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Abstract
Background: Current methods of cardiorespiratory fitness (CRF) assessment may discriminate against frail individuals who
are challenged to perform a maximal cardiopulmonary exercise test. CRF estimations from free-living wearable data, captured
over extended time periods, may offer a more representative assessment and increase usability in clinical settings.
Objective: This study aimed to review current evidence behind this novel concept and evaluate the performance and quality of
models developed to estimate CRF from free-living, unsupervised data.
Methods: Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we
systematically searched 4 databases (MEDLINE, Embase, Scopus, and arXiv) for studies reporting the development of models
to estimate CRF from continuous free-living wearable data. Studies conducted entirely under controlled laboratory conditions
were excluded. Performance metrics were combined in a meta-correlation analysis using a random-effects model and Fisher Z
transformation.
Results: Of 1848 papers screened, 18 met the eligibility criteria, with a total of 31,072 participants. The weighted mean age
was 46.9 (SD 1.46) years. Multiple computational techniques were used, with 8 studies employing more advanced machine
learning models. The meta-correlation analysis revealed a pooled overall estimate of 0.83 with a 95% CI 0.77‐0.88. The I2 test
indicated high heterogeneity at 97%. Risk of bias assessment found most concerns in the data analysis domain, with studies
often lacking clarity around the data handling process.
Conclusions: A promising preliminary agreement between CRF predictions and measured values was noted. However, no
definite conclusions can be drawn for clinical implementation due to high heterogeneity among the included studies and lack of
external validation. Nonetheless, continuous data streams appear to be a valuable resource that could lead to a step change in
how we measure and monitor CRF.
Trial Registration: PROSPERO CRD42024593878; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024593878
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Introduction
Cardiorespiratory fitness (CRF) is regarded as a key element
of anesthetic preassessment and preoperative decision-mak-
ing, reflecting an individual’s aerobic capacity and abil-
ity to withstand and recover from surgery. The most
widely recognized measure of CRF is maximal oxygen
uptake (VO2max), a strong indicator of the cardiorespira-
tory system’s ability to capture, transport, and use oxygen
during exercise. VO2max is inversely related to all-cause
mortality and linked to several other health outcomes, such
as cardiovascular disease (CVD), dementia, and depression
[1-3]. In surgery, VO2max serves as a prognostic marker and
is currently the gold standard predictor of early postoperative
cardiorespiratory morbidity [4,5].

Cardiopulmonary exercise testing (CPET) is a maximal
dynamic test used to assess CRF and global exercise
response. CPET is typically performed on a cycle ergome-
ter or a treadmill under conditions of graduated physiologi-
cal stress, involving computerized gas-exchange analysis of
breath-by-breath ventilation. The test is routinely used in
cardiorespiratory medicine as a diagnostic tool to distinguish
between ventilatory and cardiac exercise intolerance [6]. In
the preoperative setting, it is usually used as a risk assess-
ment tool for major surgery to aid clinical decision-making
regarding suitability for surgery and to guide perioperative
management [7,8].

Despite its proven ability for risk stratification, there
remain some drawbacks to this method. VO2max meas-
urements through maximal exercise can be strenuous and
challenging for older or frail adults and those with musculos-
keletal conditions who may be limited by pain rather than
exertion [9]. Performance-reducing factors, such as periph-
eral arterial disease, osteoarthritis, and poor effort, have also
been associated with inaccurate measurements, which may
impact clinical decision-making [10]. In addition, high costs,
the requirement for highly trained staff to undertake the
test, and reduced hospital availability render regular VO2max
monitoring impractical.

To overcome these limitations, several VO2max predic-
tion models have been developed: nonexercise models are
usually derived from lifestyle and anthropometric data, while
submaximal exercise tests rely on prespecified protocols that
involve heart rate (HR) monitoring at certain speeds, such
as the 20-meter shuttle test or the modified shuttle walking
test [9,11,12]. These methods offer an alternative; yet, they
are not widely used in routine clinical practice due to some
inherent limitations. Submaximal tests rely on the assumption
that mechanical efficiency is the same for everyone, often
leading to inaccurate VO₂max estimations, and self-reported
physical activity measures are subject to social desirability
and recall bias [13]. Equally, lack of protocol standardiza-
tion has raised concerns about the validity and reliability
of submaximal tests [14]. Nonetheless, it seems a great

limitation of the above CPET alternatives is their inability
to capture and assess unstructured and incidental ambulatory
activity accurately [15].

This gap has encouraged the exploration of wearable
devices that can collect a substantial amount of informa-
tion about an individual’s activities in daily life, regardless
of frequency, duration, or intensity [16]. Wearable technol-
ogy has experienced a remarkable uptake over the last
years, with more users appreciating the potential benefits
for health and fitness tracking [17]. Commercially available
wearables already offer VO2max estimations; however, their
algorithms are primarily based on short periods of structured
exercise data, and their resulting VO2max estimations have
a large degree of error at the individual level [18]. Continu-
ous monitoring of unstructured physical activity, however,
shows promise in a variety of settings, enabling constant
tracking of physiological data in an unobtrusive manner
[16]. Physiological signals captured over longer periods may
be more representative of CRF for certain populations. In
view of the great potential of these devices, we aimed to
explore whether CRF can be accurately predicted leverag-
ing wearable data from unsupervised free-living conditions,
outside the controlled laboratory environment. In this paper,
we systematically review the research methodology behind
the proposed models, the associated challenges and limita-
tions, and discuss the feasibility of applying this concept for
CRF estimation in health care settings.

Methods
Search Strategy and Study Selection
Process
This study was registered with the international database
for systematic reviews PROSPERO (CRD42024593878).
We followed the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) statement and
recommendations for systematic reviews [19]. Relevant
studies were located from a systematic electronic search of
4 databases (MEDLINE, Embase, Scopus, and arXiv), and the
last search was performed on July 27, 2024. The full search
strategy and key terms are available in Multimedia Appendix
1.

We used online systematic review software to blind
reviewers and screen titles and abstracts after removing
duplicates [20]. Conflicts were resolved through direct
discussion between the 2 reviewers (AD and ABS) after
unblinding. The full papers of potentially eligible studies
were scrutinized against the eligibility criteria. Citation
chaining of references was also completed by AD. Any
additional studies identified were subsequently reviewed and
assessed for inclusion by a third investigator (MRK; Textbox
1).
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Textbox 1. Inclusion and exclusion criteria.
Inclusion criteria:

• All papers reporting the development of a prediction model to estimate maximal oxygen uptake from longitudinal
free-living wearable data.

• “Free-living” is defined as data collected in unsupervised, uncontrolled, real-world settings.
• Mixed designs with some simulated activities permitted, provided that at least some unsupervised activity was

captured and analyzed.
• Human studies published in English.
• All wearable devices are eligible, including accelerometers, electrocardiogram (ECG) biosensors, commercial

smartwatches, and optical heart rate sensors (photoplethysmogram).
• No restriction applied to the clinical setting studied.

