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Abstract

Regular physical activity offers extensive health benefits, yet current consumer wearables struggle to accurately quantify these
effects at an individualized level. Sensor performance often falls short due to susceptibility to interferences, nonstandardized
validation, and reliance on indirect estimations. Further, sensors often cannot capture or account for disparities in measurement
types, populations, and physiological or anatomical characteristics, nor can they account for how different exercise modalities
affect results on a personalized scale. There is a drive for devel opers to refine the impact of how we measure the benefits of
exercise, improving the usefulness of datathrough advanced optical modeling and spectroscopic applications. Thisreview critically
examines the shortcomings of prevailing noninvasive measurements and techniques used in common, commercially available
fitnesstrackers and describeswhy it isdifficult to quantify the effects of exercise asan individualized, quality-based metric. Next,
we discuss newer sensing applications that attempt to curtail known limitations, some of which may unveil novel biometric
insights through differentiated approaches, bridging gaps not only in technological advancement but also in physiological
metrology. In conclusion, we believe that new sensing techniques should explore solutions beyond population-based statistics
and aim to provide anindividualized understanding of aperson’sresponseto exercise, while also reducing disparitiesin personaized
health monitoring. The results could lead to a more effective understanding of exercise efficacy and its impact on performance
management and clinical outcomes.
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routines. Studies consistently show that engaging in regular

Introduction

Background

Thephrase*“ sitting isthe new smoking” has gained prominence
as acompelling call to action, urging individuals to reconsider
the implications of inactivity on their overal hedth and
longevity. Among US adults, the obesity rate has exceeded 41%
of the population according to the most recent reports provided
by the Centers for Disease Control and Prevention, and heart
disease, largely preventable via exercise, has been the leading
cause of death since 1950 [1,2]. Despite the growing body of
evidence highlighting the negative impacts of a sedentary
lifestyle on lifelong health outcomes, many Americans still
struggle to incorporate regular physical activity into their
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exercise significantly boosts cardiovascular and muscul oskel etal
health, ultimately leading to reductions in al-cause mortality
[3-5]. Further, large cohort studiesindicate that participationin
sporting activities may reduce all-cause mortality by nearly
40% [6], which further stresses the positive implications of
fitness on overall longevity.

A 2023 meta-analysispublished in the British Journal of Sports
Medicine examined dose-response associations to physical
activity in more than 30 million participants across 94 cohorts
[7]. The study found that moderate physical activity significantly
reduces chronic disease risk and suggested that even half of the
recommended 150 minutes of weekly exercise could prevent 1
in 10 premature deaths and improve overall health outcomes.
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Exercise continually stands out as one of the most effective
interventions for improving the quality of life [8], and the
addition of activity trackers has been shown to improve
exercise-related outcomes in both clinical and healthy
populations [9]. The use of consumer wearables is linked to
improved body composition and overall fitness through
increased amounts of physical activity when compared to
NONUSErs.

The cardiovascular benefits conferred by engaging in physical
activity arerobustly documented [ 10]. Regular exerciseislinked
to alower risk of developing atherosclerotic heart disease and
hypertension, largely due to enhanced vascular reactivity and
an increased expression of endothelial nitric oxide synthase
(eNOS) [11]. Enhanced eNOS activity boosts overall nitric
oxide synthesis, contributing to lower vascular resistance and
reduced arterial blood pressure, consequently mitigating risks
associated with all-cause mortality [12].

The hematological benefits of exercise are equally significant
and dose dependent. Regular physical activity leadsto increased
plasmavolume, erythrocyte mass, and erythropoietin synthesis,
which are beneficial for endurance performance and lead to
improved aerobic capacity [13]. The current gold standard for
assessing aerobic capacity and overall cardiovascular fithessis
through the measurement of an individual’s maximum volume
of oxygen consumed (VO using agraded exercise test and
gasanalysis. A higher VO, indicates agreater physiological
capacity to uptake and use oxygen during aerobic exercise and
correlates to alower risk of cardiovascular disesse.

It isabundantly clear that the acute and chronic health benefits
of exercise are research supported and plenty. Physical activity
significantly influences tissue perfusion, oxygen delivery, and
consumption, aswell as muscular strength, cognitive function,
and overall longevity [14,15]. However, quantifying the benefits
on a personalized scale poses substantial challenges outside of
controlled laboratory settings.

Review Objectives

Currently, there is no standardized, user-friendly method to
assess the benefit of exercise that is tailored to individual
physiological dynamics. This creates a gap in the practical
understanding of the effective impact of physical activity on an
individual’s health, asthe biometrics used today are also limited.
Therefore, we cannot easily answer the following question:
What is the efficacy of exercise for an individual ? At present,
the general public is unable to quantify how well they acutely
respond or adapt, thereby limiting any actionable modifications
to maximize both acute and chronic exercise quality, objectively.

The aim of this viewpoint is to provide an overview of the
current state and limitations of exercise metrology, followed
by potential solutions to measuring exercise efficacy on an
individualized scale. First, we review the limitations of current
optical sensors, applications, and associated physiological
biometrics commonly used in the noninvasive measurement of
exercise performance. Next, we discuss various technological
developmentsthat attempt to unveil new informationinrelation
to measuring exercise efficacy, with the ultimate goa of
generating personalized exercise physiology data to improve
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biometric insights. We then conclude with how we believe the
measurement science should move forward.

