ensures timely and accurate alerts, enabling
health care providers to intervene before critical events unfold,
thereby reducing the risk of adverse outcomes [9].

An AI-driven, wearable sensor-based platform for real-time
cardiovascular monitoring can be equipped with single or
multimodal sensors to collect various data, including
electrocardiography (ECG), photoplethysmography (PPG), heart
rate, blood pressure, and mobility indicators. These data are
analyzed by AI algorithms, trained on historical datasets, and
optimized for real-time inference. Depending on the system’s
design, these algorithms can run either directly on wearable
devices or on cloud servers (requiring data transfer). Analysis
results are then communicated to clinicians, participants, or
caregivers, enabling timely interventions to prevent or reduce
adverse cardiovascular outcomes.

By prioritizing early detection and prediction, health care
systems can shift their focus from reactive to proactive care,
reducing hospitalizations, improving health outcomes and
patients’ quality of life, and lowering health care costs [11].
Ultimately, early intervention is the foundation of effective
CVD management and a pathway to saving millions of lives
annually [3-5].

Related Reviews
Table 1 outlines recent reviews on the applications of wearable
devices and AI algorithms for cardiovascular monitoring
[10,12-22], as well as relevant reviews in the broader domain
of health care monitoring [23-25]. Each review is marked to
indicate which of the 4 key concepts (CVD, real-time
monitoring, AI, and wearable devices) it covers. While previous
reviews on cardiovascular monitoring addressed 1 or 2 concepts,
wearable devices [10,12-17,20-22], AI [18,20-22,25], or
real-time monitoring [10,23-25], none comprehensively covered
all 3. In addition, reviews on real-time monitoring in general
health care [23-25] lack a specific focus on the detection and
prediction of cardiovascular conditions. Most of these reviews
included studies that used precollected public datasets for
developing AI algorithms, which do not deal with the real-world
challenges of deploying AI for real-time monitoring.
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Table 1. A comparison between this scoping review and previous related reviews, sorted by the inclusion of focus on cardiovascular diseases, real

time, artificial intelligence, and wearable conceptsa.

WearableAIcReal timeCVDbYearReview

✗✗√✗2018Albahri et al [23]

✗✗√✗2024Uddin and Koo [24]

✗√√✗2022Paganelli et al [25]

√✗✗√2024Bogar et al [12]

√✗✗√2024Ho et al [13]

√✗✗√2021Duncker et al [14]

√✗✗√2021Bayoumy et al [15]

√✗✗√2021Nazarian et al [16]

√✗✗√2024Scholte et al [17]

✗√✗√2022Ahsan and Siddique [18]

✗√✗√2018Safdar et al [19]

√√✗√2022Lee et al [20]

√√✗√2022Huang et al [21]

√√✗√2023Moshawrab et al [22]

√✗√√2021Lin et al [10]

√√√√2025This review

aThis review is the only one that integrates all 4 concepts comprehensively.
bCVD: cardiovascular disease.
cAI: artificial intelligence.

Research Questions
AI [18,20-22,25] plays a crucial role in processing data from
wearable devices [10,12-17,20-22] facilitating real-time
[10,23-25] detection, prediction, and diagnosis of cardiovascular
conditions. This empowers clinicians to intervene swiftly,
helping to prevent or mitigate adverse outcomes, reduce
hospitalizations and mortality, and improve patient quality of
life. In this paper, a scoping review was conducted to
systematically map the current body of research on AI-driven
platforms using wearable sensors for real-time cardiovascular
monitoring and to identify knowledge gaps and associated
challenges. The scoping review was guided by the following
research questions: (1) What are the primary challenges of
AI-driven platforms for real-time cardiovascular condition
monitoring with wearable devices, and how are these challenges
addressed? (2) How are AI algorithms developed to support
robust cardiovascular condition monitoring? (3) How are AI
algorithms and deployment pipelines optimized to enable
real-time cardiovascular condition monitoring?

While the first research question focuses on platform-level
challenges and solutions for real-time cardiovascular condition
monitoring, the second and third questions specifically examine
AI algorithms, one of the core components of these platforms,
in terms of ensuring robustness and enabling real-time
deployment.

Methods

Study Design
This study used a scoping review methodology to address the
broad scope of the research questions, the diversity of the studies
and populations, and the absence of previously conducted
comprehensive reviews [26,27]. The scoping review followed
the framework outlined by Arksey and O’Malley [26] and was
reported in compliance with the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) checklist (Multimedia Appendix
1) [27].

Eligibility Criteria

Inclusion Criteria
Peer-reviewed journal and conference papers written in English,
including quantitative, qualitative, and mixed method studies,
were considered for inclusion. To be eligible, studies had to
describe either the development of a new platform
(research-based or commercial) or the use of an existing
platform for AI-driven real-time monitoring of cardiovascular
conditions through wearable devices. The platform was required
to meet all four criteria: (1) It must collect continuous data from
adult participants using wearable sensing devices. (2) It must
be AI-driven, incorporating machine learning and deep learning
algorithms to analyze wearable data. (3) The AI algorithms must
perform data analysis and inference-making in real time or near
real time. (4) The inferences made by AI algorithms must

JMIR Mhealth Uhealth 2025 | vol. 13 | e73846 | p. 3https://mhealth.jmir.org/2025/1/e73846
(page number not for citation purposes)

Abedi et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


involve the detection or prediction of cardiovascular conditions,
diseases, or events. Studies could also look at other
comorbidities, such as diabetes, in addition to CVD.

Real-time analysis involves continuous processing with minimal
delay, while near–real time refers to intermittent or slightly
delayed processing due to computational or design limitations.
Although “detection” and “prediction” are often used
interchangeably in the literature, this paper distinguishes
between them: detection infers current conditions from current
wearable data, whereas prediction uses current data to forecast
future conditions.

