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Abstract

Background: Keystroke dynamics on smartphones have emerged as a promising form of passive digital biomarker. While
previous studies have explored their utility in several diseases and disorders, relatively few have examined how these dynamics
change systematically with chronological age in the general population.

Objective: This study aimed to investigate age-related patterns in mobile keystroke dynamics, with a particular focus on temporal
variations throughout the day. By identifying behavioral signatures associated with different age groups, we further assess whether
artificial intelligence–based models can accurately estimate chronological age using passively collected keystroke data.

Methods: We conducted a field study involving 177 healthy adults in the Republic of Korea, collecting free-living smartphone
typing logs over multiple weeks through a custom Android keyboard app (CodeRed Corp). For each keystroke, the app recorded
press and release timestamps and key type, from which 43 behavioral features were extracted across categories of speed, frequency,
and temporal variability. Weekly feature vectors were constructed at 3 temporal resolutions (6-hour intervals, daily, and weekly).
In total, 8 artificial intelligence models, including random forest, TabNet, transformer, and long short-term memory, were trained
with participant-wise 10-fold cross-validation. A custom loss function was introduced to reduce intraparticipant prediction
variability. Descriptive statistics and ablation studies were conducted to assess behavioral trends and feature contributions.

Results: The study included 177 participants (female: n=115; male: n=62) with a mean age of 28.8 (SD 11.1) years, all residing
in the Republic of Korea. On average, data were collected for 25 weeks per participant, resulting in a dataset of more than 2.5
million typing sessions. Descriptive analysis revealed clear age-related differences. Younger participants typed faster and more
frequently, while older participants showed slower and more variable typing. The long short-term memory model using the 6-hour

interval median features achieved the best age estimation performance (mean absolute error 3.69 years, R2=0.71). When the
customized loss function was applied, the model’s performance further improved to a mean absolute error of 3.60, with a reduction
in intraparticipant variability in estimated ages by 7.8%. Notably, feature importance analysis suggested that the early morning
(midnight to 6 AM) and late evening (6 PM to midnight) periods may carry more age-discriminative keystroke patterns.

Conclusions: Our findings demonstrated that smartphone keystroke dynamics reflect age-sensitive behavioral patterns, particularly
when analyzed with fine-grained temporal resolution. While the primary goal was not age estimation per se, the ability to model
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these patterns highlights the potential of keystroke dynamics as a passive, unobtrusive behavioral marker for age-related functional
characteristics. These insights may inform future applications in digital health, such as age-sensitive personalization or early
detection of age-related decline without requiring any active user input.

(JMIR Mhealth Uhealth 2025;13:e80094) doi: 10.2196/80094
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Introduction

The rapid expansion of mobile health apps has enabled
individuals to monitor and manage their health conveniently
and continuously. However, these services often rely on users’
active engagement, such as logging symptoms or responding
to surveys. This dependence on manual input can present a
barrier to long-term use. Passive sensing techniques can offer
a promising alternative in digital health care, as they enable
unobtrusive and continuous health monitoring without requiring
explicit user participation [1-4].

Among various passive sensing modalities, digital biomarkers
derived from everyday interactions with smartphones have
received increasing attention, such as GPS [5,6], biosignals
[7,8], and motion sensor data [9,10]. One promising approach
involves analyzing mobile keystroke dynamics—patterns such
as typing speed, interkey delay, and error frequency during
smartphone keyboard usage. These subtle signals are
unobtrusively collected and can reflect changes in cognitive
and motor function [11-13], offering a valuable source of
information for health-related inference.

Keystroke dynamics have been explored in previous work for
various health domains like mild cognitive impairment [14],
multiple sclerosis [15,16], loneliness [17], bipolar disorder [18],
and mental health [13,19]. Specifically, Vesel et al [13]
examined how mood, age, and diurnal patterns affect mobile
keystroke dynamics using hierarchical mixed-effects models.
However, their primary focus was on mood
symptomatology—treating keystroke features, such as typing
speed and variability, as outcomes influenced by depression
severity, age, and time of day. Similarly, Zulueta et al [18]
estimated brain age from smartphone typing kinematics and
analyzed prediction error in relation to bipolar disorder risk.
However, their focus was on diagnostic group differences rather
than exploring how keystroke patterns change with age in the
general population.