Measurement Challenges in Exercise and
Health

Emerging technologies, particularly wearable devices and
artificial intelligence/machine learning (Al/ML)—powered
algorithms, are beginning to bridge these gaps by enhancing
access to one’s personalized health data. Integrated platforms
ddiver insightsinto diseaserisk and behavioral outcomesrelated
to physical activity, albeit within certain limitations, such as
dataquality and interoperability [16,17]. For elite athletes, even
marginal improvementsin the quality of exercise datacan have
substantial effects on performance outcomes. However,
technological enhancements can sometimes teeter on ethical
lines: Do the data provided simply enhance training
improvement or push natural adaptations outside the bounds of
the current understanding of sport and medicine [18]? Can
technologies do this accurately and lend more confidence to
outcomes, or do the data raise more questions and create
controversy?How are we contextualizing the information based
on the known performance attributes of current sensors? For
clinical patients, the current generation of noninvasive devices
faills to meet the stringent reliability standards required to
improve health outcomes, thereby making medical therapeutics
a market relatively void of effective user-friendly wearables
[19,20].

Limitations of Photoplethysmography in Biometric
Assessment

Despite advancements in wearable technologies, significant
limitations exist when using such devices for assessing the
benefits of exercise for specific applications, such as for
professional athletics and aging adults. Many devices use
light-emitting diode (LED) photodiodes at specific wavelengths
coupled with photopl ethysmography (PPG) to estimate health
metrics, such as pulserate (eg, heart rate [HR]). Attempts have
been made to expand the use of the PPG signal to monitor more
complex variables, such as cardiac output (CO) and blood
pressure [21]. Figure 1illustrates the genera principle of using
PPG to assess biometric variables by analyzing a variety of
waveform features [22].

PPG, which optically measures changes in blood volume over
time, is susceptible to avariety of interferences. PPG primarily
reflects changesin peripheral blood volume, whichisinfluenced
by factors such as temperature, sympathetic nervous system
activity, and certain medications. These factors can alter
peripheral vascular tone, affecting the PPG waveform and
potentially leading to inaccuracies in biometric estimations.
Further, the optical properties of living tissue vary by tissue
type, blood and water content in the tissue, collagen, melanin,
and any connective tissue fiber development [23]. It is widely
known that biases in the data stem from interferences, such as
melanin, and the US Food and Drug Administration (FDA) has
proposed hew guidance to reduce performance discrepancies
specifically in pulse oximetry [24,25].
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Figure 1. (&) Principle of using PPG and waveform features used to infer physiological parameters. (b) Systolic and diastolic phases. PPG:
photoplethysmography; PPI: pulse-pulse interval; PPIdV/dt: maximum dV/dt of adjacent pulse-pulse interval; PPlonset: adjacent pulse-pulse onset
interval; PPIsystolic: adjacent pulse-pulse interval; PWx: pulse width at x% of the systolic amplitude. Reproduced with permission [22].
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Figure 2 providesthree examplesillustrating how the PPG signal
may distort over time [22]. Generally, this happens when
interferences, such as those factors explained previoudly,
influence the signal and degrade the ability to interpret the
targeted signal features clearly. Motion artifacts and signal
interference are paramount and can compromise the
signal-to-noiseratio of the PPG measurement, thereby limiting
physiological insights [26]. Signal corruption stemming from
motion can be estimated and rectified using applications such
asquadrature reference signalsor other correlationa filters[27].
Other interferences include baseline drift, baseline wandering,

PPI

systolic

PPIdet

Systolic
amplitude

and stochastic noise. Further, body location, skin-to-sensor
pressure at the measurement location and breathing
characteristics aso significantly impact waveform
characteristics, including the mean amplitude, dicrotic notch
time, and reflection index [28]. Because quality and reliability
are crucial features of data applicability, variability among
sensors makes it difficult to measure these attributes and to
ascertain their impact on outcomes. A lack of stringent
validation standards for PPG-based devices strongly limitstheir
analytical utility and reliability.

Figure2. PPG signal distortion dueto motion artifact, baseline wandering, and hypoperfusion. PPG: photopl ethysmography. Reproduced with permission

[22).

Motion artifact

Baseline Wandering

Photoplethysmogram

Hypoperfusion

AASANANANI AR~

Time

https://mhealth.jmir.org/2025/1/€79347

RenderX

JMIR Mhealth Uhealth 2025 | vol. 13 | €79347 | p. 3
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MHEALTH AND UHEALTH

These limitations may necessitate the use of auxiliary hardware
for more accurate data collection. Thisisthe casein arrhythmia
detection, which has propelled itself into modern consumer
wearables. Additionally, PPG cannot adequately capture certain
vascular dynamics, such as reflective effects on the vessel
expansion interrogated after transmission of the waveform,
making estimates for parameters such as blood pressure
challenging and leading to low application validationin clinical
populations [29,30].

