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Abstract

Background: Previous research has attempted to determine the minimum number of days of accelerometry required to reliably
reflect an individual’s physical activity. However, human behaviors on a day-to-day basis can be highly variable. As a consequence,
the number of days required to reliably predict habitual physical activity is dependent on the variability that exists within an
individual. There is a concern that adopting generic recommendations from previous research could provide unreliable estimates
by failing to represent individuals with specific physical activity patterns.

Objective: The main aim of this study was to identify clusters of individuals with distinct physical activity patterns and to
determine if the number of days of accelerometry data required to reliably estimate short- (7 days) and medium-term (28 days)
physical activity differed between each unique cluster.

Methods: Accelerometry data were retrieved from 2 independent research studies. Participants during each study had their
physical activity recorded using a Withings Scanwatch (Withings Health Solutions). Following a data eligibility process,
agglomerative hierarchical clustering was used to identify clusters of individuals based on their physical activity. The clusters
were determined using 4 dimensions; mean, SD, skewness, and kurtosis of the step count data. Intraclass correlation coefficients
(ICCs) of step count were then calculated within each physical activity cluster. A series of ICCs were computed by separately
comparing the average step count across the full periods (7 and 28, for the short- and medium-term analysis, respectively) to a
series of averaged subsamples (ranging from 1-6 days and 1-27 days, for the short- and medium-term analysis, respectively). For
each subsample, 500 random combinations were generated and compared, providing a distribution of ICCs for each subsample.
An ICC of ≥0.80 identified when the subsample of days was sufficient to achieve appropriate reliability.

Results: Of 258 participant datasets, 149 were eligible for the short-term analysis and 64 were eligible for the medium-term
analysis. Following agglomerative hierarchical clustering, 4 and 3 clusters of sufficient size (n≥12) were identified in the short-term
and medium-term analyses, respectively. When considering the short-term analysis, to achieve a mean ICC score greater than or
equal to 0.80, using all randomized combinations, the number of days ranged from 2 to 6 days depending on the physical activity
cluster. For the medium-term analysis, the number of days required to achieve a mean ICC score greater than or equal to 0.80
ranged from 6 to 11 days. The short-term analysis clusters displayed more diversity in physical activity patterns than the
medium-term analysis.

Conclusions: Physical activity patterns influence the number of days required to estimate habitual physical activity. Thus, to
avoid unreliable estimates of physical activity, which could significantly impact the interpretation of results, researchers should
be mindful of the physical activity patterns of their sample before adopting generic recommendations.
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Introduction

Accelerometers are wearable devices that measure the
acceleration of the body region to which the device is secured.
Commercially, the signals are then processed and transformed
into physical activity metrics that are relatable to the consumer,
such as daily step count. The popularity of accelerometry as a
method to quantify physical activity is growing due to the
objectivity and availability of such devices. Importantly, the
use of accelerometry provides an alternative option to
self-reporting questionnaires, which can lack strong reliability
and validity [1].

The field is rapidly developing with the advancement of new
technology and the commercialization of devices. As a
consequence, the approaches used to interpret collected data
can vary and lack a consensus [2]. An area of importance relates
to the minimum number of valid days required to reliably reflect
a person’s habitual level of physical activity [3]. Unfortunately,
many studies with important implications, such as those linking
physical activity to health outcomes, have used varying criteria
to define a participant’s habitual level of physical activity. For
example, the United Kingdom biobank guidelines advise
researchers to exclude participants from their accelerometry
dataset who have fewer than 3 valid days of data [4], which has
been adopted in many impactful studies [5-7]. In contrast, the
National Center for Health Statistics, which administers the
National Health and Nutrition Examination Survey in the United
States, does not advise on the number of valid days that should
be available to validate inclusion when using their accelerometry
datasets. As a consequence, researchers have adopted various
inclusion criteria ranging from 1 to 5 days [8-10].