In contrast, our study aimed to conduct an in-depth investigation
of age-related variations in keystroke dynamics, with particular
attention to temporal keystroke patterns across different age
groups. Given that aging is often accompanied by gradual
changes in motor and cognitive function, these shifts may be
subtly reflected in how individuals type on their smartphones.
Importantly, such functional changes are not exclusive to
aging—they may also result from sudden health deterioration.
For instance, in patients at risk of cognitive impairment, subtle
slowing and increasing variability in keystroke patterns may
serve as early indicators of decline. Beyond health care, the

ability to continuously and passively detect such functional
changes could also contribute to security-related monitoring
purposes. For instance, keystroke dynamics could reveal
anomalous behavior when a compromised account is accessed
by someone whose typing rhythm deviates markedly from the
legitimate user, thereby serving as a continuous authentication
layer.

Methods

Data Collection
We conducted a field study with a total of 177 healthy adults
in the Republic of Korea from September 2022 to September
2023. Participants were recruited through online university
communities and campus bulletin boards. Inclusion criteria
were male and female individuals between 14 and 69 years of
age without any mental or physical disabilities, who were
Android smartphone users. Exclusion criteria were (1) inability
or unwillingness to follow the investigator’s instructions; (2)
difficulty in communication or lack of cooperation with the
study procedures; (3) explicit refusal to participate in the study;
(4) previous diagnosis of any psychiatric or physical illness;
and (5) for minors (aged 14-19 years), lack of consent from a
parent or legal guardian, or cases where parental consent was
provided but the participant did not assent to participate. Those
interested submitted an online application form that included
their age, sex, smartphone operating system, preferred keyboard
layout, and contact information. Eligible individuals were
contacted to schedule an online meeting, during which they
received a detailed explanation of the study and provided
informed consent electronically. Following consent, participants
were guided through the installation process and instructed to
use our custom keyboard app as their default keyboard in daily
life. The study was conducted exclusively in smartphone
environments, and other platforms, such as desktop keyboards,
were not included. Our custom keyboard app, developed for the
Android operating system (CodeRed Corp), supported
QWERTY layouts for Korean, English, numbers, and special
characters. It recorded timestamps for each key-pressing and
key-releasing event, along with the type of key (eg, Korean,
English, delete, and special character). Per participant, a log file
was generated, in which each row contained the timestamp of
key press, the timestamp of key release, and the type of the
pressed key. These files were automatically and securely
transmitted to our research server on a daily basis. Data were
collected during participants’ natural smartphone usage over a
multiple-week period, without task-specific constraints, to
ensure ecological validity.
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Ethical Considerations
The study was approved by the Institutional Review Board of
Hanyang University (HYUIRB-202207-003-04). All participants
were provided with detailed information about the study,
including its objectives, the procedures for data collection, the
devices and mobile apps to be used, the types of data to be
collected, and the subsequent processing of these data. They
were clearly informed that participation was entirely voluntary
and that they could withdraw from the study at any time without
penalty. Written informed consent was obtained from all
participants before enrollment. A modest financial incentive
was offered as compensation for their time and effort. The entire
collected dataset was deidentified.

Data Preprocessing and Feature Extraction
As illustrated in Figure 1, we first discarded the data collected
from each participant during the first week, since most
participants spent the first week as an adaptation week to
practice the provided keyboard app. For the remaining data, we

excluded the key-press logs whose duration between press and
release is longer than 5 seconds. Then, we processed the
remaining logs in units of typing sessions. The typing session
was determined by referring to the work by Vesel et al [13]: (1)
duration between the keyboard activation and deactivation, or
(2) if there was no press for more than 8 seconds after the last
key release. We excluded the data of the typing sessions where
key-pressing activities occurred more than or equal to 10 times
per second (ie, interkey intervals ≤100 ms). This conservative
threshold was chosen to eliminate abnormal or artifact-prone
events, with reference to a large-scale study by Dhakal et al
[20]. They analyzed 136,857,600 keystrokes from 168,960
participants who were asked to transcribe 15 English sentences
using desktop keyboards. Their results showed that the average
interkey interval across all participants was 239 milliseconds,
whereas even the fastest typists exhibited an average of 122
milliseconds. Although their study was based on desktop
keyboards, these findings provide a reasonable reference point
for identifying abnormal keystrokes.

Figure 1. Flow of data preprocessing and feature extraction for each participant’s data.