Exclusion criteria:
• Studies in which the authors focused solely on physical activity and energy expenditure estimation.
• Monitoring occurring exclusively under controlled laboratory conditions, with no free-living activity studied.
• Wearable data including only exercise activity.
• Studies in which the authors did not report a prediction model but only correlations of wearable metrics with measures

of cardiorespiratory fitness.
• Systematic reviews, literature reviews, surveys, conference proceedings, or meeting proceedings.
• Studies focusing on adolescents and young children.

We considered all papers reporting the development of a
prediction model to estimate VO2max from longitudinal
free-living wearable data. For this review, “free-living”
was defined as data collected in unsupervised, uncontrol-
led, real-world settings. Mixed designs with some simula-
ted activities were also permitted, provided that at least
some unsupervised activity was being captured and ana-
lyzed by the authors. A limit was set to human studies
published in English. All wearable devices were eligible,
including accelerometers, electrocardiogram (ECG) biosen-
sors, commercial smartwatches, and optical HR sensors
(photoplethysmogram). No restriction was applied to the
clinical setting studied.

Studies were disqualified if (1) the authors focused solely
on physical activity and energy expenditure estimation; (2)
monitoring occurred exclusively under controlled conditions
in a laboratory setting, and no free-living activity was studied;
(3) wearable data included only exercise activity; (4) the
authors did not report a prediction model, but only correla-
tions of various wearable metrics with measures of CRF; (5)
they were systematic or literature reviews, surveys, confer-
ence, or meeting proceedings; and (6) studies focusing on
adolescents and young children.
Data Extraction and Model Performance
Assessment
To ensure consistency, a standardized form was piloted and
modified until consensus was reached between 2 authors
and the senior investigator for the data extraction tool. Two
reviewers (AD and ABS) retrieved all relevant data inde-
pendently, and a third author (MRK) verified the accuracy
of the records, cross-referencing with sources to resolve
discrepancies. For each study, the following items were
extracted: study details, demographics, setting and sample
size, wearable device used for monitoring, and the baseline
method used to obtain the ground truth (control). We recorded
features derived from wearable data and the preprocessing

techniques researchers used for feature extraction. We
extracted details on the various machine learning (ML)
models that were used, as well as prediction accuracy metrics
and the validation process reported.
Quality Assessment
Qualitative appraisal of each included study was independ-
ently performed by 2 authors using a modified version of the
Prediction model Risk Of Bias Assessment Tool (PROBAST)
following the updated TRIPOD-AI (Transparent Reporting
of a multivariable or ML prediction model for Individual
Prognosis Or Diagnosis–artificial intelligence) guidance [21,
22]. In case of disagreements, the opinion of the third author
was sought.

Studies received a score of “low,” “unclear,” or “high”
risk of bias on five major domains: (1) predictor choice
and definition; (2) participant selection, including source and
study setting; (3) outcome measurement; and (4) analysis
and methodological quality of the proposed model. Overall
judgment was rated as unclear if at least 1 domain was
regarded as unclear, and similarly as high if any domain
was rated as high. Risk-of-bias plots were created for quality
assessment using the “robvis” software package in R (R
Foundation for Statistical Computing).
Data Analysis
We calculated and reported descriptive statistics to outline
each study characteristic. Summary measures are reported
as means or medians, including measures of dispersion such
as SDs. Key metrics of model accuracy were identified and
combined for quantitative analysis.

Frequently reported metrics included the Pearson
correlation coefficient (r) and the R2 values. Other metrics
such as the standard error of estimate (SEE) and the root-
mean-square error were also reported but less frequently.
Although not technically an accuracy metric, where available,
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the r coefficient was used to indicate how well the model’s
predictions aligned with the CPET values.

A meta-analysis of correlation estimates was undertaken to
integrate measures of performance across the included studies
and provide a more objective and systematic assessment. In
this instance, reported correlation coefficients (r) were used
as the primary effect size, as they represented the most
consistently reported metric in this review. When only R²
values were available, we converted them by taking the
square root to obtain the corresponding r values between
the predicted and actual VO2max values and assessing the
direction of association in each study. RStudio (version
2024.04.2+764; R Foundation for Statistical Computing) was
used for all statistical analyses [23]. Two packages, “metafor”
and “robumeta,” were installed to perform the meta-analy-
sis. Fisher Z transformation was applied to convert correla-
tion estimates to a more normally distributed metric and
obtain standard effect sizes. A restricted maximum likelihood
estimation method was used for a standard random-effects
model to conduct the meta-analysis [24]. The random-effects
model assigns less study weight to larger studies with less
variance [24]. Results of the meta-correlation analysis were
presented visually using a forest plot. Subgroup analysis
was also performed, comparing regression-based models with
more advanced ML methodologies.

We assessed heterogeneity using the I2 and τ2 statistics.
The I2 statistic quantifies the proportion of total variation in
effect sizes that was due to heterogeneity rather than chance.
We considered I2 values of 25%, 50%, and 75% to represent
low, moderate, and high heterogeneity, respectively [25]. The
τ2 represents another method to assess the between-study
variance, focusing on the absolute variability of true effect
size, with higher values indicating greater heterogeneity [26].
The Egger test was used to assess the likelihood of publica-
tion bias, which was also presented visually with a funnel
plot.

Results
Overview
The combined literature search generated 1848 papers, with
1279 remaining after deduplication. The PRISMA flowchart
(Figure 1) shows the paper selection process. Following
title and abstract screening, 37 papers qualified for full-text
review. Eighteen studies were accepted in the final set with a
total sample size of 31,072 participants. Sample sizes varied
greatly across studies and ranged from 13 to 12,425. Only
4 studies had a sample size of more than 1000 patients,
indicating that most research in this field is based on a
relatively small number of participants [27-30].

Figure 1. Flowchart of study selection following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidance.
VO2: maximal oxygen uptake.
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The characteristics of each included study are shown in
Table 1 [2,4,5,7,11,12,16,27-37]. Participant-level weighted
mean age was 46.9 (SD 1.46) years, with a male participant
distribution of 48.9%. Notably, a few studies had exclusively
male or female participants, while others had more balanced
samples. Most studies included data from volunteers recruited

in a prospective manner (n=13, 72%). Smaller studies focused
primarily on healthy participants (n=13), in contrast to the
larger cohorts (n=5) that used data from population studies
involving hundreds of patients (the Fenland and Framingham
studies) [38,39]. Overall, there were only 2 research trials that
targeted patients scheduled for preoperative assessment [4,7].

Table 1. Summary of study characteristics.