From a research perspective, the fewer days required could help
relieve the study burden on the participant and better support
the use of study resources. Past reviews have suggested 4 days
would suffice to achieve sufficient reliability [2,11].
Furthermore, a more recent comprehensive study using a large
Singaporean sample recommended that at least 3 and 5
measurement days of step count data were needed to predict
weekly and monthly time windows, respectively [12]. Despite
the existing recommendations, providing a consensus for the
minimum number of days required to predict habitual physical
activity can be challenging and fraught with error if the
uniqueness of the sample in question is not considered. Human
behaviors on a day-to-day basis can be highly variable; thus,
the number of days required to reliably predict habitual physical
activity is dependent on the variability that exists within an
individual [13]. Intuitively, individuals with high consistency
or limited variability in physical activity may be predicted with
fewer days than an individual with low consistency and high
variability. As a consequence, the identification of an optimal
number of days could be problematic. Another source of
consideration relates to the formula used to calculate reliability.

In the physical activity literature, the intraclass correlation
coefficient (ICC) is commonly used to grade the reliability of
physical activity and a common standard used to indicate
acceptable reliability is an ICC of 0.8 [13,14]. However, broadly,
this formula approximates the within-subject variability by
comparing its magnitude to the between-subject variability.
Thus, an increase in diversity between individuals will inherently
reduce the reliability score without any change in variability
within individuals. This situation poses a potential concern that
predictions from large heterogenic samples may not translate
to groups of individuals with specific physical activity patterns.

Therefore, the main aim of this study was to identify clusters
of individuals with distinct physical activity patterns and to
determine if the number of days of accelerometry data required
to reliably estimate short- (7 days) and medium-term (28 days)
physical activity differed between each unique cluster. This
study used clustering analysis to allocate individuals from a
heterogenic population into distinct physical activity clusters.
Subsequently, reliability estimates were derived for each cluster
and compared. The hypothesis was that the number of days to
reliably predict (1) short- and (2) medium-term physical activity
differs between clusters.

Methods

Study Design
This is a secondary, longitudinal analysis using combined data
from 2 independent studies. Only the objectively measured
physical activity data (daily step counts) and demographic
descriptors were used from each dataset. All other variables
from the original studies were excluded from the current
analysis. The analysis was conducted at Reykjavik University
in Iceland as part of the European Union Horizon 2020-funded
Sleep Revolution research project [15].

Setting
Study 1 was an observational study conducted at the Reykjavik
University Sleep Institute, aimed at exploring the associations
between physical activity and markers of obstructive sleep apnea
(OSA) severity [16]. A total of 66 adults were recruited,
representing a broad range of sleepers, including healthy
individuals, snorers, and those with suspected or diagnosed
OSA. Each participant underwent a 3-night, self-applied
somnography study at home, along with assessments of
anthropometry, body composition, and both subjective and
objective physical activity. Importantly, for the purpose of this
analysis, objective physical activity was measured using a
smartwatch device (Withings Scanwatch, Withings Health
Solutions) worn on the nondominant wrist for a 3-month period.

Study 2 was a 12-week, 3-arm randomized controlled trial
conducted at the Reykjavik University Sleep Institute [17]. The
study was registered in ISRCTN 16974764. It aimed to evaluate
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the effects of an exercise program and a lifestyle app on OSA,
physical health, and quality of life in adults with
mild-to-moderate OSA or habitual snoring. A total of 192
eligible participants were randomized into exercise, app, or
control groups. Randomization was stratified using an algorithm
to ensure balance across age, gender, BMI, and apnea-hypopnea
index (AHI). Participants completed baseline assessments,
including a one-night type 3 sleep study, body composition,
and physical activity measures. The exercise group attended
structured sessions 3 times per week, and the app group engaged
in daily behavioral tasks via a health app (Sidekick Health,
Reykjavík). Objective physical activity was assessed via a
smartwatch device (Withings Scanwatch, Withings Health
Solutions) worn on the nondominant wrist over the 12-week
study period.

Participants
Participants from each study, who are described in the
subsequent paragraphs, were pooled to explore habitual physical
activity patterns. Study 1 recruited a heterogeneous sample from
the general adult population (≥18 years) with the goal of
reflecting natural variation in age, sex, and body morphology.
Participants were not excluded based on sleep health status.
Study 2 was a randomized controlled trial targeting adults aged
18–50 years of age that were categorized as overweight or obese
(BMI ≥25<42 kg/m²), who were physically inactive and had
either mild-to-moderate OSA (AHI ≥5 and <30) or habitual
snoring (≥10%). Shift workers and individuals undergoing OSA
treatment were excluded. Eligible participants underwent a
one-night type 3 sleep study to confirm OSA.