Within each typing session, we calculated speed and
frequency-related features (speed and frequency, respectively,
in Table 1), based on the existing studies [13,15-18]. The speed
feature includes hold time (HT; a duration of each key press),
flight time (a duration between release of the previous key and
press of the current key), press-to-press latency (PPL), and
release-to-release latency. Additionally, we calculated the
correction, the HT for the delete key, and pre- and
postcorrection, the flight times before and after pressing the
delete key, respectively. The frequency features are the number
of times any key is pressed and pressing the delete key,

respectively (AllKey and DEL). In addition, we calculated
various features in order to represent keystroke dynamics in
terms of speed and frequency in a more delicate manner. First,
we added the features regarding the keyboard layout shift (eg,
from Korean QWERTY to English QWERTY): duration of
layout shift (dur_shift) and the number of layout shifts
(num_shift). Second, we counted the number of pressing any
keys and the delete key per second, respectively (AllKeyRate
and DELRate). Third, we added 2 features, that is, the duration
of typing session (dur_session) and the number of typing
sessions (num_session).
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Table 1. Keystroke dynamics features (n=43) categorized into speed-related, frequency-related, and temporal variability-related features, which were
used as input variables for the analyses in our study.

FeaturesValue, nCategory

HTa, FTb, PPLc, RRLd, precorrection, correction, postcorrection, AllKeyRate, DELRate, dur_shift,
dur_session

11Speed

AllKey, DEL, num_shift, num_session4Frequency

HT_MaxGap, FT_MaxGap, PPL_MaxGap, RRL_MaxGap, precorrection_MaxGap, correction_Max-
Gap, postcorrection_MaxGap, AllKeyRate_MaxGap, DELRate_MaxGap, dur_shift_MaxGap,
dur_session_MaxGap, HT_STD, FT_STD, PPL_STD, RRL_STD, precorrection_STD, correc-
tion_STD, postcorrection_STD, AllKeyRate_STD, DELRate_STD, dur_shift_STD, dur_session_STD

22Speed variability

AllKey_MaxGap, DEL_MaxGap, num_shift_MaxGap, AllKey_STD, DEL_STD, num_shift_STD6Frequency variability

aHT: hold time.
bFT: flight time.
cPPL: press-to-press latency.
dRRL: release-to-release latency.

Finally, we designed additional features to capture the temporal
variability of speed and frequency features, respectively (speed
variability and frequency variability in Table 1). We
hypothesized that keystroke dynamics would fluctuate across
different times of the day (eg, morning, afternoon, and night),
analogous to the diurnal variations observed in physiological
indicators [21]. We defined 2 types of variability features. The
first, denoted as {Feature_Name}_MaxGap, represents the
maximum fluctuation within a given time window (eg, day). It
is calculated as the difference between the 95th and 5th
percentiles of the feature’s values. The other is the SD of each
feature’s values within a time window ({Feature_Name}_STD).

Analysis Through Descriptive and Artificial
Intelligence–Based Methods
We analyzed the extracted 43 features, as described in Table 1,
across different chronological age groups
(younger-than-30-years, 30s, 40s, and 50s). Considering
potential options for the analysis time window, such as an hour,
a day, and a week, we empirically determined to conduct an
analysis on a weekly basis. We believed that a larger window,
such as a month, might fail to capture the temporary change in
health status, while a smaller window, such as a day, would
lead to unnecessarily frequent analyses, introducing redundancy
without improving interpretability. For visualization, we
followed a three-step aggregation process. First, for each
participant, multiple values of each feature were extracted within
every 1-hour window. Second, the median value of each feature
was computed per participant for each hour. Finally, the average
of these per-participant medians was calculated across all
participants within the same age group for each hour.

In addition to the descriptive analysis, we investigated the
feasibility of artificial intelligence (AI)–based age estimation.
We organized the extracted features as weekly feature vectors
to serve as inputs for nonsequential and sequential AI models,
introduced in the Age Estimation Model Development section.
To construct the weekly feature vectors for nonsequential
models, we used 3 temporal resolutions: weekly median, daily
median, and 6-hour interval median (Figure 2). In the weekly
median case, we built a feature vector using the median values
of all features for each week. In the daily median case, we
organized a feature vector by arranging the median value of
each feature per day within each week. Considering the diurnal
rhythm mentioned above, we split a day-resolution into hour
levels. In the 6-hour interval median case, we constructed a
feature vector by arranging the median value of each feature in
6-hour intervals (midnight-6 AM, 6 AM-noon, noon-6 PM, and
6 PM-midnight) for each week. For sequential models, such as
a transformer-based and the long short-term memory
(LSTM)–based models, the same features were organized as a
temporal sequence across days and 6-hour periods, allowing
the model to learn temporal dependencies. Accordingly, we
used the daily median and 6-hour interval median resolutions
only for sequential models, since the sequential information
was already abstracted as a median value in the case of the
weekly median. Thus, for sequential models, the feature vector
using the daily median has a sequence length of 7, while the
feature vector using the 6-hour interval median has a sequence
length of 28. Given the importance of data order in sequential
models, we further adjusted the organized feature vectors to
begin with Monday’s data and end with Sunday’s data.
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Figure 2. Examples of weekly feature vectors according to different temporal resolutions.