Using the SPICE framework [28], the setting; population;
intervention; comparison; and evaluation criteria were identified
as participants’ homes, nursing homes, or hospitals; adult
participants; monitoring (predicting or detecting) any
cardiovascular condition; real-time AI algorithms; and the
accuracy and latency of real-time AI algorithms, respectively.

Exclusion Criteria
Non–peer-reviewed and non-English publications or resources
were excluded. Studies were excluded if they (1) did not use a
platform in which wearable sensor devices were used for data
collection from adult participants, (2) did not use AI algorithms
for wearable sensor data analysis, (3) performed offline data
analysis, or (4) evaluated their platform only on wearable sensor
datasets already collected, such as publicly available datasets.

If 1 or more of the exclusion criteria were met, studies were
excluded.

Information Sources and Search Strategy
To identify relevant studies, a comprehensive literature search
was designed in collaboration with an information specialist
(CC) and further refined through team discussions. AA and AV
initially provided CC with a list of keywords and 20 target
papers that needed to be retrieved from the search. Following
this, CC, AA, and AV collaboratively refined the keyword list
and developed a search strategy using a combination of subject
headings and text words for MEDLINE, which was subsequently
translated to other databases. The search strategy consisted of
4 concepts: wearable devices, CVDs, AI algorithms, and
real-time data analysis. The search was conducted in the
following electronic bibliographic databases: MEDLINE(R)
ALL (Ovid), Embase (Ovid), Cochrane Central Register of
Controlled Trials (Ovid), Web of Science Core Collection
(Clarivate), IEEE Xplore, and ACM Digital Library, covering
records from inception to July 5, 2024. Search filters were used
to remove studies on children and animals when possible. The
results were limited to the English language. Table 2 provides
a subset of unique search keywords used for database queries.
The complete search strategy and associated keywords for
databases are detailed in Multimedia Appendix 2. The search
results were exported as RIS files, consolidated, imported into
the Covidence web application for literature review, and
deduplicated. The reference lists of the included studies were
also examined to identify any additional relevant studies.

Table 2. A subset of the unique search keywords used to search the databases.

Sample keywordsConcept

Cardiovascular Diseases, Heart Diseases, Auriculo-Ventric, Irregular Heart Rate, Small Vessel Disease, Cardiomyopath,
Thrombophlebit, High Blood Pressure, Stroke, Heart Attack

Cardiovascular dis-
eases

Real-Time, Live, Online, Dynamic, Synchronous, Streaming, Simultaneous, Cloud, Fog, Edge, ContinuousReal time

Artificial Intelligence, Pattern Recognition, Decision Trees, Supervised Learning, Natural Language Processing, Large Language
Model, ChatGPT, Transformer Architect, Neural Network, Intelligent System, Deep Learning

Artificial intelligence

Wearable Devices, Remote Sensing Technology, Internet of Things, Wearable, Smart sensor, Garment, Smart eyewear, Smart
jewellery, Electronic Textile, Electronic Skin, FitBit

Wearable devices

Selection of Sources of Evidence
A group of 4 independent reviewers (AV, DJ, JK, and ZH)
conducted the title and abstract screening using the Covidence
web application. Each study was independently reviewed by at
least 2 of these reviewers. Relevant studies identified during
this process underwent full-text review and data charting,
performed by at least 2 reviewers from the same group (AV,
DJ, JK, and ZH). Any conflicts arising during the title and
abstract screening or full-text review were resolved by AA.

Data Charting Process and Data Items
To address the research questions for this scoping review, a
data-charting form was designed to extract relevant information
from the reviewed studies. The form consisted of five sections:
(1) study characteristics, participants, and settings, as well as
cardiovascular condition under monitoring; (2) study aims,
methodologies, and key findings; (3) characteristics of wearable

devices; (4) characteristics of real-time AI algorithms; and (5)
robustness analysis of AI algorithms.

Synthesis of Results
To address the research questions, a descriptive analysis was
performed, followed by a narrative summary of relevant study
characteristics presented using tables. Studies were analyzed
based on the data characteristics outlined in the previous
subsection. Due to the heterogeneity in populations, CVDs,
outcome measurement tools, and measurement times, a
meta-analysis was not conducted [29].

Results

Selection of Sources of Evidence
Figure 1 illustrates the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flow diagram, which
describes the study selection process. Upon removing duplicates,
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a total of 2385 studies were identified through comprehensive
literature searches of electronic databases. Following title and
abstract screening, 2232 studies were excluded, and 153 full-text
studies were retrieved for full-text review. Among these 153

studies, 134 were excluded due to the absence of 1 or more of
the 4 aforementioned inclusion criteria. This resulted in the
inclusion of 19 studies.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for the scoping review. Of the 2385 unique
titles and abstracts initially screened, 153 full-text studies were further evaluated, resulting in 19 studies being included in the scoping review. ACM:
Association for Computing Machinery; AI: artificial intelligence; CVD: cardiovascular disease; IEEE: Institute of Electrical and Electronics Engineers.

Characteristics of Sources of Evidence
Multimedia Appendices 3-7 show the 5 aforementioned
categories of data items for the studies included in this scoping
review. A “—“ in the tables indicates that the respective item
was not mentioned or discussed in the paper.

Characteristics of Studies
As outlined in Multimedia Appendix 3, the included studies
(n=19) were published between 2010 and 2024, with the
majority, 17 (89.5%), published between 2019 and 2024 [30-46],
highlighting the increasing shift toward real-time AI solutions
for monitoring cardiovascular conditions. Among the included
studies, 5 (26.3%) were conducted in the United States
[32,40,44,45,47], 4 (21.1%) in Taiwan [33,35,36,48], 3 (15.8%)
in China [31,34,46], 2 (10.5%) in India [37,43], and 1 (5.3%)
each in Japan [30], Turkey [38], Pakistan [39], Bangladesh [41],
and Sri Lanka [42]. Of the included studies, 14 (73.7%) were
journal papers, while 5 (26.3%) were peer-reviewed conference
publications.

