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Abstract
Background: Good motor performance skills (MPS) are relevant in all stages of life. Higher MPS are associated with
enhanced cognitive abilities and physical and mental health. The assessment of MPS is important to identify deficits in MPS
at an early stage and to implement interventions to address these deficits. One method to assess MPS is through marker-based
motion capture in a laboratory setting with multiple cameras. However, this approach is expensive and time-consuming,
making it impractical, for example, in large-scale studies for MPS assessment. Recent advancements (eg, artificial intelligence)
in technology (eg, smartphone cameras) have opened up innovative solutions for various challenges (eg, testing large sample
sizes). A potential solution is using video-based smartphone apps to assess MPS through markerless motion capture with a
single camera.
Objective: The objectives of this scoping review were to summarize existing smartphone apps designed to digitally assess
MPS through motion capture, identify the target population of the apps, determine whether the apps have been validated, and
summarize the specific MPS that were assessed.
Methods: The scoping review was conducted in accordance with the PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analysis extension for Scoping Reviews) guidelines. The search was conducted in March 2024 using
PubMed, Scopus, SPORTDiscus, Web of Science, Education Resources Information Centre, and SAGE Publications. All
included studies investigated video-based motion capture smartphone apps to assess MPS.
Results: A total of 10 studies met the inclusion criteria. Seven different smartphone apps were used within the studies, 6 of
which have already been validated. The MPS assessed through the apps were gait, breaststroke, running, countermovement
jump, and shoulder mobility, and 1 study assessed a functional movement test battery. The studied populations were healthy
adults, older adults, athletes, or individuals with neurological illnesses.
Conclusions: The assessment of MPS through smartphone apps represents a promising tool, which can be used in a variety of
fields, such as health and performance monitoring, coaching, and scientific research. In the future, more studies should focus
on developing new smartphone apps to assess different MPS and validate these apps.
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Introduction
The comprehensive development of motor performance skills
(MPS) is critical for healthy human development [1] and
remains important throughout all stages of life [2]. Overall,
studies have shown that higher MPS are associated with
increased physical activity and physical fitness at all ages [3-
5], which have both physical and mental health benefits (eg,
reduced depressive symptoms) [3,6]. Furthermore, there is an
inverse relationship between MPS levels and body weight [5,
7,8].

Given the multitude of terms used in motor performance
research, it is important to select a definition of the term
“motor performance skills” that will be used in this study. In
their scoping review, Sortwell et al [9] established a general
definition of the MPS term based on existing descriptions
in the literature. MPS encompass a range of movements,
including those used for space coverage (eg, walking), object
manipulation (eg, throwing), and movements that are needed
for overcoming obstacles in vertical, diagonal, or horizontal
directions (eg, climbing and jumping). Additionally, they
include different kinds of pulling, pushing, and holding.
These MPS serve as the foundation for specialized move-
ment and the acquisition of sport-specific competencies [9].
The term MPS is often used interchangeably with the terms
“motor skills” and “fundamental movement skills” [9,10].

The use of motor performance test batteries to assess
motor performance allows for a precise examination of the
current state and development of MPS. The results of these
test batteries can be used to target interventions aimed
at reducing deficits and improving performance [1,11,12].
However, assessing MPS using test profiles only provides
limited or mainly subjective information regarding execution
errors or the quality of the movement performed. A quan-
titative biomechanical measurement of kinematic variables
collected via motion tracking systems could serve as an
alternative or complementary approach [13,14].

The current gold standard for biomechanical movement
assessment is using marker-based 3D motion tracking
systems in a laboratory environment [14,15]. However,
this method is time-consuming, expensive, and complex to
implement, limiting its application in large-scale population
studies [15-17]. To address these limitations, some stud-
ies have validated markerless 2D motion capture systems
by comparing them to the gold standard. For example, a
recent study showed a very high agreement between the
gold standard and a single smartphone camera in a coun-
termovement jump analysis, where videos were evaluated
by Sbsq-pose (Subsequent GmbH), an artificial intelligence
(AI)–based motion tracking system using deep learning to
predict the 3D positions of 24 skeletal key points from 2D
video recordings [18]. Indeed, the use of AI has gained
increasing attention in biomechanics [19]. Today, there are
pose estimation models that can be used to analyze video
recordings of human movement [19]. These pose estimation
models are created by deep learning algorithms, which are
capable of identifying anatomical landmarks from digital