Age Estimation Model Development
To train and evaluate AI models, we constructed 7 datasets from
the original dataset to ensure balanced representation across
different age groups. Specifically, we divided the data of
participants younger than 30 years into 7 participant-wise
subsets (17×1+18×6). This division was based on the average
number of participants in the other 3 age groups (30s, 40s, and
50s), which was approximately 17.3. Thus, we used 17 and 18
as the subset sizes for the younger-than-30-years group. Each
subset of the younger-than-30-years group was then combined
with the full data from the other age groups to form 7
age-balanced datasets. The resulting datasets had mean ages
ranging from 38.5 to 38.9 (SD 0.1) years. Sex distribution was
also comparable across the datasets, with the number of female
participants ranging from 41 to 48 and male participants from
22 to 29. Within each dataset, missing values were imputed
using the values from the nearest week. Minimum-maximum
normalization was applied within each constructed dataset.

For the age estimation in this study, we used 8 AI models:
logistic regression, random forest regressor, extreme gradient
boosting (XGBoost) regressor, CatBoost regressor, multilayer
perceptron (MLP), and TabNet [22], as well as sequential
models based on a transformer and LSTM. Using Python version
3.11.4, we implemented the 8 AI models, which take the
constructed weekly feature vectors and then output the estimated
age.

For each of the 7 age-balanced datasets, we conducted 10-fold
cross-validation while exploring the hyperparameter space to
maximize the regression performance. We divided the individual
dataset into 10 folds in a participant-wise manner, ensuring that
the same participant’s data did not appear in both training and
test sets. The fold construction was based solely on participant
separation without rebalancing age distribution across folds.
For logistic regression, we opted for a consistent hyperparameter
set, choosing “liblinear” as the solver and “L2” for
regularization. For the random forest regressor, XGBoost
regressor, and CatBoost regressor, we adjusted the number of
estimators and the depth of each estimator, additionally changing
the learning rate only for the XGBoost regressor and CatBoost
regressor. For MLP, we stacked BatchNorm1d, Linear, ReLU,
and Dropout layers using the torch package. Within the
architecture, we adjusted the number of layers, the number of
nodes in each layer, the number of epochs, and the batch size.
We used a dropout rate of 0.3, a weight decay of 0.001, and the

ReduceLROnPlateau scheduler for the learning rate. For TabNet,
a deep learning model designed for tabular data, we used the
pytorch_tabnet package. We adjusted the dimension of decision
prediction layers, the dimension of the attentive transformer,
the number of decision steps, the number of epochs, and batch
size, while using the Adam optimizer and the
ReduceLROnPlateau scheduler, from the torch package, for the
learning rate. For the transformer-based model, we examined
various options for the number of layers, the number of attention
heads, the hidden dimension, the learning rate, and the batch
size. For the LSTM-based model, we regulated values of the
number of layers, the number of nodes in each layer, the learning
rate, and the batch size. For the deep learning models, in each
fold, we stored the model from the epoch that achieved the best
performance on the validation set and used it for evaluation,
rather than simply reporting the last epoch.

We hypothesized that if an individual is in good health, the
estimated age would remain relatively stable across different
weeks. Given that our participants were from a healthy
population, we customized the loss function of the AI model to
minimize deviations in estimated age within the same
participant. The training process was divided into 2 phases. In
the first phase, we constructed mini-batches such that each batch
contained multiple weekly samples from the same participant.
For each batch, we calculated the average L1 loss between the
real and estimated ages across the participant’s weekly samples.
If this average L1 loss exceeded an empirically defined
threshold, a penalty term—computed as the average L1 loss
multiplied by a weight—was added to the original loss. We
experimented with threshold values of 1, 2, and 3, and weight
values of 0.2, 0.4, 0.6, 0.8, and 1.0. In the second phase, training
continued using the standard L1 loss without the additional
penalty. We tuned the number of epochs for each phase to
achieve optimal age estimation performance.