Characteristics of Participants
One of the inclusion criteria for this scoping review was that
the selected studies must have involved the collection of data
from adult participants specifically for monitoring
cardiovascular conditions. Consequently, a significant number
of studies were excluded during the title and abstract screening,
as well as the full-text review (n=82). The majority of these
excluded studies focused on the development and evaluation
of AI algorithms or AI-driven platforms for cardiovascular
condition monitoring using publicly available datasets, such as
the Massachusetts Institute of Technology-Beth Israel Hospital
(MIT-BIH) Arrhythmia Database [49]. Such studies, while
valuable for algorithmic advancements, do not provide insights
into the feasibility and practical challenges associated with
deploying AI models for real-time cardiovascular condition
monitoring in real-world settings.

The included studies generally lacked comprehensive details
regarding the demographic information of participants whose
data were collected and analyzed for cardiovascular condition
monitoring. Notably, as can be seen in Multimedia Appendix
3, 7 out of the 19 included studies did not provide any participant
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demographic information [31,33,34,36,39,43,47]. A highly
variable number of participants was reported in the 12 studies
that disclosed participant counts, ranging from as few as 2
participants [38] to as many as 350 participants [46]. For studies
that reported sex distribution, the balance varied. Some studies
included more females [30,32,46], while others reported more
males [40,44,45]. Age ranges also varied significantly across
studies, with the youngest participants reporting having a mean
age of 33.2 years [30] and the oldest having a mean age of 72.1
years [45].

Depending on the study design, some studies included only
those participants with CVD [31,33-37,40,41,43-47], others
involved a mixed population of both healthy individuals and
those with CVD [32,38,42,48], and 1 study included only
healthy participants [30]. With the exception of Colombage et
al [42], who monitored participants with both heart failure and
diabetes, all other studies focused exclusively on monitoring 1
or more cardiovascular conditions without accounting for
comorbidities beyond CVDs.

Characteristics of Study Settings
Unexpectedly, with the exception of a few studies [32,43-45],
which reported study durations of 1, 2, 4, and 16 weeks, the
other studies involved data collection lasting only for 1 day
[33,46] or a single session [35,40,48]. In addition, while 3
studies were conducted in home settings [30,32,44], all other
studies took place in hospital or laboratory environments.

As outlined in Multimedia Appendix 3, in 84.2% (16/19) of the
studies, the cardiovascular conditions under monitoring
predominantly involved the detection of various types of cardiac
arrhythmias, with a primary focus on atrial fibrillation (AF)
[30-36,38,41,43-48]. Among these, 2 studies additionally
measured the AF burden [32,44], and 1 study aimed to predict
AF by detecting early warnings or the onset of AF [46]. One
study concentrated on the measurement of left ventricular
ejection fraction [40]. In addition, 2 studies focused on detecting
heart disease [37] and heart failure [42], while 1 study
investigated the prediction of cardiac arrest [39].

Characteristics of Wearable Devices
Depending on the data modalities required for AI-driven
cardiovascular condition monitoring, primarily ECG data, a
variety of wearable devices were used in the included studies.
As outlined in Multimedia Appendix 5, the studies either
developed custom hardware sensors or used commercially
available wearable devices, such as Polar [30], Samsung [32],
Xiaomi [42], Verily [44], and Apple [45] smartwatches.
Typically, studies that collected data over extended periods (at
least 1 week) relied on commercial smartwatches suitable for
everyday use, whereas those conducted in controlled laboratory
settings used custom-built hardware wearable sensors
[33-40,48].

Seven out of 19 (36.8%) studies used only ECG signals
[31,33,34,36,43,46,48], while another 7 (36.8%) studies
incorporated ECG signals along with additional physiological
or motion signals, such as PPG, acceleration, blood pressure,
galvanic skin response, skin temperature, and oxygen saturation
[32,39-41,44,45,47]. Other studies exclusively used non-ECG

signals, such as PPG [35], heart rate, skin temperature, and
acceleration [37], or electrical signals from skin-muscle
interfaces [38]. The data collection frequency ranged from every
hour [42] to 1200 Hz [33]. Either raw signals or features
extracted from signals were input to AI models for analysis.

Of the 19 included studies, 8 (42.1%) deployed AI models
directly on wearable devices for data analysis and inference
[31,32,35,37,40,44,45,48]. Other studies transferred wearable
sensor data to a cloud for AI-based analysis [33,34,39,41-43],
while a few used a hybrid approach, deploying AI models on
both wearable devices and the cloud [35,44].

Characteristics of AI Algorithms
As outlined in Multimedia Appendix 6, except for 2 studies that
performed prediction tasks, one predicting the early warning or
onset of AF [46] and another predicting the risk of cardiac arrest
[39], all other studies focused on detection. Except for 3 studies
using supervised AI models for regression tasks to measure left
ventricular ejection fraction [40] and AF burden [32,44], other
studies used supervised AI models for classification. These
classification tasks varied, including binary classifications (eg,
normal vs abnormal cardiovascular conditions)
[31,32,35,37,38,43,45] and categorical classifications
distinguishing between multiple cardiovascular conditions
[30,33,34,36,41,42,44,46-48].