videos [13]. To ensure that the assigned anatomical land-
marks are correctly recognized, these human body models
are first trained on large datasets [13]. Human annotators
manually label the positions of anatomical landmarks in
the training images [13,20]. Subsequently, the AI algorithm
is able to automatically track human movements within
recorded videos [13]. The trained pose estimation models
also enable motion capture to be integrated into various
everyday apps, such as smartphone apps [13,19]. There are
already several smartphone apps that provide biomechanical
monitoring, such as gait analysis, which provides information
on spatiotemporal parameters (eg, cadence and foot strike),
joint kinematics (eg, knee flexion angle) but not joint kinetics
[21]. These apps enable automatic kinematic detection of
whole-body and partial-body movements, including motion
analysis that can be used in the field with minimal effort
and even with large sample sizes. The advantage of using
smartphone apps to collect MPS is that it is a simple and
cost-effective way to perform biomechanical studies on a
large population without the need for a lot of equipment
or a laboratory environment, as the majority of individuals
possess a smartphone [13]. In 2022, 6.4 billion individuals
worldwide owned a smartphone, with an estimated 6.9 billion
in 2024 and an estimated total of 7.7 billion by 2028 [22].
The widespread ownership of smartphones enables testing
of large numbers of individuals, which is not feasible with
a laboratory-based approach. The use of smartphone apps
may be a particularly beneficial approach for population-
based fitness studies, such as the MoMo study [23,24] in
Germany or as those using the ALPHA test battery, which
includes highly reliable and valid measures of cardiorespira-
tory fitness, muscular strength, and anthropometry [23-25].
For instance, a large-scale fitness study in European youth
successfully collected data from nearly 8 million test results
across 34 countries, encompassing a broad age range and
using representative national data [25]. By using smartphone
apps, a similar number of participants could be assessed on
their fitness levels more efficiently. This approach minimi-
zes the need for extensive travel and logistical resources,
thereby enabling greater flexibility in test scheduling. By
allowing participants to complete assessments remotely from
their homes, it eliminates the requirement for in-person
appointments or visits to testing facilities, thus streamlining
the data collection process and enhancing accessibility for
a broader population. However, it is imperative to acknowl-
edge the limitations inherent to such apps, which often
exhibit performance deficiencies. A number of factors may
contribute to inaccurate movement detection by smartphone
cameras. These include, for example, a low sampling rate, the
presence of human-like objects in the room, and inaccurate
camera positioning. These issues can result in the inability to
precisely detect anatomical orientation points, which, in turn,
can lead to measurement errors [13]. Furthermore, it should
be noted that certain apps are designed to operate within a
cloud computing environment, necessitating a stable internet
connection for optimal functionality. This aspect should be
considered when using such s.

To date, there is one review that gives an overview of
video-based motion capture smartphone apps for MPS testing,
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but it only focuses on healthy adults [26]. Currently, no
reviews provide a general overview for all population types.

This gap in the literature hinders the ability of research-
ers and practitioners to fully understand the capabilities and
limitations of these technologies. Therefore, we conducted
a scoping review to address this gap by providing a compre-
hensive overview of the current state of research on exist-
ing smartphone apps designed to assess the biomechanics of
MPS through markerless motion capture. This review aimed
to highlight the advancements, identify potential areas for
improvement, and guide future research and development in
this field.

We specifically addressed four aims: (1) to summarize
existing smartphone apps designed to digitally assess MPS
through motion capture, (2) to elucidate the specific MPS that
these apps assess, (3) to determine whether these apps have
been validated, and (4) to identify the target population of
each app.

Methods
This scoping review was performed in accordance with
the PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analysis extension for Scoping Reviews)
guidelines (Checklist 1) [27]. A study protocol was designed
in advance and then registered on OSF [28].
Eligibility Criteria

Inclusion Criteria
The studies included in the review had to perform motor
performance tests that were assessed through video-based
motion capture integrated into smartphone apps. The papers
were included if they were written in English, published up
to February 2024, involved human participants, and assessed
motor performance through an AI-based video analysis
(without human supervision).