Upon completion of model training, we assessed age estimation

performance based on mean absolute error (MAE) and R2. Each
metric was then averaged across the results from the 7
age-balanced datasets to obtain the final evaluation scores.

Results

Participant Data Overview
Table 2 shows the characteristics of the dataset of the entire 177
participants, including a sex distribution of 115 females and 62
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males. All of them were residents of the Republic of Korea. The
participants had a mean age of 28.8 (SD 11.1) years, with a
minimum of 19 years and a maximum of 58 years. The majority
(n=125) were younger than 30 years old, while the remaining
participants were distributed across the following age groups:
30-39 years (n=16), 40-49 years (n=19), and 50-59 years (n=17).

On average, data were collected over a 25-week period per
participant, ranging from a minimum of 4 weeks to a maximum
of 41 weeks. In total, 2,597,692 typing sessions were collected,
of which 89,219 (3.4%) were discarded because they contained
at least 1 instance of ≥10 consecutive keystrokes occurring
within 1 second.

Table 2. Demographic distribution of participants and the duration of keystroke data collection across all participants in our study.

ValueItem

177Participants, n

28.8 (11.1)Age (y), mean (SD)

Total group age range (y), n

125<30

1630-39

1940-49

1750-59

115:62Sex (female:male), n

25.0 (13.3; 4-41)Data collection weeks, mean (SD; minimum-maximum)

Descriptive Analysis Results for Different Age Groups
Figure 3 illustrates the hourly patterns of 4 features—number
of pressed keys, number of typing sessions, HT, and
PPL—across different age groups (younger than 30 years, 30s,
40s, and 50s). As illustrated in Figure 3, the younger groups
(younger than 30 years in black, and 30s in red) consistently
exhibited a higher number of pressed keys throughout the day

compared with the older groups (40s in blue, and 50s in green).
Notably, the younger than 30 years group peaked at 11 PM,
whereas the older groups showed a slight decline approaching
that hour. The number of typing sessions showed a similar
pattern. PPL remained low (approximately 0.2 seconds) for the
younger groups, while it was higher for the older groups. HT
followed a similar trend to PPL.

Figure 3. Visualization of keystroke dynamics across age groups, showing the hourly distribution of the number of key presses, the number of typing
sessions, press-to-press latency, and hold time, highlighting age-related differences over the course of a day. HT: hold time; PPL: press-to-press latency.
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Age Estimation Results Using Keystroke Dynamics
Table 3 presents the age estimation results obtained from the 8
AI models used in our study, based on speed and frequency
features. These results were produced without applying the
customized loss function, as our goal was to first report baseline
performance from conventional AI models. Among the
nonsequential models, MLP and TabNet demonstrated
competitive performance, with MAEs of 3.85 and 4.01,
respectively, under the weekly median resolution. These 2 deep
learning–based models consistently outperformed traditional

machine learning models across all temporal resolutions.
Overall, the sequential model LSTM showed improved
performance as the temporal resolution became finer. With the
6-hour interval median resolution, LSTM achieved an MAE of

3.69 and an R2 of 0.71, which is the optimal performance in this

experiment. R2 generally increased with finer temporal
resolutions across most of the 8 AI models. Although we also
tested the 3-hour interval median resolution, it did not lead to
further performance improvement (MAE remained at 3.69).

Table 3. Age estimation results of 8 artificial intelligence models using speed and frequency features and 3 different temporal resolutions (weekly
median, daily median, and 6-hour interval median).

6-hour interval medianDaily medianWeekly median

AIa model R 2MAER 2MAER 2MAEb

Nonsequential models

0.136.81–0.096.770.016.43Logistic regression

0.535.130.485.340.445.49Random forest regressor

0.555.070.495.380.475.54XGBoostc regressor

0.555.040.505.280.505.26CatBoost regressor

0.654.360.654.190.693.85MLPd

0.654.040.644.240.674.01TabNet

Sequential models

0.584.560.594.51——eTransformer

0.713.690.683.86——LSTMf

aAI: artificial intelligence.
bMAE: mean absolute error.
cXGBoost: extreme gradient boosting.
dMLP: multilayer perceptron.
eNot applicable.
fLSTM: long short-term memory.