In general, device limitations impact the usability of a variety
of commercially available and common health metrics. The
data are only as useful as the metrological capabilities.

Step Countsand Health Outcomes

The recommendation of taking 10,000 steps per day originated
from the Japanese company Yamasa, which launched a
pedometer called Manpo-Kei around 1965, shortly after the
Tokyo Olympics. The pedometer name trandates to “10,000
steps meter.” The campaign promoted this number with the
catchy slogan “Let’swalk 10,000 stepsaday,” which coincided
with therise of walking clubsin Japan at that time. Theintention
was to encourage people to be more active.

The current recommendation of 10,000 steps per day set forth
by the American Heart Association (AHA) was built upon the
original Japanese campaign. The am of the AHA was to
promote activity using an accessible benchmark, with agoal to
reduce chronic disease risk. The step count quantity has been
challenged by recent research. Though not an exhaustive list,
several recent studies indicate that lower step counts may still
be effective for improving cardiovascular and overall health,
thereby prompting a re-evaluation of the necessary number of
steps for optima health outcomes and improvements in
cardiovascular fitness [4,31-34]. A range of 8000-9000 steps
per day may protect against diseases such as hypertension,
diabetes, sleep apnea, major depressive disorder, and obesity
[32]. Even lower counts, roughly 4000 steps, may lower
mortality rates significantly [4,33].

Steps are considered objective, assuming the device measuring
them has a relatively low margin of error and the exerciser is
using the device as indicated by the manufacturer. If these
attributes are not maintained, steps can be an inaccurate
depiction of exercise quantification, as gait is often
misinterpreted by electronic or electromechanical pedometers
and inertial measurement units (IMUs)—accelerometers and
gyroscopes used to measure the body’s angular rate, force, and
orientation. Over- or underestimating atrue valueisasignificant
limitation, with errors sometimes surpassing 10%, depending
on body placement and validation criteria[35,36].

Often, if an individual is walking with a device located on the
wrist and the armis static, for example, while pushing astroller
or shopping cart, the pedometer does not register some if not
all of the steps accrued. Thisis dueto low or no cyclic motion
registered by the device sensor. Further, metrological
inconsistencies may conflict with Global Positioning System
(GPS)—derived data. For example, if 2000 steps are roughly
equivalent to 1 mile when using an average stride length, then
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an over- or underestimation may show a user traveled farther
or less via GPS, which may be confusing.

Theintensity of physical activity associated with a specific step
count is often inadequately assessed by many wearable devices
unless additional parameters, such as HR, are integrated.
Standard step-counting metrics can fail to capture the differences
in activity intensity; for instance, a person may accumulate the
same number of steps through both leisurely walking and brisk
walking, yet the cardiovascular and metabolic benefits vary
significantly [35].

Furthermore, vigorous activities of daily living (ADLS), such
as lifting heavy objects or engaging in high-intensity interval
training, are typically not reflected in step counts. These forms
of activity can yield significant health benefits, particularly for
populations such as older adults or individuals with chronic
conditions [32,37]. Other types of activity are necessary for
people with disabilities that limit their ability to walk, such as
strength training.

Heart Rate asa Proxy for Exercise I ntensity

HR isfrequently used as aproxy for gauging exercise intensity
and is typically assessed via PPG in consumer wearables.
However, this methodology is not without inherent limitations:
PPG's reliance on pulse wave analysisis vulnerable to motion
artifacts, variations in the quality of skin contact, and signal
loss during irregular movement, al which can severely
compromise measurement accuracy [38]. Improvements in
validation testing criteria, denoising, and waveform peak
identification are being enhanced with the incorporation of
trained deep neural networks (DNNSs) [39,40].

Delays in adaptive algorithms limit the accuracy of HR to
nonambulatory conditions and, to a lesser extent, during
steady-state exercise. Many algorithms use diding windows
(eg, 8- or 12-second processing windows) to estimate HR across
a predesignated timespan. This approach introduces lag,
preventing real -time detection and tracking of rapid HR changes,
such as during interval training [41]. The error increases
dramatically, and data are often unusable in these instances; in
addition, the last reportable value is carried forward until the
error decreases below a predetermined threshold of acceptable
accuracy. In general, HR estimates are only reliable during rest
or in steady-state conditions. However, inaccuracies may still
be present during sleep, when HR may drop bel ow 50 beats per
minute in trained adults or those with underlying conditions.

Lastly, HR isnot adirect measure of the benefits of exercisein
all cases, such as during strength training. The estimate is not
equally validated across all forms of exercise or in
contraindicated groups [42]. Additionally, users often lack the
requisite knowledge to interpret maximum HR and its
implications for training regimens, thereby leading to potential
errorsin exercise intensity assessments [43].

VO, and VO,,,,, M easurements

Simply, the volume of oxygen consumed (VO,) isthe volumetric

difference between oxygen inspired and oxygen expired over
ameasured amount of time (1 minute). VO, iSthe maximum

amount of oxygen one'sbody can consume at absol ute maximal
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exertion. VO,,,, 1S Used as a gauge to indicate an individual’s
overall cardiovascular fitness. Commercially available wearables
often rely on HR data to estimate VO, and VO, but this
approach can yield significant discrepanciesfrom actual values,
with variations reaching as high as 20% [44]. The estimate is
only as good as the HR metric, which is estimated from a
pul satile waveform.