Authors Year

Sample
size (Ma),
n (%)

Age (years),
mean (range)

Sensors and
modality used

Wearable
monitoring
(days) Participants Control

Reference
VO2, mean
(SD)

Plasqui
and
Westerterp
[2]

2005 25 (40) 28 (18-50) Tracmor elastic belt
triaxial accelerometer
and Polar (S610i)
HRb monitor
wristwatch

7 (daytime only) Healthy volunteers Maximal GXTc
cycle

M=49.5±10.2;
Fd=40.7±8.4

Plasqui
and
Westerterp
[33]

2006 26 (53.8) 29 (18-50) Tracmor elastic belt
triaxial accelerometer
and Polar (S610i) HR
monitor wristwatch

7 (daytime only) Healthy volunteers Maximal GXT
cycle

44.6±10.5

Cao
[34]

2009 189 (0) 49.6 (20-69) Kenz Lifecorder
uniaxial accelerometer

7 (daytime only) Healthy volunteers Maximal GXT
cycle

31.4±7.4

Cao et al
[35]

2010 148 (0) 47 (20-69) Kenz Lifecorder
uniaxial accelerometer
and triaxial
accelerometer

7 (daytime only) Healthy volunteers Maximal GXT
cycle

30.8±5.9

Novoa et al
[4]

2011 38 (79) 62.8 (38-80) OMROM Walking
Style ProW
accelerometer (two
modes- aerobic mode
after 10 min of
walking at 60 steps
per min)

7-41 (daytime
only)

Patients scheduled for
lung resection

Maximal GXT
cycle and Arterial
gas

20.3±4.6

Altini et al
[11]

2016 46 (45) 24.7 (NRe) ECGh Necklace (one
lead ECG) and
ADXL330 triaxial
accelerometer and
Mobile phone for GPS
coordinates

14 (during
laboratory
protocols and
free-living)

NR Maximal GXT
cycle

44±9.8

Altini et al
[5]

2016 51 (47) NRe ECG Necklace (one
lead ECG) and
ADXL330 triaxial
accelerometer

14 (during
laboratory
protocols and
free-living)

Healthy volunteers Maximal GXT
cycle

NRe

Beltrame
et al
[37]

2017 13 (100) 26 (NR) Hexoskin smartshirt
(hip accelerometer,
three lead ECG and
respiration bands)

4 (free-living 9
AM to 5 PM)
and simulated
ADLsf

Healthy volunteers Simulated ADLs
and
Pseudorandom
Ternary sequence.

NR

Ahn et al
[31]

2017 24 (100) 27.5 (NR) Shimmer ECG sensor
(18), for measurement
of 2-lead ECG and tri-
axial accelerometer

4 (daytime only) Healthy volunteers Maximal GXT
treadmill

48.5±5.3

Kwon et al
[12]

2019 240 (47) 42 (20-65) Fitbit (Fitbit Charge;
Fitbit)
(triaxial
accelerometer, PPG)g

3 (daytime only) Healthy volunteers Maximal GXT
treadmill

36.25

Bonomi et
al
[16]

2020 40 (48) 25 (18-55) Chest-belt HR ECG
monitor (RS800CX,
Polar, Wrist activity
monitor (Tracmor)

5 (daytime) and
simulated ADLs

Healthy volunteers Maximal GXT
cycle

M=45.7±6.1;
F=40±6.6

Jones et al
[7]

2021 49 (65) 65 (NR) Garmin Vivosmart
HR+ activity tracker
wristwatch (PPG,
accelerometer, GPS)

7 continuous Patients for
preoperative
assessment

Maximal GXT
cycle

18.2±4.5
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Authors Year

Sample
size (Ma),
n (%)

Age (years),
mean (range)

Sensors and
modality used

Wearable
monitoring
(days) Participants Control

Reference
VO2, mean
(SD)

Spathis et
al
[30]

2021 2100 (46) 48.7 (35-65) Combined HR and
uniaxial movement
sensor (Actiheart) and
wrist triaxial
accelerometer

6 continuous Population-based
cohort study
(Fenland)

Submaximal GXT
treadmill

NR

Wu et al
[28]

2022 12,425 (47)
181

47.7 (35-65) Combined HR and
uniaxial movement
sensor (Actiheart) and
wrist triaxial
accelerometer

6 continuous Fenland study
population-based
cohort and UK
Biobank

Submaximal GXT
treadmill
Maximal GXT test

NR; 32.95

Spathis et
al
[27]

2022 11,059 (47) 47.7 (35-65) Combined HR and
uniaxial movement
sensor (Actiheart) and
wrist triaxial
accelerometer

6 continuous Fenland study
population-based
cohort

Submaximal GXT
treadmill

M=41.95±4.6
1;
F=37.44±4.73

Frade et al
[32]

2022 43 (74.4) 37.5 (19-72) Hexoskin smartshirt
(hip accelerometer,
three lead ECG and
respiration bands)

7 (daytime only) Volunteers (chronic
disease allowed)

Maximal GXT
cycle

32.09

Neshitov et
al
[29]

2023 3894 (67) 42 (20-65) Apple Watch and
Garmin watch (PPG,
triaxial accelerometer,
GPS)

mean 287, SD
149

Healthy volunteers
-consented to
Welltory app

Estimated by
smartwatch device

36.16±6.66

Zhang et al
[36]

2024 662 (41) 53 (NR) Apple Watch (PPG,
triaxial accelerometer,
GPS)

mean 128
(daytime only)

Framingham study
cohort

Maximal GXT
cycle

M 27±7; F
22±6

aM: male.
bHR: heart rate.
cGXT: graded exercise test.
dF: female.
eNR: not reported.
fADL: activities of daily living.
gPPG: photoplethysmogram.
hECG: electrocardiogram.

A wide variety of wearable devices were used, including
triaxial accelerometers, ECG sensors, and smartwatches
with optical photoplethysmogram sensors. All studies used
accelerometers for motion tracking, while HR monitoring
was performed either with ECG (n=9) or optical sensors
(n=6). The monitoring durations also differed, with most
studies tracking participants over a few days, usually 3‐7,
while others extended up to nearly a year [29]. Measure-
ment of VO2max as the ground truth was typically obtained
through a maximal CPET test, though in 4 trials, a sub-
maximal treadmill test was used. In 1 study, reference
VO2max was not directly measured but estimated using
the proprietary algorithm of a smartwatch device [29]. Due
to disparities in participant populations, the reference mean
VO2max varied significantly between patient-centered studies
(weighted mean VO2max 19.2 mL/kg/min, SD 1.48) and
healthy volunteer studies (40.2 mL/kg/min, SD 6.58; z test,
P=.03).

Features
Feature extraction is a crucial first step in signal process-
ing, transforming complex raw data points into meaningful
numerical features that can be interpreted and processed in
a model [40]. In high-volume continuous wearable data,
feature extraction can also help to reduce dimensionality
without losing important information. This process makes
data handling easier and speeds computation by focusing only
on the most relevant aspects of the data [41]. We observed,
however, that in 6 studies, researchers adopted features
as reported from the internal proprietary algorithm of the
manufacturer without further analysis of the raw data. Table
2 summarizes the analytical methods used in the included
studies, while Table 3 provides an overview of each feature
type with examples in the studies used.
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Table 2. Summary of analytical methods, models, and wearable features used in the included studies.