Impact of Different Combinations of Feature Sets
Using the LSTM model with the 6-hour interval median
resolution, which achieved the optimal MAE of 3.69 (Table 3),
we conducted an ablation study to examine the effectiveness of
different feature set combinations in our age estimation task.
For each experiment in Table 4, we regulated hyperparameters
of the LSTM model to find the optimal MAE. Overall, the speed

feature appeared more influential for age estimation than the
frequency feature. Using only the speed feature yielded a
comparable MAE of 3.70, in which both speed and frequency
features were used (MAE=3.69). In contrast, the inclusion of
speed and frequency variability features did not result in
noticeable improvements, suggesting their limited effectiveness
in this context. When used in isolation, the frequency feature
and its variability yielded limited but marginal improvements.
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Table 4. Results of the ablation analysis examining the impact of using different combinations of feature sets on age estimation performance.

MAEaFrequency variabilitySpeed variabilityFrequencySpeedNumber of features

3.69✓✓15

3.88✓✓✓✓43

3.70✓11

3.86✓✓33

6.33✓4

5.89✓✓10

4.06✓22

6.37✓6

4.07✓✓28

aMAE: mean absolute error.

Impact of Different Combinations of 6-Hour Periods
Using the LSTM model with the 6-hour interval median
resolution, we conducted an additional ablation study to examine
the impact of using different 6-hour periods within a single day.
For this experiment, we fixed the hyperparameters to those of
the optimal case presented in Table 3. As illustrated in Table
5, we conducted experiments using all possible combinations
of the four 6-hour periods. Overall, the MAE increased as the

total number of hours used for age estimation decreased. When
using only one 6-hour period, the MAE ranged from 4.34 to
4.61, indicating relatively poor performance. With 12-hour
combinations, the optimal performance (MAE=3.95) was
achieved when using data from midnight-6 AM and 6
PM-midnight. A similar trend was observed for the 18-hour
combinations, where the lowest MAE (3.87) occurred in 2
combinations that included these time intervals.

Table 5. Results of the ablation analysis examining the impact of using different combinations of 6-hour periods within a day on age estimation
performance.

MAEa6 PM-midnightNoon-6 PM6 AM-noonMidnight-6 AMTotal duration

24 h

3.69✓✓✓✓1

18 h

4.02✓✓✓1

3.91✓✓✓2

3.87✓✓✓3

3.87✓✓✓4

12 h

4.13✓✓1

4.06✓✓2

4.26✓✓3

3.95✓✓4

3.96✓✓5

4.01✓✓6

6 h

4.43✓1

4.61✓2

4.50✓3

4.34✓4

aMAE: mean absolute error.
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Feature Selection and Optimized Estimation
We applied the previously introduced customized loss function
to the LSTM model with the 6-hour interval median resolution
to reduce intraparticipant deviation in estimated age. The model
was trained from scratch and achieved an MAE of 3.60. To
evaluate the effectiveness of the customized loss function, we
computed the SD of estimated ages across weeks for each
participant and then averaged these values across all participants.
The average SD decreased from 1.28 (SD 0.22; without the loss

function) to 1.18 (SD 0.14; with the loss function), indicating
a 7.8% reduction in intraparticipant variability.

We also applied Shapley Additive Explanations [23] to assess
feature importance in the model trained with the customized
loss function. As illustrated in Figure 4, the top 10 most
influential features out of 60 were predominantly related to
keystroke speed and rhythm, such as AllKeyRate, dur_shift,
and HT, measured across various 6-hour time periods.

Figure 4. Top 10 most influential features for age estimation, identified via SHAP analysis of the long short-term memory model trained with the
customized loss function and 6-hourly-median resolution. HT: hold time; PPL: press-to-press latency; SHAP: Shapley Additive Explanations.

Discussion

Principal Results
This study aimed to investigate whether age-related differences
manifest in everyday smartphone keystroke dynamics. Through
both descriptive and AI-based analyses, we demonstrated that
typing behavior—such as speed, latency, and session
frequency—systematically varies across age groups. For
instance, younger participants exhibited consistently faster and
more frequent typing patterns, particularly during late evening
hours, while older individuals showed slower and less variable
patterns throughout the day.