Accurate assessment of VO, typically necessitates maximal
exertion testing conducted under laboratory conditions, which
is rarely achievable in nonclinical settings. For accurate
estimation, VO, testing must take participants to volitional
fatigue, validated by physiological markers, such asblood lactate
concentration, respiratory exchangeratio (RER), and individual
rate of perceived exertion (RPE) [45]. Most individualsderiving
a VO, estimate from commercial wearables do not achieve
atrue value because of the absence of rigoroustesting protocols.
In general, users may reach a*“peak” value (VO,peak), at best.

A user must know their maximum HR and resting HR. There
are several formulas that can be used to calculate maximum
HR, some more relative to an individual than others and often
relying on an ageto predict the value. Other methods use a heart
rate ratio method (HRRM) in tandem with maximum HR.
Because maximum HR is an estimate and linearly related to
age, ssimple formulas may not account for the cardiorespiratory
fitness of an individual [46,47]. Differing VOy,,, Values may
be acquired for a given person, depending on the device being
used, thetest being given, and the user experiencelevel, coupled
with the different maximum HR equations. Further, many
wearables overestimate the resting HR, particularly for
endurance athletes, and they may even be outside the validated
algorithm range, with many devices having no validation bel ow
40-45 beats per minute (bpm). Moreover, factors such as
dehydration and ambient temperature can further distort HR-VO,

relationships, further complicating accuracy [48,49].

Metabolic Equivalents and Energy Expenditure

Metabolic equivalents (METS) serve as a useful framework for
quantifying the energy expenditure (EE) of a given physical
activity. One (1) MET is defined as a VO, rate of 3.5
mL/kg/minute, equal to an adult’s resting metabolic rate [45].

METs are used as arelative way to compare the EE of a given
activity to someone’s resting metabolic rate over a given unit
of time. Activitieswith higher MET values can be used to assign
a specific intensity of exercise, help persona trainers and
practitioners plan an exercise routing, and also estimate the
number of calories burned during exercise.

For instance, brisk walking registers at approximately 3.5-4.0
METs, while running at 7 mph is around 7.5 METs [50].
However, discrepancies arise when using standard MET values
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for individuals of varying body weights, as these calculations
are based on an average body weight of 70 kg (154 Ib).
Consequently, comparisons across individuals with different
body compositions and adiposity may yield inaccurate
assessments [51].

Further, not all METSs are equal across sport or exercise type,
particularly if full body movement isnot involved in the activity
[52]. Often, occupationa activities and ADLs that elevate HR
are not counted in the overall time spent at a given MET.

Moreover, the public’sunderstanding of METsis often restricted
to clinical or academic contexts, complicating their practical
application. The complexity of these metrics can deter
individuals from leveraging them effectively in their personal
fitness regimens [53]. Generally, people don’'t want to perform
math to understand how many kilocal oriesare burned at agiven
VO, and MET value. With accessibility of simpler metrics, they
often default to using HR to understand how hard they are
working.

Cardiac Output M easurement

The CO (Q) reflects the heart’s ability to meet metabolic
demands, providing insight into cardiovascular function. It is
particularly useful in clinical contexts such as heart failure
management [54]. It is calculated by multiplying HR by stroke
volume and reflects the volume of blood ejected by the heart
per minute. It can be estimated using the Fick principle during
exercise testing. It is typically measured using thermodilution,
whichisinvasive and requires an arterial catheter, and can also
be estimated with other methods, such as echocardiography and
esophageal Doppler.

Recent advancements in technology have enabled the
development of devices that purport to measure the CO using
PPG, with the signal most often acquired from the fingertip.
PPG and electrocardiographs (ECGs) have been used in tandem
to aid in determining stroke volume by measuring pulse transit
times from the ECG’s pulse rate and the pulse measurement
estimated by the PPG device. Stroke volume is estimated as a
function of the dope transit time and by analyzing the pulse
contour of the primary peak in the waveform, though the
accuracy of this estimation can be influenced by changes in
vascular tone and afterload [55,56]. Limitations exist around
PPG'’s accuracy in determining stroke volume alone [57] and
also inferring physiological measurements, such as total
peripheral resistance. Some of the PPG applications exhibit
error margins approaching 40% when compared to
thermodilution and echo Doppler, including those in use cases
where patients are surgical in nature [58-61]. Current
developments use robust ML methodologies in an attempt to
satisfy performance accuracy closer to thermodilution in
assessing hemodynamics [62]. Please see Table 1 for an
overview of the previously discussed measurements.
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Tablel. Summary of noninvasive physiologica measurement methods and limitations used widely in the noninvasive assessment of exercise performance.