Study, year Wearable features Model used

Preprocessing
techniques and
analysis

Model
performance Validation Principal finding

Plasqui and
Westerterp
[2], 2005

aHR/ACMb index
(ACM: activity
counts per minute)

Multiple linear
regression

Minute averages for
HR and activity counts
averaged over the 7
days, ratio of HR/
ACM, and missing
data removed

SEEc=12.4%;
r=0.87

NRd Fitness index
HR/ACM
significantly
related to
VO2maxe
corrected for body
composition and
age

Plasqui and
Westerterp
[33], 2006

HR/ACM index Multiple linear
regression
2nd equation
tested

Same as above and
groups combined and
sorted for activity
counts

r=0.86;
SEE=10.7%;
Bland-Altman
systematic
error=5.6%

Cross-validation A second equation
for the fitness
index HR/ACM
had to be tested to
predict VO2f

Cao et al
[34], 2009

Daily SCg Hierarchical
linear
regression

Steps per day provided
and handling of
missing data not
reported

SEE=10.9%;
r=0.81

Split test SC was a
significant
contributor to the
prediction of the
measured VO2max

Cao et al
[35], 2010

MVPAh, VPAi, and
SC

Hierarchical
linear
regression

As provided (minutes
spent in MVPA and
VPA) and handling of
missing data not
reported.

SEE=9.66%;
r=0.863

Cross-validation,
Subgroup analysis

VPA significantly
increased the
explained variance
in VO2max,
adjusted for age

Novoa et al
[4], 2011

Daily SC, Aerobic
SC, time spent in
aerobic activity, and
daily distance in km

Linear
regression

As provided and
handling of missing
data not reported

R2=0.93 Bootstrapping (1000
iterations)

VO2max can be
significantly
predicted by the
mean daily walked
distance

Altini et al
[11], 2016

HR at different
walking speeds, stay
regions, and activity
composites (ie, HR
at relative time
spent in each
activity)

Nonnested
hierarchical
Bayesian
regression,
SVMj classifier,
and HMMk for
transitions
between
activities

LDAl activity is
classified into 6
clusters, accelerometer
data was band-passed
between 0.1 and 10 Hz
to isolate dynamic
components, HR was
extracted from R-R
intervals and averaged
over 15 seconds, and
missing data not
analyzed

R2=0.76;
RMSEm=249.4;
SEE=5.79%

Leave-one-participant-out
cross-validation

Contextualizing
HR by means of
activity and speed
improved
correlation
between free-
living HR and
CRFn

Altini et al
[5], 1985

HR/min while lying
down and while
walking at 3.5 and
5.5 km/h

Multiple Linear
regression,
SVM classifier

HR was extracted from
R-R intervals and
averaged over 15
seconds windows and
unusable ECGo was
discarded.
Acceleration signal
was segmented in
nonoverlapping
intervals of 5s

R2=0.78;
RMSE=284.7

Leave-one-participant-out
cross-validation

Submaximal
context-specific
HR can be used to
estimate VO2max

Beltrame et
al [37],
2018

Means of HR, VEp,
BFq, hip
acceleration, and SC
in the 2 conditions
(“active-inactive”)

Random forest HR was averaged
every 16 beats, VE and
BF average of the last
7 respiration cycles, all
features were time-
aligned, low-pass
filtered at 0.01 Hz. Fast
Fourier transformation
and frequency domain

r=0.88 Leave-one-participant-out
cross-validation

Predicted oxygen
uptake data during
ADLsr were
strongly correlated
with the temporal
characteristics of
the VO2 during a
controlled protocol
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Study, year Wearable features Model used

Preprocessing
techniques and
analysis

Model
performance Validation Principal finding

analysis for hip
acceleration, and when
hip acceleration was
>0.05 g, data were
labeled as “active”;
otherwise, they were
“inactive

Ahn et al
[31], 2017

aEEs (nonlinear
model derived from
ACM horizontal and
ACM vertical
signals and HR per
minute

Linear
regression
between HR
and aEE

The tri-axial
acceleration was band-
pass filtered (0.25 to 7
Hz). ECG data were
band-pass filtered (5 to
20 Hz), the R-R
intervals were
averaged for 1 min and
converted to a HR, and
used only increasing
HR periods and
excluded data with
inaccurate ECG

R2=0.74; r=0.87;
SEE=11.85%

Split test aEE can be used to
estimate VO2max
during daily
activities

Kwon et al
[12], 2019

HR and daily PA in
terms of METs,
used slope of HR
and PA

Linear
regression

Moving average filter
was applied, data
points at which both
HR and physical
activity data increased
were selected

R2=0.651;
SEE=3.518; 9.6%

PRESSt for cross-
validation

VO2max can be
estimated using
novel features,
aEE and the slope
between physical
activity and HR

Bonomi et
al [16],
2020

Acceleration and
HR- fitness index
named TEE-pulseu

Stepwise linear
regression

Motion intensity was
defined as activity
counts per minute,
acceleration signal was
processed in
overlapping windows
of 60 seconds, and
activity is grouped in
(sedentary, or other)
based on a set of
counts thresholds

RMSE=367 or
12.4%;
SEE=13.09%;
r=0.89;
MAE=10.2%

Leave-one-participant-out
cross-validation

The daily average
TEE-pulse was
highly correlated
to the mean TEE-
pulse measured in
the laboratory
without the need
for specific
exercise protocol

Jones et al
[7], 2021

Floors climbed, total
number of steps and
total distance,
average HR and
resting HR

Linear
regression

Features were used as
provided by the device
and averaged across
the 7-day wear
period. Self-reported
METsv from
questionnaires

AICw=181.62;
R2=0.74; r=0.86;
AUCx=0.93

NR Using all the
wearable variables
together in linear
regression gave a
stronger
correlation
between the
measured CPETy
values, specific-
ally for peak VO2

Spathis et
al
[30], 2021

HR per minute,
acceleration
(magnitude
calculated through
ENMOz), resting
HR

Step2Heart
Deep neural
network,
(CNNaa learn
spatial and
RNNab
temporal
features)

Noisy heart data
removed with a
Gaussian process
robust regression,
participants with less
than 72 hours of wear
were removed, and
accelerometry and
ECG signals were
summarized to a
common time
resolution of one
observation per 15
seconds

AUC=0.70;
RMSE=9.54 (HR
forecasting only)

Split test A general-purpose
self-supervised
feature extractor
for wearable data
was developed.
HR forecasting
transfer learning of
learned
physiological
representations
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Study, year Wearable features Model used

Preprocessing
techniques and
analysis

Model
performance Validation Principal finding

Wu et al
[28], 2022

HR and movement
26 features
combining HR,
movement data, and
time-series metadata

UDAMAac Nonwear periods were
removed (periods of
nonphysical HR and
no movement),
downsampled the
sampling rate to 15
minutes and used the
first 600 timesteps, and
pretrained on noisy
data and used
adversarial training on
the BBVS dataset

R2=0.392;
r=0.665;
MSEad=30.79;
MAEae=4.44

Split test and 3-fold cross
validation

A novel model
proposal to
leverage noisy
data from source
domain (wearable
dataset) to
improve modeling
for accurate fitness
estimation at scale

Spathis et
al
[27], 2022

48 features: Raw
acceleration derived
through ENMO,
HR, HRVaf, MVPA
for each feature
mean, minimum,
maximum, SD, and
the slope of a linear
regression fit