Most of the included studies used preexisting machine learning
and deep learning models rather than developing novel AI
architectures. The machine learning models applied included
rule-based classifiers, logistic regression, decision tree, k-nearest
neighbor, random forest, gradient-boosting machines, support
vector machine (SVM), feed-forward neural networks, and
hidden Markov model [30,32,36,37,39,42,47,48]. The deep
learning models primarily comprised low-complexity 1D or 2D
Convolutional Neural Networks (CNNs)
[31,33-35,38,40,43,45,46], with a few studies incorporating
architectures such as residual layers [44] and attention
mechanisms [41]. In machine learning models, feature extraction
is a separate step where meaningful characteristics are manually
engineered from raw wearable data before being input into the
model for analysis. In contrast, deep learning models, such as
CNNs, take raw data directly as input. These models
automatically learn and extract relevant features through their
convolutional layers during training, eliminating the need for
manual feature engineering. However, deep learning models
are typically more complex, with higher computational demands
and longer inference times, which is a key consideration for
real-time cardiovascular monitoring.

The annotation of wearable sensor data for supervised AI model
development was predominantly performed by cardiologists in
most studies. However, some studies used public datasets, such
as the MIT-BIH Arrhythmia Database [49], for training AI
models, which were subsequently tested on data collected from
their study participants [30,31,33,37,41,45,47]. Depending on
the specific task, a variety of evaluation metrics were used to
assess the performance of AI algorithms, with accuracy being
the most commonly used.
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Synthesis of Results

Overview
Research question 1: What are the primary challenges of
AI-driven platforms for real-time cardiovascular condition
monitoring with wearable devices, and how are these challenges
addressed?

Several challenges associated with AI-driven platforms for
real-time cardiovascular condition monitoring using wearable
devices were identified. This section discusses the identified
challenges along with strategies proposed in the reviewed studies
that addressed or explored potential solutions to mitigate their
impact and improve the performance of cardiovascular condition
monitoring.

Latency in Decision-Making
A significant limitation of deploying AI-driven platforms for
real-time cardiovascular monitoring is the delay in making
inferences about cardiovascular conditions. This delay arises
from computational latency, or inference time, which refers to
the time required for machine learning and deep learning models
to extract features and analyze data using pretrained algorithms.
In addition, some platforms implement near real-time inference,
where data analysis occurs intermittently rather than
continuously. Near real-time analysis is often used to balance
clinical relevance with computational efficiency, reducing
battery consumption and minimizing web-based data usage
when data transfer is required for cloud-based processing. This
is especially critical for wearable devices, as battery depletion
leads to data gaps and interrupted monitoring. For example, the
platform developed by Zhu et al [32] processes data in 5-minute
intervals to address these trade-offs. However, they noted that
such intervals are insufficient to capture brief arrhythmic
episodes that occur within shorter time frames, presenting a
significant limitation.

As outlined in Multimedia Appendix 6, AI inference times
varied widely in the included studies, ranging from milliseconds
to several seconds, depending on the platform and
implementation. The fastest reported inference time was 100
milliseconds [46], followed by times under a second [30,31,47],
2 seconds [39], less than 5 seconds [33], and under 6 seconds
[48]. Inference frequencies, which often correspond to the size
of data window lengths, also differed significantly in the
included studies. These include processing every second [30,47],
every 5 seconds [45], and every 15 seconds [46]. These
variations highlight the trade-offs AI platform developers must
consider, balancing real-time responsiveness, computational
demands, and energy efficiency on wearable and cloud-based
platforms.

Motion Artifacts
Motion artifacts are a significant challenge in wearable-based
cardiovascular monitoring, particularly for ECG and PPG-based
platforms, as they introduce noise that disrupts the detection of
true physiological signals. Commonly caused by user
movements or improper sensor-skin contact during everyday
activities or dynamic conditions such as exercise, these artifacts
degrade the signal-to-noise ratio and often overlap with the

frequency range of cardiac signals [32]. This overlap
complicates the differentiation between true heart rhythms and
noise, compromising accurate rhythm detection and increasing
the likelihood of missed detections. In addition, preprocessing
to filter motion artifacts and noise introduces further latencies,
particularly during periods of high physical activity when signal
corruption is prevalent.

Hu et al [47] addressed motion artifacts by integrating
accelerometer data to classify user activity and differentiate
artifacts from true ECG signals. Ye et al [31] optimized motion
artifact management by reconstructing multicycle ECG segments
to retain correlation features. In the platform developed by
Nguyen et al [35], motion artifacts were addressed through a
hybrid deep neural network, where a 1D CNN filtered out
low-quality PPG signals caused by motion or ambient light
interference, ensuring that only reliable data were forwarded to
a 2D CNN for the primary task of AF detection.

Participant Compliance
Adherence and participant compliance remain critical challenges
in wearable-based cardiovascular monitoring. Participants often
face difficulties consistently recharging the device on time,
wearing it, and maintaining proper sensor-skin contact, which
is essential for obtaining reliable PPG and ECG data. While
features such as battery recharge reminders and sensor contact
monitors can help notify users of low battery or improper device
wear, compliance rates have shown significant variability [32].
Notifications must also be limited to prevent overwhelming
participants, which can sometimes delay necessary corrections.
In addition, adherence variability has been linked to
demographic differences and individual behaviors, underscoring
the importance of developing personalized notification systems
to improve compliance [32].

Poh et al [44] highlighted participant compliance, reporting a
median device wear time of 18.3 hours daily. Compliance was
supported by automated notifications prompting users to perform
ECG acquisitions when AF was detected through continuous
PPG. These notifications encouraged consistent use and
improved data quality for continuous monitoring in real-world
ambulatory environments.

Internet and Bluetooth Connection
Maintaining reliable internet and Bluetooth connections is a
significant challenge for wearable-based monitoring systems,
especially for platforms requiring data transfer to the cloud for
AI-based analysis or to a base device, such as a smartphone or
computer, acting as a hub [30]. Interruptions or instability in
these connections can lead to delays, data loss, or incomplete
uploads, compromising the system’s effectiveness and accuracy.