Measurement

Method

Validation reference standard

Measurement limitations

Steps

HR®

VO3, VOmax

Accelerometry (eg, IMU3)

ppGY (eg, waveform analysis,
peak detection, calculation of

bpm®)

Typically inferred from HR
using PPG

ActiGraph; manual step
counting with video recording

ECGf, chest strap HR monitor

Laboratory metabolic testing
using gas analysis

Unable to account for intensity or activities not reflected by
steps (eg, resistance training) [32,35,36]

Misinterpretation of gait by accelerometer or misalignment
with GPSb-derived data[63]

Error dependent on anatomical location (1% to >10%) [35,36]
More or less beneficia based on risk profile of individual
[4,32,33]

Susceptible to motion artifact limiting accuracy during motion
[38]

Susceptibleto sliding windowslimiting accuracy duringinten-
sity changes [41]

Not validated or equal across all forms of exercise or cardiac
rhythms [42]

Limited by accuracy and cal culation of HR and maximum HR,
aswell asfactorsthat affect HR [44-47,49]

Inequality of MET values across different body compositions
[51]
Inequality of MET values across exercise typesif full body

MET andegl  Derived from VO, (typically 1MET, whichisaVO, of 3.5
inferred from HR if delivered mL/kg/minute standardized
by a PPG-based wearable) to 70 kg body mass

co Q) PPG (eg, estimation of stroke Transpulmonary thermodilu-

volume and HR) with or tion, transthoracic or
without other methods (eg,
ECG, impedance cardiogra-

phy)

esophageal echo Doppler

movement is not involved or during ADL sk [52]
«  Not well understood by all users/prone to misapplication [53]

High error potential dueto physiologic influences (eg, afterload,
total peripheral resistance, vascular tone) [55,58-62]

. Limitationsin interpretation of stroke volume, which may re-
quire additional/coordinated inputs (eg, PPG+ECG) [55,57,64]

#MU: inertial measurement unit.
bGPS: Global Positioni ng System.
°HR: heart rate.

IppG: photoplethysmography.
Sopm: beats per minute.

eCa: electrocardiograph.

9v0,: volume of oxygen consumed.
hVOZmaX: maximum volume of oxygen consumed.
'MET: metabolic equivalent.

IEE: energy expenditure.

KDL: activity of daily living.

lco: cardiac output.

Overcoming Barriers to Effectively
Measure Exercise

To make general strides in measuring exercise, two
interconnected points need to be addressed, as new technology
ideally gleans new biometric insights:

«  Some biometric limitations exist because of technological
methods. What additional sensing capabilitiesare available
to help improve current measurements and improve the
overall measurement of exercise efficacy?

- From newer sensing technologies, what additional metrics
can be derived that may lead to a better understanding of
an individual’s physiology, therefore lending an improved
representation of exercise effectiveness, efficiency, and
overall efficacy of application?
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Advancementsin Sensing Capabilities

Noninvasive spectroscopic methods are still fairly limited to
the interrogation of the dermis and the relevant substructures
and chemistries contained within. Several microneedle studies
analyzing dermal blister fluid have refined the understanding
of what is quantitatively represented in the skin's interstitial
fluid, both somatically (eg, from the blood) and locally (eg,
produced by regional cells) [65]. Measuring these putative
biomarkers noninvasively poses unique hurdles, as
concentrations are typically low and therefore difficult to
quantify with acceptable accuracy and precision [66]. The
challenge can be exemplified by the multidecade pursuit to
measure glucose concentrations in the skin without relying on
minimally invasive techniques [67].

Sensor capabilities are expanding, from material selection to
hybrid hardware and software integration. Newer optical
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approaches may hold promise for measuring individualized
biomarkers and chemistries and provide continuous data
streaming, some in real time, with little to no significant lag.
Further, combining technologies may offer a way to obtain
improved sensing performance compared to stand-alone
applications. Novel methods, such as those incorporating
concepts from link budgeting in telecommunications with
bio-optics and Al, may produce sensors less prone to signal
interferences and motion artifacts, alowing for cleaner and
more accurate data collection during movement [68]. Advances
in the engineering and use of novel materials and structures,
including metamaterials, may enhance spectroscopic methods
by confining light to subwavelength scales, improving
integration and sensitivity acrossabroad optical spectrum[69].

Major advancements in PPG applications focus on dynamic,
reconfigurable sensors to optimize signal quality using deep
learning algorithms and neural networks [70]. Deep learning
algorithms, such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), may improve the analytical
performance of PPG-based devices by enhancing analysis of
the shape and other characteristics of the waveform. Such
algorithms can learn complex patterns and may access
biometricsthat would beimmensely hel pful in clinical scenarios
[71,72].

Imaging photoplethysmography  (iPPG) and remote
photopl ethysmography (rPPG) methodsaim to provide biometric
analysisusing acontactless approach [73,74]. Off-body cameras
are used to assess cardiovascul ar-based indicators via video by
detecting fluctuations in skin blood volume between diastole
and systole. Skin color analysisis performed, often of the face.
In addition to deep learning and CNNS, spatial-spectral-temporal
fusion (hybrid red-green-blue [RGB] camera and near-infrared
[NIR] facia video) and spatial-temporal attention networksare
a few methods that are applied to increase the accuracy
biometric interpolation of video recordings [75-78].