Deep neural
network-
adaptive
representation
learning

Nonwear periods
removed, movement
intensities were
converted into standard
METs, principal
component analysis for
noise reduction,
tSNEag, a nonlinear
dimension-reduction
technique was applied

R2=0.658;
RMSE=2.956;
r=0.82;
RMSE=8.998
(Biobank only)

Split test and External
validation in UK biobank
cohort (181 patients)-
Maximal GXTah testing

A deep learning
frame-
work for
predicting CRF
was developed,
combining learned
features from HR
and accelerometer
free-living data
without context
awareness

Frade et al
[32], 2023

Mean HR and BF,
minute ventilation,
tidal volume, mean
hip acceleration, and
mean SC

SVM (support
vector
regression
formulation)

Abnormal HR and
BRai were excluded
with a preprocessing
algorithm (not
mentioned), and all
raw data were
averaged

r=0.804;
MAE=3.84

k-fold cross-validation Hemodynamic
domain presented
statistically higher
importance to
predict the
VO2max
compared with
activity and
Pulmonary
domains

Neshitov et
al [29],
2023

HR and SC/min,
HR/cadence ratio,
daily MET, and HR
response to cadence
increase

Quantile
regression (for
each quantile a
gradient
boosting model
was trained)

The HR stream was
resampled to 1
measurement per
minute and averaged
over consecutive 1-
minute intervals,
cadence is the number
of steps made during
the same 1-minute
interval, continuous
ranked probability
score used for
hyperparameter tuning,
and model trained on
estimated VO2 from
wearable device

Test set:
ECEaj=0.032;
IQR=3.948;
MedPEak=0.01;
and Direct VO2
dataset:
ECE=0.084;
IQR=4.705;
MedPE=0.35

Split test for training
External validation (10
healthy volunteers)
Maximal GXT treadmill

Anthropometric
characteristics
were the most
influential feature,
followed by
cadence to HR
ratio. The
proposed model
provides a point
estimation and a
probabilistic
prediction of VO2;
to estimate the
prediction’s
uncertainty

Zhang et al
[36], 2024

Daily SC, mean HR Multivariable
linear
regression,
sensitivity
analysis for
age, BMI,
gender

Defined HR as
nonactive if recording
interval was >1
minute, hourly steps
<30, inferred motion
context status for HR
measures that lacked
motion, and excluded
days with <5 hours of
wearing time

R2=0.07‐0.12 NR Every 1.3
mL/kg/min higher
peak VO2
corresponded to
a 2.4-bpm lower
nonactive HR.
Physical activity
with
1.3 mL/kg/min
higher peak VO2
was associated
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Study, year Wearable features Model used

Preprocessing
techniques and
analysis

Model
performance Validation Principal finding

with nearly 1000
more daily steps

aHR: heart rate.
bACM: activity counts per minute.
cSEE: standard error of estimate.
dNR: not reported.
eVO2max: maximal oxygen uptake.
fVO2: measured oxygen uptake.
gSC: step count.
hMVPA: moderate to vigorous physical activity.
iVPA: vigorous physical activity.
jSVM: support vector machine.
kHMM: hidden Markov model.
lLDA: latent Dirichlet allocation.
mRMSE: root-mean-square error.
nCRF: cardiorespiratory fitness.
oECG: electrocardiogram.
pVE: minute ventilation.
qBF: breathing frequency.
rADL: activities of daily living.
saEE: activity energy expenditure.
tPRESS: predicted residual error sum of squares.
uTEE: total energy expenditure.
vMET: metabolic equivalent task.
wAIC: Akaike Information Criteria.
xAUC: area under the receiver operating characteristic curve.
yCPET: cardiopulmonary exercise testing.
zENMO: Euclidean norm minus one.
aaCNN: convolutional neural network.
abRNN: recurrent neural network.
acUDAMA: unsupervised domain adaptation via multidiscriminator adversarial training framework.
adMSE: mean squared error.
aeMAE: mean absolute error.
afHRV: heart rate variability.
agtSNE: t-distributed stochastic neighbor embedding.
ahGXT: graded exercise test.
aiBR: breathing rate.
ajECE: expected calibration error.
akMedPE: median prediction error.

Table 3. Wearable features grouped by type, with examples used in each of the included studies.
Feature type Studies Examples
Motion • Cao et al [34] and Cao et al [35]

• Novoa et al [4]
• Beltrame et al [37]
• Jones et al [7]
• Spathis et al [27] and Spathis et al

[30]
• Frade et al [32]
• Zhang et al [36]

• Daily step count
• Moderate-to-vigorous physical activity
• Vigorous physical activity daily distance, mean hip acceleration, and

acceleration magnitude

Cardiac • Altini et al [11]
• Beltrame et al [37]
• Ahn et al [31]
• Jones et al [7]
• Spathis et al [30]
• Frade et al [32]
• Zhang et al [36]

• Average HRa and resting HR
• HR/min
• Heart rate variability measures

Contextualized HR • Plasqui and Westerterp [2] and
Plasqui and Westerterp [33]

• HR/ACMb ratio index
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Feature type Studies Examples

• Altini et al [5] and Altini et al [11]
• Bonomi et al [16]
• Kwon et al [12]
• Wu et al [28]
• Spathis et al [27]

• HR response to cadence increase activity composites (HR at relative time spent
in an activity)

• HR at different walking speeds
• slope of HR and physical activity
• HR/cadence ratio

Other • Beltrame et al [37]
• Ahn et al [31]
• Kwon et al [12]
• Frade et al [32]
• Neshitov et al [29]

• VEc, BFd, and tidal volume
• aEEe

• TEEf

• METg

aHR: heart rate.
bACM: activity counts per minute.
cVE: minute ventilation.
dBF: breathing frequency.
eaEE: activity energy expenditure.
fTEE: total energy expenditure.
gMET: metabolic equivalent.

Motion Features
Activity features from the accelerometer data included mainly
daily step count (SC), distance covered, time spent in
anaerobic or sedentary activity (stay regions), and acceler-
ation or walking speed (Table 3). From these, the most
frequently reported feature was the daily SC, which in
most instances was precalculated from the accelerometer’s
proprietary algorithm. We found that some researchers
reported steps as an average across several days, removing
the temporal context which might be useful in analyzing
trends [2,4]. Intensity of movement and walking speed was
described as time spent in sedentary or vigorous activity,
which can be calculated from the acceleration as activity
counts per minute [16]. One study used simulated daily
activities to correlate aerobic dynamics of variable intensity
[37]. Finally, distance covered was either extracted directly
from the device or computed as the total number of steps
taken in a day multiplied by the stride length of the partici-
pant [4].
Cardiac Features
Features extracted from the ECG and optical sensors included
average HR, resting HR, HR per minute, mean HR, and ΔHR
(difference between current and previous HR value to capture
the magnitude of changes in cardiac activity). ECG signals
are generally complex; they are subject to motion artifact,
creating noise that affects quality [42]. Various filtering
methods were applied to reduce noise. Researchers commonly
use a band-pass filter between 5 and 10 Hz to remove
artifacts and enhance the detection of the heartbeat from the
R-R intervals. The R-R intervals were usually averaged over
set-time windows, discarding any inaccurate values [11,31].
Beltrame et al [37] averaged HR every 16 beats, passing
HR data through a low-pass filter at 0.01 Hz, removing high
frequencies.
Contextualized HR
The combination of HR and activity data, often referred to
as contextualized HR, was reported in more recent studies.