Battery Life
Battery life is a critical challenge in wearable-based monitoring,
as the need for frequent charging directly impacts usability and
participant adherence [32]. While notifications can remind users
to recharge devices, particularly to ensure the collection of
overnight data, maintaining consistent compliance remains
difficult. Participants often forget or neglect to charge or wear
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the device regularly, resulting in data gaps that undermine the
system’s ability to provide effective continuous monitoring.

To enhance battery life, the wearable sensor node developed
by Hu et al [47] integrated energy-efficient hardware
components and low-power Bluetooth communication modules,
enabling 24-hour monitoring with a 500-mAh battery. Reliable
data transmission was ensured through Bluetooth Low Energy
to a smartphone gateway, where AI-based analyses were
conducted. Ye et al [31] addressed battery limitations in their
wearable cardiac arrhythmia–monitoring processor using an
ultra–low-power design.

Research question 2: How are AI algorithms developed to
support robust cardiovascular condition monitoring?

Robustness, in the context of AI for cardiovascular monitoring,
refers to an algorithm’s ability to sustain performance under
variable, imperfect, or unforeseen conditions. Balendran et al
[50] conducted a scoping review to explore robustness concepts
in the application of machine learning models in health care.
They identified 8 key robustness concepts, which are detailed
in the following subsections and outlined in Multimedia
Appendix 7, highlighting whether they were addressed in the
reviewed studies. While all 8 concepts are considered in this
section, the eighth concept is not included in Multimedia
Appendix 7, as none of the included studies addressed it.

Input Perturbations and Alterations
Perturbations such as noise in data collected from wearable
devices (eg, ECG and PPG) are often caused by factors such as
motion artifacts from body movements. These alterations were
addressed in the methodologies of the reviewed studies,
including applying signal-processing techniques such as
filtering, using acceleration data to compensate for motion, or
analyzing ECG and PPG signals only when motion artifacts
were absent. However, the extent to which the reviewed studies
addressed these artifacts was limited to the methodology level,
without comprehensively validating their platforms against the
full range of alterations that can occur continuously in everyday
life.

Missing Data
Missing input data, such as robustness to random and
nonrandom data missingness, is a critical challenge in AI-driven
platforms relying on wearable devices. Missing data frequently
occurs due to various reasons, including participants not wearing
the devices, devices being out of charge, or lack of internet or
Bluetooth connectivity [51,52]. However, the reviewed studies
did not address this robustness concept on their proposed
platforms. To minimize missing data, participant adherence
must be improved by encouraging consistent wearing, regular
charging, and maintaining internet or Bluetooth connectivity
for wearable devices. In addition, when missing data occur,
imputation strategies [53] should be used to mitigate their
negative impact on the performance of AI algorithms [54].

Label Noise
Label noise refers to the uncertainty or inaccuracies in the labels
used to train AI models, such as inconsistencies arising from
differing expert opinions [55]. Some of the reviewed studies

used publicly available datasets to train their AI models and
then applied these trained models for cardiovascular condition
monitoring on their recruited participants. However, these
studies failed to examine label noise caused by discrepancies
between the public datasets and the participant-collected data.
For example, Pramukantoro and Gofuku [30] trained their
models on the MIT-BIH dataset [49] collected in a hospital
setting and deployed them for monitoring participants in home
environments. In addition, while some studies reported
annotating their datasets with cardiologists, they did not provide
detailed information about the annotation protocols [56], such
as interrater agreement among annotators, or analyze how
annotation variability impacted dataset quality and AI model
performance.

Imbalanced Data
Imbalanced data refers to scenarios where samples from 1 or
more classes are significantly underrepresented compared with
others [57]. This issue is critical when the minority class
represents important events, such as the occurrence of cardiac
arrest versus nonoccurrence, or in regression problems, where
underrepresented values, such as very low heart rates, are of
interest. If left unaddressed, AI models trained on such data are
prone to overfitting to the majority class, resulting in the failure
to detect or predict crucial cardiac events [58]. While some
studies acknowledged and addressed this issue using techniques
such as the Synthetic Minority Oversampling Technique or
weighted loss functions favoring minority classes [30-32,42,47],
the majority of the included studies failed to discuss or mitigate
this challenge, limiting the robustness of their models. Recent
advancements such as contrastive learning [59] and in-context
learning [60] offer promising avenues for improving model
performance under imbalanced conditions by leveraging richer
representations and context-aware adaptation.

In the context of imbalanced datasets, reliance on accuracy alone
can be misleading, as it may reflect performance on the majority
class while obscuring poor classification of the minority class.
Metrics more appropriate for imbalanced scenarios include the
area under the precision-recall curve, area under the receiver
operating characteristic curve, F1-score, precision, recall,
specificity, true negative rate, and false-negative rate. These
metrics provide a more comprehensive assessment of model
performance, particularly in high-stakes applications such as
cardiovascular monitoring, where failure to identify rare but
critical conditions can lead to serious consequences.

Feature Selection
Using feature selection techniques on features extracted from
wearable data allows models to focus on the most significant
and relevant features for inference in cardiovascular conditions
[61]. Selecting the most important features and removing
redundant ones enhance model generalizability and reduce
overfitting. In addition, reducing the number of features helps
avoid the curse of dimensionality, making AI pipelines lighter
and more efficient for real-time inference. Among the reviewed
studies, none explicitly implemented feature selection
techniques; instead, they used either raw sensor data or extracted
features directly as input to AI models. One study used attention
mechanisms in CNNs [41], enabling the network to focus on
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specific portions of input data or features that were more
effective at distinguishing between classes.