Hybrid sensing is becoming increasingly popular, where PPG
is also combined and packaged with additional hardware, such
as electrical bioimpedance (BIA). Samsung's new BioActive
sensor isan example of a PPG-based noninvasive wearabl e that
has not only expanded the number and type of LEDs but also
cointegrated ECG and BIA in an attempt to improve
metrological performance from data collected on the dorsal
wrist [79]. The cointegration is not novel; however, the sensor
includes blue, yellow, violet, and ultraviolet wavelengths,
alongside an increase in green, red, and infrared (IR) LEDs,
with a claim to improve performance compared to previous
versions, in someinstances nearly 30%. Other PPG applications
related to sport science include interpretation of heat stressand
overexertion through the monitoring of HR and heart rate
variability (HRV), though the accuracy of these applications
can be improved, with errors upward of 0.5°C [80].

Wearable microel ectromechanical systems(MEMS) have been
playing an increasing role in fitness-based sensing because of
their ability to capture IR radiation emitted from the body.
Broadband thermal MEMS are a major contributor in
noninvasive thermal imaging and thermography, being able to
detect fairly small changesin surface body temperature [81,82].
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Generally, the sensors contain thermopile elements or
microbolometers that operate across a broad IR spectrum,
typicaly in the long-wave infrared (LWIR) range of
approximately 8-14 um. Thermopiles generate avoltage output
proportional to theincident IR radiation, while microbolometers
exhibit achangein electrical resistance asafunction of absorbed
thermal energy. When fabricated asfocal plane arrays (FPAS),
these M EM S-based detectors provide significantly higher spatial
resolution compared to single-point thermal sensors, enabling
detailed thermal mapping of complex surfaces [83]. Data
trandlate to several performance-related use cases, such as
estimating EE and body heat mapping, capturing information
related to the physiological processes of both skeletal muscle
heat creation and thermoregulation [81]. These advances may
lead to potential improvements in understanding training load
through entropy analysis, as well as recovery and fatigue
assessment [84-86].

A significant amount of research and development has been
focused on improving the bandwidth, energy efficiency, and
scalability of biosensors. Advancementsin short-waveinfrared
(SWIR) spectroscopy alows for the detection of absorption
peaks from 900 to 2500 nm (depending on the source of
reference), opening up a plethora of new technological
opportunitiesin biometric monitoring [87-90]. The SWIR region
contains absorption peaks for O-H bonds (1430 and 1940 nm),
lipid-associated C-H bonds (1210, 1730, and 1760 nm), and
collagen (1200 and 1500 nm) [88]. Through an expanded
wavelength region, SWIR sensors can target new metrics and
enhance the performance of current biomarkers, including
hydration, body (dermal) temperature, albumin, glucose, lactate,
ethanol, and others[90-92]. Several large players have expanded
their R&D in silicon photonic biosensors, including Apple,
building off many of the advancements previously made by
technology pioneers specializing in the development of
laser-based SWIR spectroscopy and photonics-based health
sensors, including Rockley Photonics [93,94]. Depending on
the overall optical solution, combining silicon photonics with
microel ectronicsimproves overall sensing capabilities, with an
improved signal-to-noiseratio, lower propagation loss, asmaller
overal package size, greater power handling, and overall
enhanced performance. Combining SWIR diffuse reflectance
spectroscopy with LED-based PPG may further refine and
expand biomarker monitoring.

Unlike applications that target specific absorption peaks,
applications using broadband-light spectroscopy (BLS) and
white-light spectroscopy emit awide spectrum of light to create
a molecular “fingerprint” with relatively high specificity and
sensitivity [95]. A label-free approach allows for the use of
broadband light without tagged fluro- or chromophoresto collect
biometrics in a wearable form factor [96]. Some applications
are combined with Raman-based techniquesto reveal new bands
in a given molecular fingerprint region [97]. Others use
differentiated InGaAs photodetectors to obtain a broader range
of light and a greater signal-to-noise ratio compared to
silicon-based or traditional InGaAs solutions[98,99]. Broadband
applications may use LEDs or laser diodes and be combined
with additional noninvasive methods, such aslaser Doppler and
continuous-wave near-infrared spectroscopy (CW-NIRS) [100].
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Further, emerging research indicates that boron nitride (BN)
nanosheet-based photodetectors may offer ultrabroadband
sensitivity—potentially spanning from deep ultraviolet to
midinfrared—along with high thermal stability, spectral
sensitivity, and self-powering capabilities, making them
candidatesfor future applicationsin breath analysisand glucose
sensing [101].

The application of deep optics using CW-NIRS may further
improve wearable applications by defining specificity of tissue
type through the use of multiple path lengthsand algorithmically
solving for absorption and scattering coefficients, which
accountsfor the heterogeneity of layered tissue from superficial
to deep [68,102]. This allows the assessment of hematological
variableswith reliable performance when compared to invasive
methods or common benchtop options, including frequency
domain near-infrared spectroscopy (FD-NIRS) [103,104]. Unlike

https://mhealth.jmir.org/2025/1/€79347
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FD-NIRS, the CW-NIRS approach eliminates the need for
modul ated light sources and phase-sensitive detection systems,
while maintaining improved signal quality. Recent
recommendations aim to improve metrological best practices
(data processing and interpretation) if NIRS is used to monitor
cerebral and muscle oxygenation during exercise, particularly
to account for noise generated by extracerebral tissue layers
[105].