Variables
The primary variable analyzed was daily step count, measured
objectively using accelerometry-based methodology. Step count
served as the key indicator of physical activity throughout the
study period.

Data Measurements

Demographics
Data were collected using a custom-developed questionnaire.
REDCap (Research Electronic Data Capture) survey software
version 9.3.1 (Vanderbilt University) was used to collect
participant responses [18,19].

BMI
Height and weight (digital scale; TANITA MC-780, Tanita
Corporation) were measured and used to calculate BMI.

Smartwatch
Participants were instructed to wear a smartwatch (Withings
Scanwatch, Withings Health Solutions) for the study period.
The smartwatch generated physiological and physical activity
parameters that included step count, distance covered, elevation,
sleep, heart rate, oxygen saturation, passive calories, and active
calories. Due to the substantial correlations between the physical
activity parameters, step count was selected as the parameter
of primary interest. The generated data were available in two
forms: (1) timestamped data and (2) daily aggregated
data. Additional details of the smartwatch are described by [20].

Bias
Several potential sources of bias were considered in the study
design and analysis. First, selection bias was likely present in
Study 2, as participants were specifically recruited based on
specific inclusion criteria around OSA. However, Study 1
reflected a broader segment of the general adult population and
may have helped offset this limitation by introducing more
heterogeneity in age, sex, BMI, and physical activity profiles.
Nonetheless, the combined sample remains somewhat weighted
toward individuals with OSA. Measurement bias was addressed
by using objective step count data from smartwatches rather
than self-reported physical activity, reducing recall and reporting
biases. However, inaccuracies could arise from nonwear time
or device limitations; to mitigate this, systematic methods were
used to exclude days with insufficient wear time [2,21].
Similarly, to address potential bias from missing days,
nonconsecutive valid days were allowed but only within
specified windows described in more detail in the Sample Size
section.

Sample Size
All participants from Study 1 and Study 2 were considered
eligible for analysis, but their inclusion depended on passing
specific wear-time criteria.

Valid Day
Given the longitudinal nature of the study, participants were
not required to report nonwear time, which influenced the
accuracy of step count data. Therefore, a systematic approach
to identify nonwear periods was established. Gaps in the
timestamped “calories earned” data exceeding 60 minutes were
classified as nonwear periods. Summing the nonwear periods
that occurred between consecutive sleep periods permitted the
calculation of wear time during waking hours. In line with
previous approaches and retaining statistical power [2,21], days
with less than 10 hours of wear time during waking hours were
considered insufficient to accurately estimate step count and
excluded.

Valid Period
Using the step count data filtered for valid days, one period of
7 days and another of 28 days were selected for each participant
in the short- and medium-term analyses, respectively. Periods
with nonconsecutive days were allowed if there were (1) 7 valid
days within a 10-day period in the short-term analysis or (2) 28
valid days within a 40-day period in the medium-term analysis.
Periods with full consecutive sequences or with the fewest days
skipped were preferentially chosen, but if more than one of
these sequences existed, then the selection was
randomized. Nonconsecutive days were permitted due to the
difficulty of achieving full consecutive sequences of data,
particularly when considering the medium-term analysis. For
the inspection of data, the chosen periods of 10 and 40 days
were chosen to allow us to retain a sufficient sample size without
compromising the representation of physical activity for the
given period.
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Data Analysis of Quantitative Variables
The methodological approach to the analysis of the daily step
count variable is displayed in a visual format in Figure 1. Using
unsupervised machine learning, we identified clusters of
individuals that shared more similar physical activity patterns
than those in the other identified clusters. Agglomerative
hierarchical clustering with complete-linkage, a distance-based
algorithm, was used to identify clusters [22]. This form of
clustering was chosen because it can be used to identify outliers
and does not require a predetermined number of clusters. The
clustering analysis was conducted for both short- and
medium-term physical activity patterns, separately. The
clustering analysis first involved running the algorithm to