Building on these observations, we explored whether such
behavioral signals could support accurate AI-driven age
estimation. Among the 8 models tested, the LSTM model with
the 6-hour interval median resolution achieved the best

performance (MAE=3.69, R2=0.71), highlighting that
fine-grained temporal patterns carry meaningful age-related
information. While predicted ages that differ from actual ages
by only a small margin (eg, within ±5 y) may reflect normal
variability, sudden large deviations (eg, 10-20 y) could arise
from short-term factors, such as stress, fatigue, or sleep
deprivation, as well as from long-term or chronic factors, such
as disease onset or persistent cognitive or motor decline.
Previous studies have shown that short-term conditions like
fatigue or stress can alter keystroke dynamics, increasing

interkey latencies and error rates [24,25]. Similarly, chronic
neurological or cognitive disorders, including Parkinson disease
and mild cognitive impairment, have been associated with
measurable changes in typing patterns [26,27]. The magnitude
of fluctuation in age predictions is therefore likely to depend
on both the timescale and the underlying cause of behavioral
change. Future work should not only disentangle short- and
long-term contributors but also investigate how the scale of
predicted age deviation corresponds to these different
contributors. Such insights could enable adaptive age-prediction
strategies that dynamically adjust to the likely source of
variability, improving both robustness and interpretability in
real-world conditions.

Ablation studies further revealed that typing speed features
contributed most strongly to model performance, aligning with
the behavioral differences observed in the descriptive analysis.
Notably, our time-of-day ablation study (Table 5) revealed that
the early morning (midnight-6 AM) and late evening (6
PM-midnight) periods contained more informative signals for
age prediction. These findings suggest that age-related
behavioral differences may be more pronounced during off-peak
hours, potentially due to variations in daily routine structures,
fatigue, or circadian rhythms.

Taken together, our results indicate that keystroke dynamics
encode subtle, age-sensitive behavioral patterns that can be
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leveraged for passive, AI-based age estimation—without
requiring any explicit input from users.

Comparison With Previous Work
In total, 2 studies are particularly relevant for contextualizing
our contributions, that is, studies by Vesel et al [13] and Zulueta
et al [18].

Vesel et al [13] applied hierarchical mixed-effects models to
examine how mood, age, and diurnal patterns influence
keystroke behavior. They found that younger users (20 y) typed
substantially faster, less variably, and paused less frequently
compared with older users (≥70 y), with effect sizes ranging
from 57% to 62%. Importantly, they also identified a significant
interaction with diurnal patterns, such that older adults displayed
greater slowing and variability in the later hours of the day.
Consistent with these findings, our study also observed similar
age-related differences in typing speed (Figure 3). However,
Vesel et al [13] did not focus on prediction but rather on
identifying how typing behavior varies as a function of
demographic and clinical factors. They treated age as an
independent variable affecting keystroke features, whereas in
our study, age was the target variable to be predicted. Moreover,
while Vesel et al [13] identified diurnal trends in typing speed
and variability, our model leveraged this information to improve
prediction through time-resolved feature representation and
ablation experiments across 6-hour periods. In this sense, our
study operationalizes the temporal behavioral patterns identified
by Vesel et al [13] into an actionable, AI-driven predictive
framework.

Zulueta et al [18], on the other hand, estimated “brain age” from
mobile keystroke kinematics and examined the deviation
between predicted and actual age in relation to bipolar disorder
risk. They tokenized free-living iOS (BiAffect) typed logs into
sessions and then summarized kinematic features per participant.
To estimate chronological age, they trained random forest
regressors on a 75:25 train-validation split using 10-fold
cross-validation with 3 repeats. On the held-out validation set,
they reported root mean square errors of 9.5-9.7 years, Breiman

pseudo R2 of 0.42-0.44, and MAEs of 5.5-5.9 years. While they
also performed age prediction using smartphone metadata, their
goal was to assess brain age as a digital biomarker of psychiatric
risk, particularly differentiating prediction error patterns across
diagnostic groups (positive vs negative Mood Disorders
Questionnaire screens). Their models were evaluated primarily
using participant-level aggregates, whereas our study preserved
temporal granularity by modeling week-by-week patterns within
participants. We also proposed a novel loss function to explicitly
reduce intraparticipant variability, which was not addressed in
their work. Finally, our best-performing model achieved an
MAE of 3.60, substantially lower than the 5.5-5.9 years reported
by Zulueta et al [18], possibly indicating the advancement of
our method.

In summary, while previous works have laid important
theoretical foundations, our study offers a methodological
advancement by combining fine-grained temporal feature
engineering, intraparticipant variance penalization, and deep

learning architectures for high-resolution, week-level age
estimation.