Exclusion Criteria
All articles that used the smartphone’s built-in sensors
or accelerometers for the assessment of MPS were exclu-
ded from the analysis. We also excluded dissertations and
conference papers. Meta-analyses, scoping reviews, and
systematic reviews were not included in this scoping review
but were considered separately in this paper as part of the
basis for discussion and can be found in the “Meta-Analyses
and Reviews” section.
Search Strategy
To identify potentially relevant articles, the search was
conducted on March 5, 2024, in six electronic databases:
PubMed, Scopus, SPORTDiscus, Web of Science, Educa-
tion Resources Information Centre, and SAGE Publications.
Before beginning the search, 2 reviewers (CSZ and CN)
screened various publications and reviews in the research
area, discussed the results, and determined the search term.
The search terms included topics related to (1) MPS,
(2) motion capture, and (3) smartphone apps, which were

combined by Boolean operators. The search terms are shown
in the Multimedia Appendix 1. The search was performed
on the title and abstract of the papers, and the study type
(validation study) was screened manually. There were no
preset restrictions on the target population, so all ages were
included. Before performing the search, the search strategy
was reviewed by an expert (Dr Janis Fiedler) in mobile
health technologies. Gray literature was not considered in this
scoping review.

Selection of Sources of Evidence
To ensure a consistent and transparent selection process, a
standardized screening form was developed by 2 reviewers
(CSZ and CN) based on the central research objective: to
provide a comprehensive overview of smartphone apps that
assess MPS through markerless motion capture. The form
was piloted using a small set of studies to calibrate inclusion
decisions and refine key criteria such as app type, motion
capture method, and degree of automation.
Study Selection
The search results were exported into the citation program
Zotero (Corporation for Digital Scholarship). After remov-
ing duplicates, the titles and abstracts were screened by
one reviewer (CSZ) using the open-source machine learn-
ing software “ASReview” (ASReview LAB developers)
developed at Utrecht University [29]. To start training the
model, 2 studies were initially selected for inclusion, and
2 studies were selected for exclusion [29]. Subsequently,
the software presented 1 paper at a time, and the reviewer
determined if it should be included or excluded based on
its title and abstract. The title and abstract screenings were
stopped after 50 consecutive articles were excluded by
the reviewer [30,31]. Afterward, the second reviewer (CN)
screened the articles excluded by the first reviewer to ensure
that no relevant articles were falsely excluded. Following the
title and abstract screening, the software provided a list of
the included articles, which were then screened manually. If
the full text was not available, authors were contacted and
asked to provide it. The full-text screening was performed
independently by 2 reviewers (CSZ and MF).
Data Charting and Extraction
To chart the data, 2 reviewers created a data charting form
in Microsoft Excel to determine which variables should
be extracted. Data extraction was then performed by 1
reviewer (CSZ) and verified by another author (TK). During
the screening process, we found that information on the
validation of the apps was more relevant than initially
anticipated. Therefore, a fourth research objective address-
ing this aspect was added. This refers to whether the app
was compared with another measurement instrument, such
as a marker-based motion tracking system, regardless of
whether the app was validated in the included study or
in a previous study. The variables listed in the data chart
included information about the authors (first author and year
of publication), study design, study aims, population (sample
size, age, and gender), name of the smartphone app, assessed
MPS, if the app has been validated, and the main findings
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of the studies. The studies were grouped according to the
smartphone app and the MPS studied.

Results
Study Selection
A total of 581 articles were identified by searching the
electronic databases. After removing duplicates, 520 (89.4 %)

articles were included in the title and abstract screening in
ASReview. The number of articles was subsequently reduced
to 47 (8.1 %), with 1 article being excluded due to unavail-
ability. Therefore, 46 (7.9 %) articles were included in the
full-text screening. On the basis of the full-text screening,
a total of 10 (1.7 %) articles were included in this scoping
review. A detailed overview of the selection process is shown
in Figure 1.

Figure 1. Flow diagram of search strategy. Italicized words refer to the selection of separately considered meta-analyses and reviews. AI: artificial
intelligence.

Study Characteristics
The included articles were published between 2021 and 2024,
with the most articles published in 2022 (n=3) and 2023
(n=4). Four of the studies were conducted in Japan [32-35].
The remaining studies were conducted in Australia [36],
Germany [37], Spain [38], the United Kingdom [21], and the

United States [39]. One study did not indicate the country
in which it was conducted [40]. Research designs of the
studies were mainly validation studies (n=5) [21,32,36,37,39],
1 proof-of-concept study [38], 2 cross-sectional studies [34,
40], and 2 prospective, observational studies [33,35] (Table
1).
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Table 1. Study characteristics.