identify sufficiently sized clusters. Given that the calculated
reliability metrics are influenced by between-subject variability,
smaller clusters may be more prone to an underestimation or
overestimation of reliability depending on participant
similarities. Thus, if any clusters with less than 12 participants
were identified, they were removed, and the remaining clusters
were retained for the full analysis. The clusters were determined
based on their similarities across 4 dimensions, those being the
scaled and centered mean, SD, skewness, and kurtosis of the
step count data. These dimensions represent the 4 moments of
distribution, which quantitatively reflect each participant’s
physical activity patterns in the context of an average,
day-to-day variability and range of values.

Figure 1. Methodological approach to study analysis.

Statistical Analysis
Following the identification of clusters, the reliability of step
count within each cluster was determined, along with a baseline
comparison (unclustered data). ICCs were derived using linear
mixed models with one-way random effects. A series of ICCs
were computed by separately comparing the average step count
across the full period (7 and 28 days for the short- and
medium-term analysis, respectively) to a series of averaged
subsamples (ranging from 1 to 6 days and 1 to 27 days for short-
and medium-term analysis, respectively). As the subsamples
could include any combination of days from the full period, for
each participant, resampling methods without replacement were
used to ensure an appropriate number of combinations were
tested. For each subsample, 500 random combinations were
generated and compared to the average step count across the
full period (see Figure 2). Prior testing of the data showed that
when 500 combinations were used for ICC predictions, the

results remained stable when repeated. Thus, the range of ICC
values possible for each subsample comparison was produced.
In line with previous research, a threshold value of 0.80 was
used to infer “acceptable” reliability [13,14].

It is necessary to point out the benefits of the Monte Carlo
resampling approach used. This approach reduces the influence
of nonnormality and heterogeneity of within-subject variances
by using aggregated participant-level means and repeated ICC
estimations. Given that ICCs were computed from mean step
counts, assumptions of normality and homogeneity of variance
are less probable, as justified by the Central Limit Theorem.
Additionally, using 500 iterations per subset further enhances
the robustness of the reliability estimates by reducing the
influence of a typical combinations.

All the analyses were conducted in R (version 4.3.2; R Core
Team). Specifically, the “ICC” package was used to extract the
ICCs.
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Figure 2. Data randomization of subsamples.

Ethical Considerations
Both studies received ethical approval from the National
Bioethics Committee of Iceland and the Icelandic Data
Protection Agency (21-170; 22-082). Participants provided
written informed consent to participate, which also extended
consent to secondary analysis. All data were stored anonymously
and processed on a secure high-performance computing cluster
to ensure efficient handling while maintaining data security and
integrity. Finally, participants did not receive any compensation
for their participation.

Results

Participants and Descriptive Data
Of the 258 original participants available from Study 1 and
Study 2, a total of 149 participants possessed 7 valid days (>10
hour wear time during wake) across a 10-day period and were
included in the short-term analysis, and 64 participants possessed
28 valid days across a 40-day period and were included in the
medium-term analysis.

In the short-term analysis, 76 of the participants were male, and
73 were female. On average, the participants were 41 (SD 5)
years of age and were categorized in the obese category (BMI:
mean 31, SD 4). Age ranged from 19 to 76 years old, while
BMI ranged from 19 to 42. In the medium-term analysis, half
of the participants were male (n=37) and half of the participants
were female (n=37). On average, the participants were 45 (SD
9) years of age and were categorized in the obese category (BMI:
mean 31, SD 5). Age ranged from 23 to 65 years old, while

BMI ranged from 20 to 41. The participants that were eligible
for both analyses did not have any missing data.

Outcome Data

Clustering in Short-Term Analysis
Following agglomerative hierarchical clustering, 4 clusters of
sufficient size (n≥12) were identified from a visual inspection
of the dendrogram. The clusters were chosen by attempting to
achieve a balance between appropriate sample sizes and
within-cluster cohesion. The 4 dimensions of daily step count
used to form each cluster are reported in Table 1.