Albeit asnapshot of wearable sensing applications, al of these
optical approaches are enhanced by the integration of advances
in software and computing methods, complex large language
models (LLMs), sophisticated and DNNs, and other ML
methods including Al, which help further improve on-device
processing and compensate for source and sensor limitations.
Please see Table 2 for an overview of the previoudly discussed
sensing advancements in exercise metrology.
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Table 2. Summary of developing noninvasive sensing methods and emerging biometrics related to exercise physiology.

Sensing method Sensing advancements

Emerging biometrics

PPG2 « Hybrid sensing [77,79]

«  Expanded wavelengths/photodiode options [79]
«  MLband computational advancements (eg,
LLMsc, DNNsd, spatial-temporal applications)

[70-72,75-78]

»  Heat stress/overexertion [80]

Remote analysis of cardiovascular and respiratory vitals
(eg, HRg, respiratoryrate) [73,74]

Apnea, hypopnea [74]

«  Contactless methods (rPPGe, iPPGF) [73,74]

Broadband MEMS" thermogra-  *

phy mapping [83]

SWIR! spectrosco *
® by [88-90]

«  Improved signal-to-noise ratio, power handling,

package size (chip) [94]

BLSY/white-light spectroscopy *  La@bel-free application [96]

«  Improved InGaAs photodetector solutions[98,99]

High spatial resolution and improved thermal .

Expanded absorption peak range (900-2500 nm)

Entropy analysis, EEi, body heat mapping/thermoregu-
latory analysis, training load analysis, recovery analysis
[81,84-86]

SWIR (diffuse reflectance spectroscopy): ethanol, hy-
dration, dermal temperature, glucose, lactate, lipids
[89-92]

«  Multi-omic and molecular fingerprinting, hydration,
breath analysis, glucose [97,98,101]

«  Ultrabroadband sensitivity, improved thermal
stability with nanosheet photodetectors [101]

«  Hybrid sensing [97,100]

FD-NIRS and CW-NIRS™  *
[104,106]

«  Deep-tissue analysis[68,102,107]

Enhanced signal quality and tissue specificity .

Loca hematological and oxygenation metrics (eg,
hemoglobin, SmO20), metabolic oxygen kinetics,
cerebral oxygenation, bioactive nitric oxide (S-nitrosoth-
iols), blood flow, injury analysis, recovery
[102-104,107-111]

3PPG: photopl ethysmography.

BML: machine learning.

YLLM: large language model.

IDNN: deep neural network.

€rPPG: remote photoplethysmography.

fiPPG: i maging photopl ethysmography.

9HR: heart rate.

PMEMS: electromechanical systems.

EE: energy expenditure.

ISWIR: short-wave infrared.

KBLS: broadband-|i ght spectroscopy.

IFD-NIRS: frequency domain near-infrared spectroscopy.
MCW-NIRS: continuous-wave near-infrared spectroscopy.
9SmO,: muscle oxygen saturation.

Expanding Physiological I nsights

Newer wearables, software applications, and ML tools are
generating a variety of indirect metrics to better reflect human
performance and fitness status. Many still use PPG-derived
measurements with advanced software applications to obtain
estimates of aerobic and anaerobic thresholds, the lactate
threshold, VLa,, (lactate maximum), critical power, critical
speed, and more. Although these metrics can provide valuable
insights, most commercially available devices do not measure
anything truly new and simply deliver an inferred and estimated
biometric (eg, strain, recovery, or stress, derived from
already-measured information, such as HR or HRV, or a
combination that is undisclosed). The degree of accuracy of
these inferences relies directly on both device placement and
the performance of the underlying inputs, which are sometimes

https://mhealth.jmir.org/2025/1/€79347

trade secrets. Overall, these metrics do not represent the quality
or significance of exercise.

It is difficult to quantify how effective or efficient an acute
session of exercise is for an individual. Often, population
statistics are applied in an attempt to assess individualized
outcomesrelevant to performance or health, without attributing
the nuanced limitations of either the technology (ie, an optical
model or computational factors) or the body (ie, genetic
limitations on oxidative capacity) or even disease. How does
one know whether a type or intensity/duration of exercise is
working in the short term? How does chronic training impact
quality or efficiency? Body composition, improved strength, or
decreases in the resting HR are routinely used to assess
improvements (or the benefits of exercise) [45,112]. These
attributes take weeks or months to denote relevant changesin
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physiology. It is not easily possible to assess the benefits of
exercise during aworkout, nor isit possible to assess recovery
at alocal level during acute periods between workouts.

Given the limited ability of current wearables to leverage
individualized biostatistical data, a key question arises: Which
biometrics paired with which sensing technology, either
singlehandedly or in composite, yields the best indicators of
exercise quality and efficacy? A holy grail in cardiovascular
sports medicine is to measure the impact of activity on blood
flow, not only to working muscle, but also to the myocardium,
cerebral tissue, and nonworking tissues[113]. These datawould
provide alink between systemic and local metabolism, including
oxygen kinetics, fuel homeostasis, and deviations during
non-steady-state activity [114]. Further, blood flow information
may provide unprecedented insightsinto vascular health, athletic
injury, and recovery. Advancements in ultrasound techniques,
such as superb microvascular imaging and laser Doppler, have
opened awindow to measuring tissue perfusion and directional
blood flow at the 100-200 um level in lesions, organs, and
skeletal muscle [100,115-117] but are not field-practical and
cannot be used easily during activity.