Study Study type

Participants: sample
size; sex (male or
female); age (y),
mean (SD)

Smartphone app; pose
estimation algorithm MPSa Validated

Aoyagi et al [32] Validation study • N/Ab TDPT-GTc; modified
Resnet34 image classifi-
cation model

Gait Yesd

Azhand et al [37] Validation study • N=44
healthy
older adults;
N/A; 73.9
(6.0)

N/A; series of algorithms:
Convolutional Pose
Machine 25 body joint
model, VNect model, and
GASTNet 3D uplifting
model

Gait Yes

Balsalobre-Fernández [38] Proof-of-concept case
study and validation
study

• N=1 healthy
physically
active man;
n=1 male
and n=0
female; 36

My Jump Lab; Apple
Vision framework

CMJe Yes

Fanton et al [39] Validation study
• N=150

(n=113
healthy
adults, n=17
athletes, and
n=20 MIf

adults);
n=56 males
and n=94
females;
18-85

Amazon Halo Movement;
N/A

Single leg
stance, forward
lunge, overhead
squat, feet
together squat,
overhead reach

Yes

Feng et al [40] Cross-sectional study • N=8
professional
swimmers;
n=8 males
and n=0
females;
21.8 (2.6)

N/A; series of algorithms:
Gaussian filtering, Canny
operator, double threshold
method, and Hough
transformation

Breaststroke No

Iseki et al [35] Prospective and
observational study • N=23

patients
with PDg;
n=13 males
and n=10
females;
70.1 (6.0)

• N=23
patients
with iNPHh;
n=16 males
and n=7
females;
77.0 (6.4)

• N=92
healthy
adults; n=36
males and

TDPT-GT; Modified
Resnet34 image
classification model

Gait Yesd
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Study Study type

Participants: sample
size; sex (male or
female); age (y),
mean (SD)

Smartphone app; pose
estimation algorithm MPSa Validated

n=56
females;
72.3 (6.3)

Iseki et al [34] Cross-sectional study • N=114
pathological
patients
(n=48
iNPH, n=21
PD, and
n=55 other
NMDi);
n=52 males
and n=62
females;
74.5 (7.8)

• N=160
healthy
adults; n=91
males and
n=69
females;
72.9 (11.1)

TDPT-GT; Modified
Resnet34 image
classification model

Gait Yesd

van den Hoorn et al [36] Validation study • N=20
healthy
adults; n=10
males and
n=10
females; 36
(13)

mymobility App; Apple
Vision framework

Shoulder
abduction,
adduction,
flexion, and
extension

Yes

Yamada et al [33] Prospective and
observational study • N=15

healthy
adults; n=9
males and
n=6
females;
39.1 (20.1)

• N=92 older
adults; n=36
males and
n=56
females;
73.0 (6.3)

• N=47
patients

TDPT-GT; Modified
Resnet34 image
classification model

Gait Yesd
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Study Study type

Participants: sample
size; sex (male or
female); age (y),
mean (SD)

Smartphone app; pose
estimation algorithm MPSa Validated

with iNPH;
n=32 males
and n=15
females;
77.3 (6.3)

Young et al [21] Validation study • N=31
healthy,
experienced
runners;
n=20 males
and n=11
females;
34.5 (9.7)

N/A; BlazePose Running Yes

aMPS: motor performance skills.
bN/A: not applicable.
cTDPT-GT: Three-Dimensional Pose Tracker for Gait Test.
dPreliminary validation indicates an initial comparison with another.
eCMJ: countermovement jump.
fMI: movement impaired.
gPD: Parkinson disease.
h iNPH: idiopathic normal pressure.
iNMD: neuromuscular diseases.

MPS and Smartphone Apps
The following results are presented in accordance with the
initial 3 aims of this review and are summarized descriptively
to provide an overview of the identified studies (Table 1,
Multimedia Appendix 2).

Gait
In the studies included in this review, gait was the most
commonly assessed MPS (n=5). Four of the studies used
the Three-Dimensional Pose Tracker for Gait Test (TDPT-
GT) smartphone app to assess this MPS [32-35]. Aoyagi
et al [32] developed the TDPT-GT app to quantitatively
assess pathological gait patterns and performed a preliminary
validation against a Vicon 3D motion tracking system. The
app uses a modified ResNet34 image classification model
to detect the coordinates of 24 anatomical key points and
calculate the 3D angles of the lumbar, bilateral hip, neck,
knee, and ankle joints. To conduct the test, the subjects were
instructed to walk in a circle with a diameter of 1 m, both
clockwise and counterclockwise [32-35]. The app is capable
of reconstructing 3D full-body movements from 2D motion
capture data [32].

The other 3 studies examined the gait patterns of idi-
opathic normal pressure hydrocephalus (iNPH), Parkinson
disease, and other neuromuscular diseases, as well as older
adults and healthy adults [33-35]. Two studies by Iseki et al
[34,35] compared pathological gait patterns with healthy gait
patterns.