In comparison to the other clusters, Cluster 1 displayed moderate
physical activity levels and day-to-day variability. However,
Cluster 1 had a highly skewed physical activity pattern and high
kurtosis, suggesting these participants tended to have days that,
when compared to their habitual physical activity levels, were
considered extremely low or high. In contrast, the other clusters
had kurtosis values below or slightly above 3, suggesting the
number of days classed as outliers (extreme high or low physical
activity) was similar to or less than that seen in a normal
distribution pattern. Cluster 2 displayed the lowest relative
variability in physical activity levels, while participants in
Cluster 3 had the lowest overall physical activity levels, with
habitual levels of 4391 (SD 1058) steps per day. Cluster 4
displayed the highest physical activity levels (mean 7179, SD
1028 steps per day), but also the highest day-to-day variability.
Given the low kurtosis and moderate skewness, this would
suggest the participants in Cluster 4 displayed a mixture of
physical activity days.
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Table 1. Dimensions of daily step count used to isolate clusters of individuals in the short-term analysis.

Kurtosis, mean (SD)Skewness, mean (SD)SD steps, mean (SD)Mean steps, mean (SD)Short-term Cluster (n)

5.34 (1.08)1.28 (0.48)2192 (727)5883 (1298)1 (n=36)

3.67 (0.99)0.82 (0.26)1619 (685)5980 (1538)2 (n=22)

2.20 (0.83)0.50 (0.35)1467 (586)4391 (1058)3 (n=42)

1.96 (0.70)0.55 (0.37)3068 (1132)7179 (1028)4 (n=30)

Clustering in Medium-Term Analysis
Following agglomerative hierarchical clustering, three clusters
of sufficient size (n≥12) were retained by visually inspecting
the dendrogram. The four dimensions of daily step count used
to form each cluster are reported in Table 2.

Compared to the short-term analysis, the clusters within the
medium-term analysis displayed less diversity. Modest
day-to-day variability in physical activity was found in Cluster
1, but the participants in this cluster had the highest physical

activity levels (mean 7671, SD 1052 steps per day). In contrast,
participants in Cluster 2 displayed the lowest levels of physical
activity (mean 4746, SD 947 steps per day) with the highest
relative variability in physical activity. Cluster 3 displayed the
least relative variability in physical activity and a low degree
of skewness. This suggests that the physical activity levels for
these participants were usually around the mean alongside an
expected number of higher and lower physical activity days
(normal distribution). The number of extremes in physical
activity was small in all clusters and did not display distinctly
different tails to a normal distribution pattern.

Table 2. Dimensions of daily step count used to isolate clusters of individuals in the medium-term analysis.

Kurtosis, mean (SD)Skewness, mean (SD)SD steps, mean (SD)Mean steps, mean (SD)Medium-term Cluster (n)

3.65 (1.11)0.66 (0.45)2955 (655)7671 (1052)1 (n=23)

3.31 (0.58)0.87 (0.24)2265 (381)4746 (947)2 (n=14)

2.87 (0.72)0.31 (0.28)1764 (398)5775 (988)3 (n=16)

Main Results

Intraclass Correlations in Short-Term Analysis
To achieve a mean ICC score above 0.80, calculated using all
randomized combinations for each day subset, Cluster 2 required
2 days, Cluster 3 required 3 days, Cluster 1 required 4 days,

and Cluster 4 required 6 days (Figure 3). The minimum number
of days needed to achieve an ICC score above 0.80 in all 500
random combinations was 4 in Clusters 2 and 3, 5 in Cluster 1,
and 7 in Cluster 4. As a baseline comparison, when the data
were unclustered, 3 days were required to achieve a mean ICC
score above 0.80 in all 500 random combinations.
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Figure 3. Range of intraclass correlation coefficients across all randomized combinations for each cluster from short-term analysis. Scores ≥ 0.80 are
classed as “acceptable” agreement. Data are mean (SD).