Insights gleaned from newly attainable, hematol ogically derived
variables may allow for the measurement of exercise more
effectively, and severa NIRS techniques are making this
realistic [102,104,107-109,118,119]. Obtaining local muscle
oxygen saturation (SmO,), oxygen kinetics and oxidative
metabolic activity, bioactive nitric oxide (S-nitrosothiols), local
blood flow and perfusion, and other hemoglobin or flow-derived
indicators during activity would be a monumental feat in
cardiovascul ar assessment. Research supports the enhancement
of key performance indicators with such biometrics, including
equivalent or improved evaluation of lactate and ventilatory
thresholds, as well as critica power in multiple sports
[110,111,120,121]. Combined with information from
hybrid-sensors, such as hydration and pulserate, these datamay
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be powerful, with substantial outcomes in denoting increments
of value in both professional athletics and clinical care [20].

Conclusion

Thearray of insights offered by modern wearablesholds promise
for understanding individual physical limitations, yet it often
falls short in providing accurate and meaningful assessments
of how well exercise is doing for someone. As technology
continues to evolve, a more nuanced understanding of the
rel ationship between exercise and health made possible through
improved metrological techniqueswill be essential for fostering
better lifestyle outcomes among individuals.

From the sensing advancements discussed previously, emerging
measurements are being unveiled with physiological |egitimacy
and utility, including networked biomarkers, new relationships
between biomarkers, and cause-and-effect chains between
biomarkers. Progressing beyond PPG, devel opers can begin to
offer alternative solutions to navigating improvements in
physiological insights. With enough reliable data, we may begin
to comprehend how measurabl e concepts, such as metabolomic
fingerprinting and biological aging, may indicate where exercise
may holistically slow the progression of disease and impact
cellular senescence. Though this does not enhanceindividualized
measurement of physiological performance, it does lend to
long-term understanding of the influence of exercise on
physiology from areal-time, continuous output.

The ultimate goal is to understand how individualized
information related to exercise quality and efficacy may help
patients, athletes, and practitioners reach therapeutic and training
goalswithout relying on misapplied population-based statistics.
Future research should focus on devel oping methodsthat bridge
the gap between laboratory findings and real-world applicability
through the use of real-time, wearable monitoring, which will
ultimately empower users to make informed health choices
based on truly personalized data.
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DNN: deep neural network
ECG: electrocardiograph
EE: energy expenditure
eNOS: endothelial nitric oxide synthase
FD-NIRS: frequency domain near-infrared spectroscopy
GPS: Global Positioning System
HR: heart rate
HRV: heart rate variability
IMU: inertial measurement unit
iPPG: imaging photoplethysmography
IR: infrared
LED: light-emitting diode
LLM: largelanguage model
MEMS: electromechanical systems
MET: metabolic equivalent
ML: machinelearning
NIR: near infrared
NIRS: near-infrared spectroscopy
PPG: photoplethysmography
PPI: pulse-pulseinterval
rPPG: remote photoplethysmography
SmO2: muscle oxygen saturation

https://mhealth.jmir.org/2025/1/€79347 JMIR Mhealth Uhealth 2025 | vol. 13 | €79347 | p. 16
(page number not for citation purposes)


https://europepmc.org/abstract/MED/19781996
http://dx.doi.org/10.1016/j.molmed.2009.08.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19781996&dopt=Abstract
https://europepmc.org/abstract/MED/18685453
http://dx.doi.org/10.1097/MCO.0b013e32830b5b34
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18685453&dopt=Abstract
https://files.eric.ed.gov/fulltext/EJ1201452.pdf
http://dx.doi.org/10.13189/ujer.2019.070111
https://pubmed.ncbi.nlm.nih.gov/33856650/
http://dx.doi.org/10.1007/s12574-021-00527-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33856650&dopt=Abstract
https://pubmed.ncbi.nlm.nih.gov/32418782/
http://dx.doi.org/10.1016/j.acra.2020.03.032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32418782&dopt=Abstract
https://europepmc.org/abstract/MED/29238951
http://dx.doi.org/10.1002/cpt.979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29238951&dopt=Abstract
https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.119.315626?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1161/CIRCRESAHA.119.315626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31590598&dopt=Abstract
https://europepmc.org/abstract/MED/38345731
http://dx.doi.org/10.1007/s40279-023-01987-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38345731&dopt=Abstract
https://boris-portal.unibe.ch/handle/20.500.12422/87784
http://dx.doi.org/10.2478/hukin-2022-0054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36157967&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MHEALTH AND UHEALTH Corso & Peikon

SWIR: short-waveinfrared
VO,: volume of oxygen consumed
VO,max: Maximum volume of oxygen consumed
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