The final study included in the review used the TDPT-GT
app to determine distinct indices for three pathological gait

patterns: shuffling gait, wide-based gait, and short-stepped
gait [33].

The fifth study developed a new smartphone app for gait
assessment and examined the validity and repeatability of
the app (the app name was not mentioned) [37]. To test
the validity of the smartphone app, a comparison with the
GAITRite System was performed. The app includes a series
of pose estimation algorithms starting with the Convolutional
Pose Machine 25 body joint model, followed by the VNect
model and the GASTNet 3D uplifting model, to extract
four gait parameters: gait speed, step length, step time, and
cadence.

Running
One study developed an unnamed smartphone app that uses
the deep learning pose estimation tool BlazePose (Media-
Pipe framework, Google LLC) to assess running gait in
experienced runners [21]. To validate the app, the research-
ers simultaneously recorded the participants running on a
treadmill with an iPhone 13 smartphone camera and a Vicon
3D motion tracking system [21].

Countermovement Jump
The study of Balsalobre-Fernández [38] used the Apple
Vision framework (Apple Inc.), integrated into the My Jump
Lab app, to assess countermovement jump (CMJ) height. The
app was validated by comparing the results from My Jump
Lab to those recorded simultaneously using a force plate.
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Shoulder Mobility
One study performed shoulder range of motion tests by using
the mymobility app, which uses the Apple Vision frame-
work (Apple Inc.) for pose estimation [36]. For valida-
tion, participants performed shoulder abduction, adduction,
flexion, and extension while being filmed with an iPhone 13s
camera, with a sample rate of 30 frames per second, and a
marker-based Vicon motion tracking system for comparison.

Functional Movement Test Battery
The study of Fanton et al [39] validated the Amazon Halo
Movement app (Amazon Ltd) by comparing it to valida-
ted functional movement tests (FMTs) and sensor-collected
kinematic variables. The FMT battery of the smartphone
app was performed by participants wearing a full-body suit
equipped with motion sensors. The app includes 5 FMTs,
which are used to assess posture, stability, and mobility
(single leg balance, forward lunge, overhead reach, feet
together squat, and overhead squat) [39].

Breaststroke
The study of Feng et al [40] used a nonvalidated smartphone
app to assess breaststroke technique. The app records the
swimmer’s movement in the water through a smartphone
camera and calculates the angles between the thigh and trunk,
thigh and calf, and the trunk and the horizontal plane. The
video processing integrated into the app starts with Gaussian
filtering, followed by the calculation of gradient amplitude
and direction with a Canny operator, double threshold method
for edge closure, and, finally, the detection of a straight line
by Hough transformation [40].

Population
Most studies used the apps to assess the MPS of healthy
adults (n=6) [33,35,36,38,39], 3 studies included athletes
(general athletes [39], swimmers [40], and runners [21]), 2
studies included older persons [33,37], and 4 studies included
clinical populations, that is, Parkinson disease [34,35], iNPH
[33-35], movement impairment [39], and other neuromuscu-
lar diseases [34]. One of the studies did not provide any
information about their study population [32] (Multimedia
Appendix 3).
Synthesis of the Findings
The included studies demonstrate a growing interest in
smartphone-based digital assessment tools for MPS, with gait
analysis being the most frequently targeted skill, especially
in clinical contexts such as Parkinson disease and iNPH
(Multimedia Appendix 4). Despite the variety of apps,
most tools have been validated through intraclass corre-
lation coefficient or gold standard comparisons such as
marker-based 3D motion capture. Deep learning algorithms,
particularly modified ResNet34, dominate technical imple-
mentation. However, there are clear research gaps: few
studies address upper body skills, and most studies focus
on adults in controlled settings rather than broader, general-
use or preventive contexts. These insights highlight future
needs for diversified and validated apps, including those for
different target groups (eg, children), and increased attention
to real-world usability and accessibility (Table 2).

Table 2. Overview table of key findings.