Limitations
Despite promising findings, our study has several limitations.
First, our dataset was heavily skewed toward younger
participants who were younger than 30 years of age. Although
we constructed age-balanced subsets to partially mitigate this
imbalance, the initial sampling bias may still have influenced
model training and evaluation. In particular, residual imbalance
across the cross-validation folds could not be fully eliminated,
which may have led to performance estimates biased toward
younger age groups. Future studies should validate our findings
on larger and more demographically diverse populations,
including a broader distribution of age groups.

Second, all participants in this study were healthy individuals
without known motor or cognitive impairments. While this
design choice helped isolate age as a primary factor, it limits
the generalizability of our findings to clinical populations. Since
keystroke dynamics are known to be affected by neurological
and psychiatric conditions, future work should explore how
such models perform across varying health statuses.

Third, our study population consisted exclusively of Korean
Android users, which may limit the generalizability of our
findings. Cultural factors (eg, language-specific typing
conventions), linguistic aspects (such as Korean vs
alphabet-based input), and operating system–specific
characteristics (eg, Android vs iOS) could all affect keystroke
dynamics. Furthermore, our study did not consider keystroke
dynamics on desktop or other mobile devices (eg, tablet), which
may also limit generalizability. To strengthen external validity,
future studies should validate the model across multiple
platforms and operating systems by including both Android and
iOS users, expand recruitment to participants from different
countries and linguistic backgrounds, and incorporate broader
age groups, including younger adolescents and older adults.
Such efforts would allow more comprehensive evaluation of
the robustness and applicability of keystroke-based age
prediction models.

Fourth, another limitation is that individual and device-specific
factors, such as the dominant hand or screen size, were not
considered in this study. These factors may systematically
influence typing speed, rhythm, and error patterns, thereby
introducing variability that is independent of age-related effects.
For instance, larger screens may allow for more stable
keystrokes, while different input languages and keyboard layouts
could alter interkey intervals. Although such factors may add
noise to the prediction, they are unlikely to fully explain the
observed associations, yet future work should explicitly account
for them to improve model validity and generalizability.

Fifth, our study did not evaluate the long-term temporal stability
of the proposed models. Although we used multiweek data for
training and testing, we did not assess whether age predictions
remain consistent over several months. This is especially
important for real-world applications where behavioral patterns
may shift gradually due to lifestyle changes, seasonality, or
device replacement.
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Sixth, although our dataset volume was large, deeper statistical
analysis revealed that the keystroke features did not follow
Gaussian distributions. Specifically, we conducted Shapiro-Wilk
normality tests across all features, and none satisfied the
assumption of normality (all P values <.001). As a result,
Gaussian-based methods, such as linear or quadratic
discriminant analysis, would not have been appropriate for this
dataset. This supports our choice of nonlinear AI-based
approaches, which are better suited to capture the inherently
non-Gaussian nature of keystroke dynamics.

Finally, while our analysis of temporal variance features (speed
variability and frequency variability) did not lead to meaningful
performance gains, we believe this area holds potential. The
human body follows natural diurnal rhythms that affect motor
and cognitive function across the day. With more refined feature
engineering, temporal variability may better capture such
rhythms and contribute to improved age estimation in future
models.

Conclusions
This study demonstrates that everyday smartphone keystroke
dynamics contain measurable behavioral patterns that vary
systematically across age groups. By analyzing typing speed,
rhythm, and frequency features across different time windows,

we showed that younger and older individuals exhibit distinct
temporal keystroke signatures—with our results suggesting that
early morning and late evening periods may carry more
predictive information for age estimation. These findings suggest
that keystroke dynamics may serve as meaningful digital
behavioral markers of age-related functional differences.

Building on these behavioral insights, we developed AI models
to estimate age using passive keystroke data, with the LSTM
model and the 6-hour interval median resolution achieving the

best performance (MAE=3.69, R2=0.71). We further introduced
a customized loss function that reduced intraparticipant
variability, and used Shapley Additive Explanations analysis
to identify key typing features contributing to model predictions.

Importantly, this work is not merely an age estimation exercise.
Rather, it illustrates how fine-grained, temporally structured
passive behavioral data can be used to detect subtle functional
differences across individuals. These results suggest potential
future applications of mobile keystroke dynamics in digital
health, such as aiding the early detection of cognitive or motor
decline and supporting age-sensitive personalization of
interventions. However, given that our study included only
healthy participants, the clinical applicability of these
approaches requires further validation in clinical populations.
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