Intraclass Correlations in Medium-Term Analysis
In order to achieve a mean ICC score greater than 0.80,
calculated using all randomized combinations for each day
subset, Cluster 3 required 6 days, Cluster 2 required 9 days, and
Cluster 1 required 11 days (Figure 4). The minimum number

of days needed to achieve an ICC score above 0.80 in all 500
random combinations was 11 in Cluster 3, 18 in Cluster 2, and
17 in Cluster 1. As a baseline comparison, when the data were
unclustered, 4 days were required to achieve a mean ICC score
above 0.80 in all 500 random combinations.

Figure 4. Range of intraclass correlation coefficients across all randomized combinations for each cluster from medium-term analysis. Scores ≥ 0.80
are classed as “acceptable” agreement. Data are mean (SD).
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Discussion

Principal Findings
The main aim of this study was to identify clusters of individuals
with distinct physical activity patterns and to determine if the
number of days of accelerometry data required to reliably
estimate short- (7 days) and medium-term (28 days) physical
activity differed between each unique cluster. Clustering analysis
confirmed that, in a heterogenic sample, clusters of individuals
could be identified based on their physical activity patterns. In
agreement with our hypothesis, the physical activity patterns
of different individuals were highly relevant to the number of
days needed to reliably predict both short- (7 days) and
medium-term (28 days) physical activity, ranging from 2 to 6
days and 6 to 11 days, respectively, by cluster. Therefore, the
minimum number of days should be assessed within a particular
study cohort, instead of relying on generic recommendations.

One major consideration of using accelerometry for longitudinal
physical activity research is that participant monitoring is a
continuous process, which can require significant study
resources and can challenge participant adherence. Therefore,
having the flexibility to monitor less or lose more days, without
compromising the validity of the data, is of significant benefit.
However, the results from the current study show that, while
this is possible, it can be erroneous to use a generic number of
days across all participants. This supports the need to be cautious
when considering a one-size-fits-all approach when it comes to
collecting accelerometry data. For example, past reviews have
suggested 4 days would suffice to achieve sufficient reliability
in physical activity [2,11]. However, based on the results from
the current study, this will be highly dependent on the physical
activity patterns that exist within the specific research sample
being studied. Another potential limitation of previous
recommendations is the use of the Spearman-Brown prophecy
formula to estimate reliability [23-25]. This statistical method
depends on achieving homogeneity of variances, which may be
unrealistic to achieve in many datasets. The resampling approach
in this study helped address this problem, as it does not rely on
this formula and is less sensitive to violations of homogeneity
of variance. By repeatedly calculating ICCs from randomly
selected combinations of days, the method reduces the influence
of unequal within-subject variances on individual ICC estimates,
resulting in a more robust overall estimate of reliability.
Similarly, a nonclustered ICC may violate the assumption of
homogeneity of variance if the physical activity patterns of the
sample are diverse. Clustering can help group individuals with
similar within-subject variance, improving the likelihood that
model assumptions are satisfied.

The results from both the short- and medium-term analyses
highlighted that clusters with relatively low variability in their
physical activity required fewer days to reliably estimate
physical activity. In contrast, clusters with high variability
required significantly more days. Referring specifically to the
data, depending on the cluster, the mean number of days
required ranged from 2 to 6 for the short-term analysis and 6 to
11 for the medium-term analysis. This makes generalized
recommendations as reported in previous research [26-28]

difficult to provide. Interestingly, within this study’s sample,
the physical activity patterns of clusters in the medium-term
analysis were more similar to each other than those observed
in the short-term analysis. This implies reduced variability as
participants settle into comparable daily activity patterns with
larger measurement windows. Nonetheless, it is important to
mention that, for one cluster, the minimum number of days
needed to achieve sufficient reliability in all 500 random
combinations was still noteworthy (17 days).

To an extent, these results agree with the work by [12] that
recommended at least 3 and 5 measurements days of step count
data were needed to predict weekly and monthly time windows,
respectively. However, it highlights the risk of adopting the
minimum limit of these recommendations for all participants.
Instead, an approach that first attempts to understand the sample
that is being studied could be beneficial. For example, if pilot
testing is being conducted, this could provide an opportunity to
collect prior accelerometer data on the group of participants.
Depending on whether the physical activity patterns are expected
to be similar or not, a cluster analysis could be used to determine
the minimum number of days needed for each subset of
participants. Alternatively, while physical activity questionnaires
may provide an inexpensive and less-demanding method to
group individuals, they can be prone to recall bias, as we have
previously shown [16].