Category and subcategory Studies, n (%) Validated, n (%)
Example applications or
notes Studies included

Motor performance skill
  Gait 5 (50) 5 (50) TDPT-GTa,

CPMb+VNect
Aoyagi et al [32]; Azhand et al
[37]; Iseki et al [34,35]; Yamada
et al [33]

  Running 1 (10) 1 (10) BlazePose Young et al [21]
  CMJc 1 (10) 1 (10) My Jump Lab Balsalobre-Fernández [38]
  Shoulder mobility 1 (10) 1 (10) mymobility van den Hoorn et al [36]
  Functional movement battery 1 (10) 1 (10) Amazon Halo Movement Fanton et al [39]
  Swimming (breaststroke) 1 (10) —d Series of algorithms:

Gaussian filtering, Canny
operator, double
threshold method, Hough
transformation

Feng et al [40]

Target population
  Healthy adults 6 (60) — Most common group Balsalobre-Fernández [38]; van

den Hoorn et al [36]; Young et al
[21]; Azhand et al [37]; Iseki et
al [34,35]; Yamada et al [33]

  Athletes 3 (30) — Swimmers, runners,
general athletes

Young et al [21]; Feng et al [40];
Fanton et al [39]
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Category and subcategory Studies, n (%) Validated, n (%)
Example applications or
notes Studies included

  Older adults 2 (20) — Often in gait-related
studies

Azhand et al [37]; Yamada et al
[33]

  Clinical populations 4 (40) — PDe, iNPHf, MIg, NMDh Iseki et al [34,35]; Yamada et al
[33]; Fanton et al [39]

Validation methods
  ICCi 6 (60) — My Jump Lab,

BlazePose, CPM-based
apps

Azhand et al [37]; Balsalobre-
Fernández [38]; van den Hoorn et
al [36]; Young et al [21]; Fanton
et al [39]

  AUCj 3 (30) — TDPT-GT for
neurological assessment

Iseki et al [34,35]; Yamada et al
[33]

  Motion capture comparison 4 (40) — Vicon system Balsalobre-Fernández [38]; van
den Hoorn et al [36]; Young et al
[21]; Azhand et al [37]

  No formal validation 1 (10) — Swimming app Feng et al [40]
Algorithms and frameworks
  Modified ResNet34 4 (40) — Clinical gait tracking

(TDPT-GT)
Aoyagi et al [32]; Iseki et al [34,
35]; Yamada et al [33]

  Apple Vision Framework 2 (20) — My Jump Lab,
mymobility

Balsalobre-Fernández [38]; van
den Hoorn et al [36]

  BlazePose 1 (10) — Running gait analysis Young et al [21]
  CPM+VNect+GASTNet 1 (10) — Multistep pose extraction

for gait
Azhand et al [37]

  Algorithm series 1 (10) — Hough/Canny in
swimming

Feng et al [40]

aTDPT-GT: Three-Dimensional Pose Tracker for Gait Test.
bCPM: convolutional pose machine.
cCMJ: countermovement jump.
dNot applicable.
ePD: Parkinson disease.
fiNPH: idiopathic normal pressure hydrocephalus.
gMI: movement impairment.
hNMD: neuromuscular disease.
iICC: intraclass correlation.
jAUC: area under the curve.

Meta-Analyses and Reviews

Selection of Meta-Analyses and Reviews
As meta-analyses, scoping reviews, and systematic reviews
were not included in the scoping review, they were excluded
from the screening process conducted by ASReview and were
screened manually (CSZ and CN). A detailed overview of the
screening is also found in Figure 1, shown in italics. To gain
a more comprehensive understanding of the research field and
to provide a basis for discussion, the inclusion criteria were
considered more generously here. As a result, reviews were
included that consider pose estimation methods without apps
or apps that require a human operator to assess MPS.

Findings From Meta-Analyses and Reviews
We did not find any meta-analyses, reviews, or similar
studies analyzing video-based motion capture smartphone
apps. Using our search terms, we identified 47 meta-analyses
and reviews, of which 3 have been included. However, one of
the reviews included studies that examined apps that require

manual operation, while the others included studies on pose
estimation but without the use of smartphone apps. The 3
reviews present the respective findings relevant to specific
subareas of video-based motion capture smartphone apps,
which justified their inclusion in the evaluation.

The systematic review by Silva et al [41] focused on
smartphone apps for capturing strength, power, change of
direction, and velocity assessment. The included studies
analyzed a total of 11 different smartphone apps, but 10 of
them required a human operator to manually perform the
assessments. Only the included study by Balsalobre-Fernán-
dez et al [42] used a video-based motion capture app (My
Lift app). However, the app focused on tracking the barbell
used during the snatch motion, rather than on the human
movement itself. Nonetheless, this review provides valuable
insights for an overview of the research and supports our aim
of identifying existing apps, even if most of them require
manual operation.