This contextual dimension of wearable signals can be vital in
understanding the physiological cardiac response to exercise.
Such features comprised HR at variable-intensity walking
speeds, HR and SC per minute, HR/cadence ratio, and HR
response to cadence increase (Table 2) [5,27,29]. Kwon et
al [12] examined the slope between the concurrent increase
in physical activity and HR, while others studied time-series
metadata of HR and movement signals, mining numerous
features [27,28]. Advanced signal processing methods, such
as principal component analysis and fast Fourier transform,
were implemented to tackle noisy heart data, but this
was not standardized across the included studies. Authors
frequently used resampling techniques (standardizing time
intervals between data points) to align HR with movement
data, helping to contextualize HR within the corresponding
physical activity [30].
Other Features
Less common features included energy expenditure estimates
in terms of metabolic equivalents, which were calculated in
3 studies based on daily physical activity and proprietary
algorithms [12,16,29]. On 1 occasion, breathing frequency
and minute ventilation were extracted as the average of the
last 7 respiration cycles, based on respiration bands integrated
into the wearable device used for monitoring [37].
Models
Multiple modeling techniques were used among the included
studies, with more advanced ML models such as support
vector machines (SVMs) and deep learning gaining interest
over regression in recent studies. This trend follows the usage
of preprocessing techniques such as fast Fourier transform
and frequency domain analysis and represents an effort to
mine the raw data and uncover hidden patterns. A detailed
breakdown of modeling and preprocessing techniques is
provided in Table 2.

Eleven studies used linear models, which allow interpreta-
tion of outcomes through reporting of coefficients that give
direct insights into how each predictor influences the outcome
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measured [2,4,7,11,12,16,31,33-36]. The earliest study that
examined whether the ratio of HR to activity counts could
predict VO2max was from Plasqui and Westerterp [2]. Two
studies used correlation analysis to identify the strongest
predictors of VO2max and built on this using linear regres-
sion [4,7]. The rest of the studies outlined combinations of
modern ML techniques. Three studies reported SVMs, with
Frade et al [32] presenting support vector regression, which
is an SVM formulation for regression problems. SVMs are
supervised models that identify an optimal decision boundary
(hyperplane) to separate data points into distinct classes with
the aim of maximizing the margin between observed and
predicted values.

Beltrame et al [37] were the only group to consider
a random forest model. Random forests aggregate several
decision trees together as a group but introduce randomness
to prevent overfitting [37]. Another study trained several
gradient boosting models and then fitted a quantile regression
algorithm to predict the distribution of VO2max with CIs
[29]. In boosting, models are trained sequentially, building on
the errors or residuals of the previous model to improve their
prediction accuracy.

Finally, 3 studies [27,28,30] leveraged large-scale
free-living datasets to predict CRF with variations of neural
networks and deep learning. Wu et al [28] introduced a novel
2-stage approach building an adversarial training framework
based on unsupervised domain adaptation. The proposed
model was pretrained with noisy health-related labels in
a fully supervised setting to improve its performance on
high-quality, gold-standard data. Coarse- and fine-grained
discriminators were used to better handle the distribution
shifts between source (silver-standard) and target (gold-stand-
ard) datasets. Spathis et al [27] applied principal compo-
nent analysis to denoise the raw data and developed deep
neural network models able to capture nonlinear relationships
between numerous wearable features and VO₂max.
Length of Available Data Required for
Prediction
Some studies examined the minimum length of free-living
wearable data that would be required to reach reliable
conclusions regarding VO2max estimations, but no agreement

was observed. The most thorough assessment was provided
by Neshitov et al [29], who tested the degree of certainty
for 5 different models using various amounts of available
data. They advocated that a minimum of 200 minutes is
required for an error estimation range of 4.5 mL/kg/min, but
more than 1000 minutes is needed to improve this to under
4 mL/kg/min. Ahn et al [31] plotted the correlation coeffi-
cient values with the included measurement time and found
no drastic improvements between VO₂max and estimated
values past the 900-minute mark, which yielded an r value
of 0.81. On the contrary, other researchers reported that
even 10 minutes per day of good-quality data might be
sufficient to predict VO2max. Beltrame et al [37] determined
the 10-minute window from the frequency domain analysis as
the ideal size for data extraction based on iterative testing of
different window lengths (200-1000 seconds, incrementing by
100 seconds). A window length of 600 seconds (10 minutes)
was found to provide the best balance between maximizing
frequency resolution and ensuring enough reliable samples
for analysis across participants. Altini [5,11] proposed this on
a theoretical basis, as many submaximal protocols are of a
10-minute duration (eg, 6-minute walking test). Other studies
did not account for a minimum length but excluded patients
with <72 hours of data from the analysis [27]. Ultimately,
this large disparity in the length of data required for feature
engineering reflects the exploratory nature of some of the
included studies.
Quality of Studies
Risk of bias distribution for each domain is provided in
Figure 2 [2,4,5,7,11,12,16,27-37]. Critical appraisal of the
included papers showed that only 1 study was classified as
“low risk of bias” for all domains. CRF was aptly meas-
ured as the outcome of interest in 12 (67%) studies using
data from maximal exercise tests (also provided in Multime-
dia Appendix 2). Appropriate selection of participants and
predictors was documented in 6 and 8 studies, respectively.
Higher degrees of bias were observed in the analysis domain
with robust reporting of analytical methods noted only in 6
(33%) studies. Handling of missing data was not reported
adequately in 5 studies [4,5,11,34,35], while others excluded
data from analysis arbitrarily, without fully justifying their
decisions [12].
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Figure 2. Risk of bias distribution among the included studies [2,4,5,7,11,12,16,27-37].
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Most studies (n=13) reported internal validation methods for
their predictive model, such as split-test or leave-one-partic-
ipant-out cross-validation (Table 2). Model validation was
not considered in 3 studies, and only 2 papers tested their
algorithm externally on unseen data [27,28].
Model Performance
Various model performance metrics were reported (Table 2).
The weighted average SEE was 9.03%, indicating that models
overall predict VO2max with an error of approximately 9%.
In total, 16 studies were included in the meta-correlation
analysis, which is provided in Figure 3 [2,4,5,7,11,12,16,27,

28,31-37]. The pooled overall estimate of r=0.83 with a 95%
CI of 0.77-0.88 from the random-effects model indicates a
positive agreement between predicted and observed VO₂max
values. Heterogeneity among the included studies was high,
with I²=97% and a Q test of statistical significance (P<.01).
Furthermore, moderate variance was observed (τ²=0.1049),
suggesting underlying differences in how well VO₂max
is predicted across studies. Subgroup analysis comparing
regression-based methods with more advanced ML methodol-
ogies favored regression, but the difference was not statisti-
cally significant (P<.24; Figure 3 [2,4,5,7,11,12,16,27,28,31-
37]).