Model Specification and Learning
It pertains to robustness against variability arising from the
selection, parameterization, and training of AI models [62]. A
few of the included studies addressed this robustness concept
by using various techniques. For instance, some studies used
multiple machine learning algorithms or different versions of
the same algorithm to enhance platform robustness against
model type and parameter variability. Others implemented
cross-validation techniques during the development and
validation phases of their AI algorithms to ensure stability and
reliability in their performance.

External Data and Domain Shift
This robustness concept involves evaluating a model’s
performance across diverse populations, tasks, and care settings,
such as different environments, age groups, sexes, and ethnicities
[63,64]. It is linked to bias, as models trained on homogeneous
datasets may not generalize well to underrepresented groups
[64]. Ensuring robustness helps mitigate bias and improve
fairness and reliability in real-world applications. The
distribution and diversity of demographics varied across the
reviewed studies. Among those that reported demographic
information, the data are often imbalanced, introducing bias
into AI models that skew inferences toward majority age groups,
sexes, ethnicities, or health conditions. It is crucial to include
a representative proportion of demographics during the training
process, ensuring alignment with the populations where the AI
models will be deployed in real-world settings.

Adversarial Attacks
Adversarial attacks involve deliberate alterations to input data
to manipulate the predictions of a model [65]. In wearable
cardiovascular monitoring, such attacks could subtly distort
ECG or PPG signals, leading to misclassification of arrhythmias
or missed detection of conditions such as AF. These small
changes, invisible to humans, can severely impact model
performance. However, none of the reviewed studies addressed
or evaluated the potential impact of adversarial attacks on their
AI models.

Research question 3: How are AI algorithms and deployment
pipelines optimized to enable real-time cardiovascular condition
monitoring?

Methods for optimizing AI algorithms and deployment pipelines
to enable real-time cardiovascular condition monitoring are
examined in this section. Strategies proposed in the reviewed
studies, particularly those that explored optimization techniques,
are discussed in relation to their effectiveness in improving
platform performance, computational efficiency, and real-world
applicability.

AI Algorithm Optimization
Zhu et al [32] optimized their AI algorithm for real-time
inference through a hybrid decision model that combined
machine learning classifiers for clean data with statistical
heuristics for noisy data. Advanced signal-preprocessing
techniques, including noise filtering and motion artifact

detection, enhanced robustness during real-world use. The model
processed 5-minute data intervals to balance computational
efficiency with accuracy, achieving high AF detection accuracy.
Pramukantoro and Gofuku [30] demonstrated the use of
lightweight machine learning models, enabling inference times
under 1 second for real-time cardiovascular monitoring. Ye et
al [31] implemented an event-driven neural network architecture,
where data analysis is triggered only when predefined signal
thresholds are reached. This selective activation minimizes
unnecessary computation, enabling efficient real-time
processing. Mary et al [43] used modular linear discriminant
analysis for dimensionality reduction in their ECG classification
platform. Modular linear discriminant analysis extracted the
most relevant shape, texture, and statistical features from ECG
signals, reducing dimensionality while retaining critical
information. This process enhanced their deep neural network’s
efficiency and accuracy in real-time analysis.

Backend or Server-Side Processing
Hu et al [47] optimized AI deployment by running arrhythmia
classification algorithms on a smartphone gateway rather than
a wearable device. The smartphone processed ECG data
transmitted via Bluetooth, enabling real-time inference through
a layered hidden Markov model, reducing computational
demands on the wearable and enhancing overall system
efficiency and scalability. Lin et al [33] used a wearable ECG
device with Bluetooth Low Energy to transmit real-time data
to a smartphone app, which provided immediate classification
of ECG signals as normal or abnormal. For detailed analysis,
the data were transmitted to a cloud server via Wi-Fi or mobile
internet, enabling remote, high-precision classification and
storage in a cloud database. This 2-tiered system ensured
seamless integration of on-device and cloud-based inference.
Nguyen et al [35] used a 1D CNN deployed on the wearable
device for quality assessment, which evaluated PPG signals in
real time to determine whether they met the required standards
for further analysis, while a 2D CNN in the cloud performed
the main task of AF detection.

Hardware Efficiency Improvements
Zhu et al [32] designed their system to focus on efficient data
handling and real-time inference while minimizing
computational and energy demands, enabling seamless
monitoring in diverse settings. Ye et al [31] reported that their
system achieved a rapid 0.2-second response time and
significantly reduced energy consumption to 842 nW in
classification mode.

Discussion

Principal Findings
In this scoping review, 19 studies were identified that reported
the development or utilization of AI-driven platforms
incorporating wearable devices for real-time cardiovascular
condition monitoring. These studies leveraged various wearable
sensors to acquire multimodal physiological data, which were
subsequently processed by AI algorithms to detect or predict
cardiovascular events and conditions. Previous reviews have
separately demonstrated the feasibility and success of AI-based
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[18,20-22,25] wearable [10,12-17,20-22] platforms for
cardiovascular monitoring, as well as real-time monitoring
[23-25] in general health care applications. Building upon these
findings, the current review comprehensively integrates AI,
wearable technology, real-time capabilities, and cardiovascular
conditions to investigate the state of research in this area. The
findings align with earlier literature in supporting the promise
of such integrated platforms, while also revealing critical areas
that remain underexplored, particularly regarding
generalizability, robustness, and real-world deployment.