JMIR MHEALTH AND UHEALTH Zoeller et al

https://mhealth.jmir.org/2026/1/e65474 JMIR Mhealth Uhealth 2026 | vol. 14 | e65474 | p. 9
(page number not for citation purposes)

https://mhealth.jmir.org/2026/1/e65474


Furthermore, the review by Stenum et al [13] provides
a general overview of the research on AI-based human
pose estimation and its application in monitoring MPS, but
without the use of smartphone apps. This review presents
the extensive range of applications for these estimation tools,
which are used in monitoring human development, in the
motor assessment of neurological diseases, and in perform-
ance optimization. The advantages of these tools include
a cost-effective and widely accessible alternative to motion
capture systems in the laboratory [13].

In light of the growing use of pose estimation software in
AI-based smartphone apps, the review by Stenum et al [13]
was included to provide a more comprehensive understanding
of the field.

Another review examined various technologies for
markerless motion capture in combination with pose
estimation in clinical surveys [43]. The review included
a total of 65 studies, which, in turn, identified 9 differ-
ent technical devices for markerless motion capture. The
3 most commonly used technologies were the Microsoft
Kinect system, cameras such as GoPro, and smartphone video
recordings. The review offers a comprehensive overview of
the current state of research in this field and highlights the
potential of video-based motion capture as a screening tool
[43].

Discussion
Principal Findings
Video-based motion capture smartphone apps enable
automatic kinematic detection of whole-body and partial-
body movements, including motion analysis that can be
used in the field with minimal effort and even with large
sample sizes. To provide an overview of the current state
of research on such smartphone apps, the scoping review
had four aims: (1) to summarize existing smartphone apps
designed to digitally assess MPS through motion capture, (2)
to elucidate the specific MPS that these apps assess, (3) to
determine whether these apps have been validated, and (4) to
identify the target population of each app.

The findings of this scoping review indicate that there is
a variety of smartphone apps that enable the recording and
evaluation of MPS through video-based motion capture. Here,
“gait” was the most frequently assessed MPS in the included
studies, which was mainly recorded using the TDPT-GT app
[32-35]. A total of 7 different smartphone apps were used in
the aforementioned studies. Six of these apps have already
been validated by comparing them with the corresponding
gold standard methods. The smartphone apps identified here
only include healthy adults, older adults, and individuals with
neurological diseases as the target population. Children and
adolescents have not yet been the focus of such smartphone
apps, but it would be important to develop apps for this target
group, for example, to identify motor development disorders
in this target group at an early stage to provide appropriate
interventions.

As demonstrated by the publication years of the articles,
the research field of automatically assessing MPS with the
use of video-based smartphone apps is a relatively novel and
expanding area. The first publications in this field appeared in
2021 [37].

There are several advantages to assessing MPS through
video-based motion capture smartphone apps. One advant-
age is that it represents a more cost-effective alternative to
laboratory-based systems, such as marker-based 3D motion
capture or direct observation by trained professionals and
offers the advantage that it can be performed in any loca-
tion [14,16,17]. Furthermore, the pose estimation software
integrated into the app does not require the attachment
of markers on the participant, making it less time-consum-
ing than marker-based motion tracking systems [14,17].
Additionally, some groups of people, such as older adults or
those with disabilities, may be unable to tolerate the lengthy
process of marker attachment and subsequent measurement
[35].

These apps offer versatile use in coaching, health and
performance monitoring, and scientific research. In scientific
research, they can be used to perform testing outside of the
laboratory setting and when no expensive motion capture
system is available [13]. In the field of health monitoring,
these applications would enable the testing of patients at
home, as exemplified by the TDPT-GT app [32-35] inclu-
ded in this review. The advantage of testing at home is
that patients are not required to visit clinics, physicians’
offices, or physiotherapists as frequently [44]. Furthermore,
these smartphone apps enable patients to be screened more
frequently, which, on the one hand, relieves the burden on
physicians and, on the other hand, allows the identification
of developmental disorders or other impairments at an earlier
stage, thus enabling timely intervention [13]. Additionally,
it enables patients to be screened in their everyday environ-
ment, which is of great relevance depending on the clinical
picture [44]. However, it must be considered that there is
a nonnegligible challenge in the use of smartphone apps in
epidemiologic health studies, which is the consideration of
data sensitivity and privacy issues [45]. These applications
often collect and process sensitive health data, which must
be protected to ensure participants’ privacy. Robust data
encryption, secure data storage, and strict access controls are
essential to safeguard this information. Furthermore, clear
communication with participants about data usage, consent,
and their rights is imperative to maintain trust and compliance
with data protection regulations. Ensuring these measures
are in place will facilitate the ethical and effective use of
smartphone apps in health research [45].