Practically, this research demonstrated that a heterogeneous
sample can be divided into subgroups with distinct physical
activity patterns. As a consequence, these clusters can influence
the reliability of predicting habitual physical activity and, thus,
the broader interpretation of the results. Previous research
linking physical activity to health outcomes has estimated a
participant’s habitual level of physical activity using subsamples
ranging from 1 to 5 days [8-10]. Unfortunately, the validity of
such results is tied to the accuracy of this physical activity
estimation. Researchers who do not fully consider the potential
heterogeneity in their sample may be at potential risk of
underestimating within-subject variability, which could
potentially influence their interpretation of the results. Therefore,
safeguards should be considered to improve physical activity
estimates that include clustering, using appropriate ICC methods,
and including complementary reliability metrics (standard error
of measurement, coefficient of variation, etc).

Another point of consideration is that, in research studies,
accelerometry is often used to quantify the rest-activity cycle
of participants, which spans physical activity, sedentary time,
and sleep. While this research focused on physical activity, the
reliability of sedentary time and sleep will also display different
levels of within-subject variability. Therefore, if researchers
intend to quantify all 3 components of the rest-activity cycle,
it is important to consider whether the number of days chosen
is sufficient to capture the variability across all 3 components.
For example, before individual sleep behaviors become stable,
they require many more days of data than the general
recommendation of 14 days [3]. However, more research
exploring clustered samples is required because results from
grouped data have reported differing results [29-31], which is
likely a reflection of the level of heterogeneity across the sample
in each analysis.
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The current study is not without its limitations. First, the specific
results of the current study reflect the discrete physical activity
patterns of the analyzed sample. Nonetheless, the core concepts
are universal and generalizable to other research samples in this
area. With a larger sample size, more clusters may have been
identified, or rather, a greater number of participants may have
been placed within each identified cluster. For example, a
number of clusters that were identified had insufficient sample
sizes to conduct the analysis on and thus were excluded. It is
plausible that the individuals with these excluded physical
activity patterns may have required even more or fewer days to
reliably estimate their physical activity over time, compared to
those seen in the reported results. Importantly, while the physical
activity patterns of the excluded individuals were uncommon
in this study, they may better reflect physical activity patterns
seen in a different study. Notably, while our sample was
relatively heterogeneous, there was a higher percentage of
individuals with large BMIs, which may have contributed to a
small bias, as BMI has been shown to be associated with lower
physical activity patterns [32]. Nonetheless, if the sample in
this study had more variance, it likely would have strengthened
the results while also improving the study’s generalizability. In
the current study, 10 or more hours of wear time during waking
hours for a given day was considered sufficient for inclusion.
Therefore, certain days with missing physical activity data will
inherently be included and can influence reliability predictions

[24]. Nonetheless, this decision was made to align with previous
approaches [2,21], and to balance accuracy with the retention
of information. Finally, ICCs are based on the proportion of
between-to within-subject variance; thus, results from separate
samples can differ based on within-subject variance (day-to-day
variability of steps within a participant) but also,
between-subject variance (variability of steps between
participants). As alluded to in the introduction, this poses a
potential concern that recommendations from large
heterogeneous samples may misrepresent research samples that
are more homogenous in nature. Unfortunately, while widely
used, this is the limitation of using ICCs in the context of
estimating physical activity. Importantly, our clustering analysis
attempted to limit the between-subject variance by identifying
clusters of individuals with similar physical activity patterns
based on the 4 moments of distribution.

Conclusion
In conclusion, the number of days required to reliably estimate
physical activity differs between clusters of individuals
characterized by distinct physical activity patterns across both
the short- and medium-term. To avoid unreliable estimates of
physical activity, researchers should be mindful of the sample
they are studying and how this may influence the minimum
number of days required to reliably reflect physical activity.
This study showcases that one-size, indeed, does not fit all when
it comes to collecting accelerometry data.
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