The included studies were conducted across various countries
and study settings, ranging from controlled laboratory
environments to real-world clinical and home-based contexts.
Participant information varied in completeness, with several
studies lacking consistent reporting on age and sex distributions.
Most studies focused on detecting AF, suggesting a limited
exploration of other cardiovascular conditions. A range of
wearable devices was used, including commercial systems and
custom-built prototypes, capturing physiological data from
modalities such as ECG, PPG, and motion sensors. The AI
models used spanned from traditional machine learning
techniques, such as SVMs and decision trees, to more complex
architectures, such as CNNs equipped with attention
mechanisms and hybrid models. While most studies reported
favorable performance metrics, such as high accuracy,
sensitivity, or specificity, these metrics were not always
uniformly provided. Moreover, considerations of robustness
were often underrepresented, with only a few studies addressing
input noise, missing data, class imbalance, or domain shift
through approaches such as data augmentation, weighted loss
functions, or external validation. These observations underscore
the variability in methodological quality across studies and
highlight areas where important limitations and challenges
remain to be addressed.

Limitations and Future Recommendations

Platform Validation in Real-World Settings
A wearable sensor platform designed to monitor cardiovascular
conditions, particularly those critical enough to risk
rehospitalization or death if unmanaged, requires thorough
performance evaluation. Furthermore, its validation in real-world
settings is essential before being implemented for clinical use
with participants. This is especially important when the platform
is intended for continuous use in community settings, where it
must reliably operate over extended periods. The need for
validation becomes even more critical when the platform aims
to provide real-time inferences about cardiovascular conditions,
as this demands high accuracy, low latency, participant
compliance, and reliability under dynamic, real-world
conditions. There is a significant gap in the current research
literature regarding the validation of proposed platforms in
real-world settings, highlighting the need for further studies to
assess and improve their performance, reliability, and scalability
under practical conditions.

Lack of Evaluation on Real-World Participants
Many studies were excluded during screening because they
relied solely on publicly available datasets, such as subsets of

the MIT-BIH dataset [49], without recruiting participants for
primary data collection. As a result, these evaluations do not
assess the platform’s usability, comfort, or effectiveness on
actual users. For instance, a deep learning model may
demonstrate high accuracy for AF detection using benchmark
datasets but may not account for variability in signal quality,
user behavior, or device adherence observed in real-world
participants. Similarly, while custom ECG hardware may
perform well in technical terms, it might be unsuitable for
continuous wear due to discomfort or practical limitations when
tested on real individuals.

Lack of Evaluation in Real-World Environments
Most included studies conducted testing in controlled hospital
or laboratory settings, with only a few evaluating their platforms
in unsupervised community environments [30,32,44]. However,
understanding the effectiveness and usability of AI-driven
wearable platforms requires deployment in real-world settings,
where participants live independently and are not overseen by
researchers or clinicians. Real-world environments introduce
critical factors such as motion artifacts, inconsistent device
usage, battery constraints, and variable connectivity, all of which
affect platform reliability. Importantly, cardiovascular events
often occur outside clinical settings [66], reinforcing the need
for evaluations that reflect these real-use conditions.

Lack of Platform Usability, Acceptability, and Adherence
Validation and Co-Designing
The reviewed studies did not sufficiently evaluate their platforms
in terms of usability, acceptability, and adherence from the
perspectives of key stakeholders, including patients, caregivers,
and clinicians [67,68]. Important factors such as the physical
characteristics of the wearable devices (eg, shape, size, and
weight), patient adherence to wearing the devices consistently,
the frequency and type of alerts (such as cardiac arrest
warnings), and the usability of companion smartphone or web
apps require co-design with end users to ensure successful
deployment and acceptance in real-world settings [69,70]. A
major consideration in improving real-world usability is the
frequency and reliability of platform-generated alerts, which
are closely tied to the robustness of the underlying AI
algorithms. High false-positive rates can lead to alert fatigue
[71], causing users to lose trust and potentially ignore even
critical alarms.

To mitigate these risks, future work should incorporate
participatory design approaches and iterative feedback from
patients, caregivers, and clinicians [69]. Continuous involvement
of stakeholders in the development and postdeployment
refinement of platforms can improve usability, foster trust, and
increase adherence, thereby supporting successful real-world
adoption.

Limitations in the Development and Validation of
Real-Time and Robust AI Algorithms

Trade-Offs Between Shallow and Deep Learning Models
for Real-Time Cardiovascular Monitoring
Most of the reviewed studies used traditional machine learning
models, such as decision trees, SVMs, and lightweight CNNs.
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These models were favored due to their lower computational
demands and ability to support real-time inference, which is
essential for timely cardiovascular condition monitoring. In
many cases, shallow models demonstrated comparable
performance metrics to deep learning architectures, raising the
question of whether increased model complexity is justified.
From a deployment perspective, especially on edge devices,
simpler models offer advantages in terms of lower latency,
reduced power consumption, and ease of integration.
Nevertheless, recent advancements in AI research have
introduced more sophisticated architectures, such as
Transformers [72], which have demonstrated improved
performance in analyzing sequential data, such as ECG and
PPG signals. These models are capable of capturing long-range
temporal dependencies, which can be valuable in detecting
subtle patterns in cardiovascular signals. However, their high
computational cost often limits their use in real-time or
on-device scenarios unless optimization techniques are applied.
Approaches such as model pruning, quantization, and knowledge
distillation can be used to reduce model size and inference time
[73], making these architectures more suitable for deployment
in resource-constrained environments.

Edge Versus Cloud Deployment Models for AI-Enabled
Cardiovascular Platforms
While edge deployment supports on-device processing with
minimal delay, several studies used offloading techniques,
sending data to smartphone gateways or cloud servers for
analysis [74]. Despite the potential of cloud infrastructure for
scalable, low-latency AI deployment, modern cloud-based tools
specifically designed for AI, such as Google Cloud Vertex AI,
AWS SageMaker, and Azure AI [75], were not used in the
reviewed studies. These platforms provide capabilities for
efficient training, deployment, and maintenance of AI models,
including support for real-time inference and compliance with
health care data standards. Their use could significantly enhance
the flexibility, performance, and maintainability of AI-enabled
cardiovascular monitoring systems. Future studies should
consider the trade-offs between edge and cloud deployment
models when designing AI-driven platforms. While edge
computing ensures privacy and immediate feedback, cloud
deployment enables more complex models and centralizes
updates and maintenance. Both deployment strategies involve
specific considerations around latency, energy consumption,
data privacy, and reliability, which must be evaluated based on
the target application and environment.