In addition to the frequent screening of patients with
impairments, the applications can also be used to monitor
the athletic performance, as demonstrated in the study of
Feng et al [40]. The advantage of the used pose estimation
software integrated into the apps is that it enables real-time
motion tracking and therefore can provide real-time feedback
[13]. This is a valuable addition to the feedback provided
by the coach, and it allows for a more frequent performance
monitoring, as it enables monitoring during training sessions
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when the coach is not present. The potential for real-time
motion tracking and feedback represents a valuable addition
to the field of health monitoring. To ensure these apps deliver
reliable and valid results, further development and validation
against gold standard methods are essential [13].

Another advantage of using smartphone apps that have
integrated AI for pose estimation is that they are less prone to
inaccuracies than apps that require an operator to estimate, for
example, the start and stop frames of a movement and then set
these events manually [41,44].

As the technological revolution progresses, the potential of
smartphone apps in scientific research, health monitoring, and
athletic performance becomes increasingly evident.
Limitations
Despite the benefits of pose estimation, the following
limitations must be considered when using these algorithms.
For example, wearing loose clothing, such as dresses, can
cause anatomical landmarks to be misidentified or obscured
by other parts of the body. Environmental factors, such as
lighting conditions, background clutter, or camera position-
ing, can also significantly affect the accuracy of pose
estimation [46]. Variability in these external factors may
introduce inconsistencies in results, especially in field-based
assessments where standardization is difficult to maintain.
It should also be noted that cameras with low sampling
rates may not be able to correctly capture fast movements
or that the training data used to train the algorithms may
be very different from the movements to be analyzed and
therefore be prone to error [13]. Another salient problem
concerning the training data is that the annotators may lack
anatomical knowledge, which can compromise their ability
to accurately identify anatomical landmarks. Open-source
datasets frequently undergo labeling through the utilization
of crowdsourcing methodologies. This method is prone
to interindividual variability, as the annotation process is
often subjective and may differ between individuals [47,48].
Furthermore, most current pose estimation algorithms are
trained on 2D video data, which may introduce inaccuracies
when estimating joint angles and body segment orientations
in 3D space. While some approaches attempt to reconstruct
3D poses, these are often limited in precision compared to
marker-based systems, particularly in complex, multiplanar
movements or occluded positions [46]. For these reasons, it
is not yet possible to completely replace marker-based 3D
motion capture in the laboratory with smartphone apps, but
they already enable valid testing and thus facilitate the testing
of large sample sizes.

As this scoping review did not aim to evaluate the
quality or magnitude of validation outcomes, no conclusions
regarding the strength of validity across applications can be
drawn.

From a methodological perspective, scoping reviews
inherently carry limitations, such as potential selection bias
and the lack of critical appraisal. Although we aimed to
follow rigorous inclusion criteria, the decision to include
or exclude studies may have introduced subjective bias.
Furthermore, due to the rapidly evolving nature of pose
estimation technologies, it is possible that some recently
published or ongoing work was not captured at the time of
our review.

Looking forward, we recognize that including articles
written in multiple languages could enhance the comprehen-
siveness of future reviews. By broadening the scope to
include non-English studies, we can ensure a more inclusive
and thorough understanding of the available research on this
topic.
Conclusions
To our knowledge, this is the first scoping review to provide
a comprehensive overview of smartphone apps that assess
MPS using video-based markerless motion capture. Our
findings highlight a growing interest in this cutting-edge field,
with a variety of apps already available. These apps demon-
strate significant potential across multiple domains, including
enhanced monitoring, accurate kinematic measurements, and
real-time feedback.

Looking ahead, there is a clear need for the develop-
ment of more smartphone apps that assess MPS through
video-based motion capture. It is crucial that these apps
undergo rigorous validation against gold standard systems,
such as marker-based 3D motion tracking systems [14,15,49].
Moreover, it is essential to ensure these apps are tested across
diverse populations, including children, adolescents, adults,
older adults, and individuals with disabilities.

Future research should also explore the integration of
these apps with other health monitoring technologies, such as
wearable sensors and telehealth platforms, to create compre-
hensive health management systems. Additionally, leverag-
ing these apps in remote and underserved areas could offer
valuable health insights and improve access to medical
care. As AI and machine learning continue to advance, the
accuracy and functionality of these apps will be further
enhanced, solidifying their roles as effective tools for health
and performance monitoring.

In summary, video-based markerless motion capture apps
on smartphones hold transformative potential for health and
performance monitoring. Continued innovation and validation
in this field could lead to more accessible, accurate, and
comprehensive monitoring systems, thereby facilitating the
work of scientists and the development of interventions.
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