Figure 3. Forest plot of the meta-correlation analysis between maximal oxygen uptake estimates and reference values. Random-effects study
weighting was calculated as the inverse sum of the in-study variance and the between-study variance (τ2). Subgroup analysis comparing modeling
approaches is also presented [2,4,5,7,11,12,16,27,28,31-37].

In studies reporting high correlations, there are several
common features. While most research indicated the use
of validation methods with unseen data (train-test split
and cross-validation) to test model performance, several
studies reported the R² values from the linear regression

model [4,7]. Another common factor among the highest-per-
forming models was the incorporation of data collected
from laboratory protocols, either to contextualize or inter-
pret free-living data, into feature extraction and modeling
processes [5,11,16]. In addition, the funnel plot provided
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in Figure 4 [4,27,28,36] revealed asymmetry with 4 outli-
ers, which was also confirmed with an Egger test (z=2.29;
P=.02). This suggests the presence of small-study effects and
publication bias. Notably, the overoptimistic, smaller-sized

study by Novoa et al [4] is likely overrepresented in the
pooled estimate, and results need to be interpreted with
caution.

Figure 4. A funnel plot illustrating the distribution of study effect sizes to assess potential publication bias. Four studies fall outside the expected
range, suggesting potential publication bias [4,27,28,36].

Discussion
Principal Findings
This systematic review identified research using real-world,
unsupervised wearable data to develop predictive models for
CRF estimation, focusing on VO₂max as the measure of
interest. Our study adds to the literature as the first to appraise
evidence in this field and showcase the ability of advanced
ML algorithms to harness the power of unstructured physical
activity outside controlled laboratory settings. The included
meta-correlation analysis revealed a pooled overall estimate
of 0.83 with a 95% CI of 0.77-0.88, and a mean SEE of
9.06%, demonstrating a promising overall agreement between
predicted VO2max and ground truth. Authors experimented
with a range of sensor modalities and various population
groups, but models were predominantly designed based on
small-sized, healthy volunteer data. Several features were
extracted from the free-living information, including SC and
distance covered, resting and mean HR, and cardiac response
to cadence increase. Quality control of the eligible studies
showed that authors were consistent in predictor and outcome
reporting, but analytical methods were often ambiguous and

included some arbitrary decisions regarding data manipula-
tion.
Advantages
The concept of CRF estimation based on free-living activity
holds considerable potential, and results from this study
suggest that this could be a pragmatic alternative to CPET.
Leveraging longitudinal wearable data can aid preoperative
risk assessment for frail patients or those with musculos-
keletal conditions that underperform during CPET (indica-
ted usually by a respiratory exchange ratio of <1.10) [8].
Researchers have argued that physiological signals captured
over longer time periods may even be more representative
of cardiac health in these populations [5,37] compared to
a snapshot laboratory measurement. In addition, at-home
monitoring offers a convenient and unintrusive assessment
without the need for specific protocols, improving patient
experience and reducing the psychological stress related
to the hospital environment [43]. Considering decreasing
costs and increasing accessibility [44], continuous monitor-
ing could represent a complementary, more cost-effective,
efficient method that can be scaled to accommodate all
patients [7]. Serial measurements of VO2max can not only
help patients track progress and meet targets set during
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prehabilitation and rehabilitation programs but also guide
clinician decision-making [45].

CRF is a well-established marker of CVD and all-cause
mortality [3]. Considering that low levels of CRF may
precede the clinical detection of CVD, early recognition
and intervention are of patient benefit [37]. Wearable-driven
evaluation of the aerobic response during unsupervised
activities of daily living holds prognostic value in tracking
changes in fitness over time, as demonstrated by Spathis
et al [27]. Arguably, models that predict future CRF levels
could help identify early-stage CVD before general symptom
manifestation [37]. Finally, scrutinizing free-living data with
advanced ML presents a rare opportunity to study patient
behavior and activity habits, shedding light on individual
CRF levels [37]. But above all, tailored interventions can
be implemented promptly to improve patient fitness and
outcomes [46].
Contextualizing HR
The advent of wearables is undoubtedly transforming the
landscape of health monitoring, providing clinical teams with
a substantial amount of user-generated time-series data [27].
Although some earlier published studies used aggregates over
several days as features (average steps or HR data), poten-
tially losing information on trends and variability [2,33-36],
most researchers in this review worked on extracting features
from the raw signals, with seven studies aligning cardiac and
activity points to contextualize HR and gain insights into
the participants’ physiological response to workload. Based
on this principle, Plasqui and Westerterp [2] were the first
to publish a fitness index as a ratio between acceleration
and HR. Studies of more advanced modeling included other
multimodal features such as HR at certain speeds or activities
and the HR response to acceleration and recovery [5,29,
37]. As physical activity encompasses both body movement
and an associated cardiovascular response, leveraging these
signals concurrently allows for a better evaluation of the
temporal dynamics of CRF and enhances the understanding of
the individual’s physiology [27,37,47]. It should be empha-
sized, though, that contextualizing HR in unlabelled data
requires navigating many intricacies, as investigators need
to account for external factors that can influence HR, such
as emotional stress, illness, heat, or medications that can
potentially lead to invalid results.

In addition, a key observation arising from studying
the multimodal features is the inverse relationship between
VO2max and HR at a given physical activity, which conforms
to what is seen during the submaximal tests [5,29,33].
This observation reinforces the concept of estimating fitness
from free-living activity, as even in the absence of control-
led settings, behaviors approximating submaximal laboratory
conditions will spontaneously occur [47]. Neshitov et al [29]
demonstrated this inverse relationship, with the slope of the
HR-over-cadence regression line being lower for participants
with high than those with low VO2max, and it was mainly
noticeable between the 60‐100 steps per minute exercise
effort. Interestingly, Bonomi et al [16] highlighted the need
for activity-specific prediction equations, showcasing models

that combined energy expenditure and HR based on differ-
ent activity types. Ultimately, tailoring predictive models
to account for specific activity patterns and physiological
responses enhances the accuracy of CRF predictions.