Robustness and Ethical Considerations in AI Algorithms
for Cardiovascular Monitoring
The robustness of the included studies was examined under
research question 3, based on the 8 robustness dimensions
defined by Balendran et al [50]. Input perturbations, such as
motion artifacts or physiological noise in ECG and PPG signals,
were minimally addressed. Some studies applied basic signal
filtering, but few used advanced noise mitigation strategies.
Missing data, often resulting from sensor detachment or
transmission issues, were rarely discussed. Models that ignore
such gaps risk biased outputs. Incorporating imputation methods
or continuity-aware algorithms could improve resilience. Data

imbalance was common, with normal cardiovascular states
vastly outnumbering abnormal ones. Many studies reported
only accuracy, which is insufficient for imbalanced datasets.
Metrics such as precision, recall, specificity, F1-score, and area
under the precision-recall curve provide a more comprehensive
view. External validation was often absent, raising concerns
about generalizability and algorithmic bias when models are
applied across diverse populations or devices.

Adversarial robustness, although critical, was not explicitly
explored. Wearable data can be susceptible to manipulation or
distortion. To mitigate such vulnerabilities, techniques such as
adversarial training or input preprocessing can be used [76].
Cloud-deployed models were typically supported by encrypted
data transfer and Health Insurance Portability and Accountability
Act–compliant storage. However, more advanced
privacy-preserving strategies, such as federated learning and
split learning with differential privacy, offer better protection
by avoiding transmission of raw data [77]. These approaches
enable collaborative model training across devices, sharing only
model parameters or components.

Interpretability was another underaddressed dimension. Machine
learning and deep learning models, including CNNs and
Transformers, are often treated as black boxes. To promote
clinical adoption, interpretability techniques should be applied.
Tools such as attention mechanisms [72], Grad-CAM [78], and
SHAP [79] can help identify critical signal segments or features
contributing to a prediction. This allows clinicians not only to
detect cardiovascular conditions but also to understand potential
underlying causes, supporting more informed decision-making.

Together, these observations highlight the need for more robust,
transparent, and ethically aware AI systems. Addressing these
robustness dimensions is essential for advancing AI-driven
cardiovascular monitoring platforms that are safe, reliable, and
applicable in real-world health care settings.

Other Methodological and Reporting Limitations
Among all cardiovascular conditions requiring real-time
monitoring, the included studies addressed only a limited subset,
with most focusing on AF detection. Critical conditions, such
as stroke, remain unexamined. Many studies also lacked
essential methodological details, including complete
demographic information [31,33-39,41,43,47], study duration
[30,31,34,36-39,41,42,47], and data collection frequency
[36,38,39]. These omissions limit the interpretability and
reproducibility of findings.

There is also inconsistency in how AI algorithms are applied
to wearable data for cardiovascular monitoring. Although
continuous data collection and inference are desirable, practical
constraints such as battery life, network reliability, and
participant adherence often necessitate compromises. To
determine appropriate monitoring frequency and system design,
collaboration between platform engineers and cardiovascular
clinicians is essential, as requirements vary across conditions,
such as AF detection, cardiac arrest detection, and early warning
applications.
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Methodological Limitations and Scope of the Review
This review used a systematic and reproducible approach, guided
by a well-established scoping review framework. The search
strategy was developed in collaboration with a Library Sciences
Expert to ensure comprehensive coverage of relevant literature
from the inception of the technology to the present. However,
some methodological limitations should be acknowledged. The
exclusion of non–English language papers may have led to the
omission of relevant studies published in other languages. Gray
literature and preprints were also excluded, potentially
contributing to selection bias. Although multiple databases were
searched, some degree of publication bias or incomplete
database coverage cannot be ruled out. In addition, the
generalizability of findings may be limited due to the
predominant focus on AF in the included studies and the
underrepresentation of diverse cardiovascular conditions and
populations.

Conclusions
AI-powered platforms integrated with wearable devices show
strong potential for transforming real-time cardiovascular
condition monitoring in community settings. By leveraging AI
algorithms to analyze data from wearable sensors, these systems
enable early detection of conditions such as AF and cardiac

arrest, allowing timely intervention by clinicians or caregivers.
However, most studies reviewed were limited to short-term
evaluations in hospital environments, with minimal validation
in unsupervised, real-world contexts. Key challenges include
inconsistencies in data collection and inference frequency, lack
of model robustness evaluation, and limited coverage of ethical
considerations such as privacy, interpretability, and algorithmic
bias. Few studies addressed robustness dimensions such as
resilience to input noise, dataset imbalance, or domain shift,
which are critical for safe deployment. Usability and adherence
validation across diverse populations remain underexplored, as
do issues related to participant compliance, battery constraints,
and user-centered design. To advance this field, future research
should (1) validate platforms in diverse, community-based
settings with long-term use; (2) optimize and test robust AI
models under real-world constraints; (3) address usability,
acceptability, and co-design with stakeholders; (4) evaluate
privacy-preserving techniques and interpretability tools to foster
trust; and (5) develop standardized protocols for data collection
and model evaluation.

Interdisciplinary collaboration will be essential to enhance the
practicality, equity, and reliability of AI-enabled cardiovascular
monitoring systems for real-world use.
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