Challenges
Despite their potential, free-living data present some intrinsic
statistical and computational challenges [48]. Using weara-
bles in out-of-hospital, free-living settings often results in
lower-quality, noisy data that require heavy filtering and
preprocessing to become usable. Vigorous human motion
can disturb on-body sensors and easily corrupt cardiac and
accelerometer signals [40]. Aside from noise, missing data
can also prevent meaningful features from being extracted.
As reported in the “Results” section, preprocessing techni-
ques are an essential step in the data-mining process to
ensure that only reliable data points contribute to predic-
tions. Another challenge lies in the precise physical activity
detection in unlabeled data. Owing to the diverse nature
of daily living, activity patterns overlap, and assumptions
are occasionally made on how certain patterns in the data
correlate with physical activities [5,49]. Furthermore, the
abundance of sedentary data often leads to a data imbal-
ance bias when low-intensity activities are overrepresented,
leading to inaccurate estimations [5,16]. Consequently, due to
the novelty of the task and the challenges outlined, there is
currently no consensus on a specific approach and model that
is most suited for free-living data.
Regression and ML Approaches
Interestingly, in the subgroup analysis, regression-based
models appeared to perform slightly better than ML
approaches. Much research examining the 2 approaches has
repeatedly demonstrated comparable performance between
regression-based and ML approaches, but this is not universal
[38,39]. Nonetheless, this finding from our review warrants
attention, as it likely stems from issues such as reporting bias
and overfitting rather than genuine superiority. Results are
influenced by the notable disparity in sample sizes, with 1
study driving the pooled estimate in ML modeling studies
[27]. Finally, the limited external validation in ML suggests
that the robustness and interpretability of simpler models can,
in some cases, outweigh the complexity when appropriate
validation has not been considered.
Limitations
This systematic review showed that free-living data can
be valuable for CRF prediction and may prove a useful
alternative in a variety of clinical settings. However, some
limitations merit attention. First, although we observed
promising preliminary agreement between VO2max estimates
and predictions, we need to acknowledge that, although we
chose the correlation coefficient as the primary effect size
for the meta-correlation analysis for its availability, it is
not an accuracy metric and therefore does not imply that
predictions are close in absolute terms. Further, as in certain
instances, conversion of the R2 was applied, this may have
artificially inflated perceived predictive ability and, as such,
influenced the overall result. Error-based metrics such as
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root-mean-square error or SEE would better capture accuracy,
which is particularly relevant in clinical settings, but these
measures were not consistently reported.

Second, there was significant heterogeneity and var-
iance among the included studies, which varied in trial
design, sample size, wearable device used, and modeling
approach. Understandably, this limits the generalizability of
our results, and the pooled estimate needs to be interpreted
cautiously. However, in contrast to the synthesis of random-
ized trials, heterogeneity is frequently noted in meta-analyses
of predictive modeling studies, mainly due to the disparity of
eligible study designs or models [50].

Some studies used resting HR as a feature in their
models, limiting monitoring to daytime periods only,
excluding nocturnal HR data [31,32,36,37]. Research,
however, demonstrates that using nighttime data can yield
closer estimations to true testing values when it comes to
resting HR [51]. As such, using daytime-derived resting HR
may have implications for model performance and poten-
tially lead to erroneous results. Godkin et al [51] underline
the lack of standardization and considerable shortcomings
among the criteria and methods used to estimate resting HR.
Since daytime HR can be affected by numerous behavioral,
psychological, and environmental factors, we advocate for
continuous monitoring of free-living data that captures both
activity and rest phases for a more stable profile of HR
distributions.

Considerations should also be made when interpreting the
outputs of the presented models, as the papers reporting the
highest correlations between predicted and actual measure-
ments share several common features. Notably, several
studies presented outputs from regression models without
using unseen data for validation. Directly comparing these
outputs against models validated on unseen data likely
overestimates the model’s true predictive ability. In such
cases, high performance may reflect only how well the data
fit the model, not its ability to generalize. Therefore, the
lack of external validation may contribute to inflation in the
aggregated meta-correlation analysis. Under such conditions,
a single pooled correlation does not necessarily reflect a
uniform level of accuracy and should certainly not be viewed
as evidence of clinical readiness. Instead, it demonstrates the
potential for future research that a strong association may be
achieved.

Another limitation concerning the applicability and
validation of the reported models is the selection bias, as most
trials recruited young, healthy volunteers, making models
less applicable to patient populations. We found that models
predict VO2max with an average 9%, which, arguably,
may be clinically relevant in borderline cases—for instance,
during preoperative risk assessment of frail individuals.
Consequently, no direct conclusions can be drawn for clinical
decision-making, and future research should focus more on
medical settings to assess the effect of patient-specific factors,
such as regular medication and comorbidities, in model
training. Interestingly, although there were several different
devices used in the included trials, no study explored the

practicalities of monitoring patients remotely to collect the
free-living data, which could explain the quality issues of
noise and missingness that these datasets exhibit.
Implications for Real-World Use
The absence of a shared methodological framework across
studies remains a major barrier to translation. As stated
previously in the “Limitations” subheading, heterogeneity in
this review was high, with studies using distinct device types,
signal processing strategies, and validation tactics, often
with insufficient external testing. Consequently, this limits
confidence in generalizability and reproducibility, making
direct comparisons difficult. From a clinical perspective, a
model optimized for one setting may fail to transfer effec-
tively in different patient groups, sensors, or wear patterns
[52].

For clinical adoption to become feasible, several credi-
bility issues need to be addressed. Pitfalls such as model
overfitting, lack of standardized analytical pipelines, and
limited evidence that performance is stable under real-world
conditions (device updates, medication effects on HR)
present significant challenges. Similar challenges have been
identified in studies of prediction modeling for CVDs,
highlighting the need for independent tools to assess
replicability and external validation [52]. Therefore, until
uniform data handling and transparent external validation
become routine, results from research in this field should be
considered promising but not ready for clinical application.
Future Considerations
Despite the challenges and limitations identified in this
review, several models reported here should not be over-
looked in this expanding research field. Future research
should aim to streamline the deployment of wearable
devices in out-of-hospital settings and educate and support
patients and clinical teams. Furthermore, given the increas-
ing influence of the wearable industry in health care, it
is essential for such predictive models to undergo rigorous
validation before being fully integrated into clinical prac-
tice. Establishing consensus on feature extraction, validation,
and reporting guided by frameworks such as TRIPOD-AI
and recent calls for transparency in wearable research
(INTERLIVE) are recommended for future research to yield
reproducible and clinically useful results [21,53].

For public health systems, regulatory frameworks
regarding the digital storage, privacy, and security of the vast
amount of patient-generated data should be considered early.
With the myriad of wearables available, it is important that
feasibility work is undertaken to set standards for a reliable
and accurate technology, helping avoid a repetitive cycle of
temporary models being developed that cannot be extrapola-
ted to clinical contexts or used in clinical practice. Finally,
a cost-effective analysis will determine the viability of these
remote monitoring systems, ensuring they offer a sustainable
solution for patients and health care systems.
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Conclusion
This work explores a novel concept for CRF estimation from
unsupervised free-living patient data. Contrary to the current
gold-standard CPET, which is a snapshot of the individual’s
functional capacity, wearable health monitoring in free-liv-
ing conditions generates rich datasets that can be exploited
to train models for fitness estimation. Several models are
discussed in this paper, with studies applying ML to mine raw
data and enhance accuracy.

The combined results from this review show promise,
with good preliminary agreement between predictions and
measured values. However, no firm conclusions can be drawn
for clinical implementation due to the heterogeneity of the
studies and the lack of external validation. Nonetheless,
continuous data streams appear to be a valuable resource for
ML methods to shed light on human behavior and health,
leading to a step change in how we measure and monitor
CRF, ultimately aiming to improve health outcomes.
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TRIPOD-AI: Transparent Reporting of a multivariable or machine learning prediction model for Individual Prognosis
Or Diagnosis–artificial intelligence
VO₂max: maximal oxygen uptake
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