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Abstract

Background: Wearable devices enable the remote collection of health parameters, supporting the outpatient care plans
recommended by the World Health Organization to manage chronic diseases. While disease-specific monitoring is accurate, a
comprehensive analysis of wearables across various chronic diseases helps to standardize remote patient monitoring systems.

Objective: This review aimed to identify wearables for remote monitoring of chronic diseases, focusing on (1) wearable
devices, (2) sensor types, (3) health parameters, (4) body locations, and (5) medical applications.

Methods: We developed a search strategy and conducted searches across three databases: PubMed, Web of Science, and
Scopus. After reviewing 1160 articles, we selected 61 that addressed cardiovascular, cancer, neurological, metabolic, respi-
ratory, and other diseases. We created a data analysis method based on our 5 objectives to organize the articles for a
comprehensive analysis.

Results: From the 61 articles, 39 (64%) used wearable bands such as smartwatches, wristbands, armbands, and straps to
monitor chronic diseases. Wearable devices commonly included various sensor types, such as accelerometers (n=39, 64%),
photoplethysmographic sensors (n=18, 30%), biopotential meters (n=17, 28%), pressure meters (n=11, 18%), and thermome-
ters (n=9, 15%). These sensors collected diverse health parameters, including acceleration (n=39, 64%), heart rate (n=24,
39%), body temperature (n=9, 15%), blood pressure (n=8, 13%), and peripheral oxygen saturation (n=7, 11%). Common
sensor body locations were the wrist, followed by the upper arm and the chest. The medical applications of wearable devices
were neurological (n=21, 34%) and cardiovascular diseases (n=15, 25%). Additionally, researchers applied wearable devices
for wellness and lifestyle monitoring (n=39, 64%), mainly for activity (n=39, 100%) and sleep (n=10, 26%).

Conclusions: This review underscores that wearable devices primarily function as bands, commonly worn on the wrist,
to monitor chronic diseases. These devices collect data on acceleration, heart rate, body temperature, blood pressure, and
peripheral oxygen saturation, with a focus on neurological and cardiovascular diseases. Our findings provide a foundational
road map for designing generalized remote patient monitoring systems to manage multimorbidity and support standardized
terminology for interoperability across digital health systems. To translate this into practice, we recommend that future
research prioritize pragmatic clinical trials with medically certified devices.

Trial Registration: PROSPERO CRD42023460873; https://www .crd.york.ac.uk/PROSPERO/view/CRD42023460873
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Introduction

Background

According to the World Health Organization (WHO), chronic
diseases are long-lasting, noninfectious, and progressively
worse over time [1]. These include cardiovascular disea-
ses, neurological disorders, cancer, respiratory diseases, and
metabolic disorders, which collectively account for 74% of
annual global mortality and make them the leading cause
of death worldwide [1,2]. The burden of chronic disea-
ses extends beyond health, severely straining health care
resources. The Centers for Disease Control and Prevention
reports that 90% of total health care expenditures in the
United States address individuals with chronic diseases [3].
This expenditure encompasses ongoing treatments, regular
medical consultations, and other health care-related costs [4].

Owing to their long-lasting nature and the ongoing
commitment to curative health services, health care professio-
nals mostly manage chronic diseases on an outpatient basis
[5]. However, preventable factors related to these chronic
diseases lead to sudden death [6]. The WHO prioritizes
individuals with chronic diseases and underscores the need
to develop efficient outpatient treatment strategies [7]. Health
care providers achieve this by remotely monitoring health
parameters [8,9]. Compared to inpatient health care deliv-
ery, remote patient monitoring (RPM) systems have become
a promising option for managing chronic diseases [10,11].
RPM systems support early detection by real-time monitor-
ing of health and well-being [12] using wearable devices
that integrate 1 or more sensors to collect relevant health
parameters remotely [13-15]. This reduces clinic visits and
conserves time and health care resources [16].

Wearable-based RPM systems rely on custom-built
sensors to gather and analyze biometric and physiological
data [17]. Contemporary devices such as smartwatches and
fitness trackers have several sensors [18] and often pair
with mobile apps. Integrating these wearable devices with
cloud platforms facilitates efficient data storage and easy
access for health care providers. Examples of cloud platforms
include Apple HealthKit [19], Google Fit [20], Microsoft
Azure Health Data Services [21], Amazon AWS HealthLake
[22], and Biofourmis [23]. Such technologies offer substantial
potential for clinical trials, fostering research advancements
and improving patient care.

Current articles on wearable devices highlight their
potential in managing chronic diseases. Various sensors, such
as accelerometers, gyroscopes, magnetometers, biopotential
meters, photoplethysmographic (PPG) sensors, and thermom-
eters, monitor health parameters remotely. These include
activity, electrocardiography (ECG), electroencephalography,
electromyography, heartbeats, heart rate, sleep patterns, and
body temperature [24-31].

Currently, wearable devices play a key role in monitor-
ing specific chronic diseases, enhancing the effectiveness of
RPM by focusing on disease-specific health parameters. For
instance, continuous glucose monitors track glucose levels in
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diabetes management [32], biopotential meters monitor heart
rhythms in various conditions [33], and inertial measurement
units (IMU) evaluate body movements for diagnosing stroke
and neurodegenerative diseases [34,35].

Previous review articles on wearable devices for remote
monitoring of chronic diseases often focus on a single
condition, a specific population, or a limited clinical setting
[36,37]. This narrow focus creates a knowledge gap in
understanding their applicability across a broader range of
chronic diseases. The increasing variability of wearable
devices and stand-alone RPM systems presents substantial
challenges for interoperability with digital health systems [38,
39], including electronic health record systems [40]. These
challenges become even more pressing in the context of rising
rates of multimorbidity [41], where patients require integrated
monitoring solutions that can simultaneously track multiple
conditions. This systematic review addresses these gaps by
applying a five-category standardized terminology framework
to analyze wearable devices used for remote monitoring of
chronic diseases.

Objectives

This systematic review aimed to explore wearable devices
and sensor types for remote monitoring of chronic diseases.
Specifically, we answered the following research questions:
1. Which wearable devices are used to monitor chronic
diseases?
2. Which sensor types are integrated into these wearable
devices?
3. Which health parameters do these sensors collect?
4. Where are these sensors located on the human body?
5. Which medical applications are supported by the
wearable devices?

Methods

Overview

This systematic review’s design and reporting follow the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines (Checklist 1) [42]. We
registered the protocol in PROSPERO (CRD42023460873).
Although we specified Quality Assessment Tool for Diverse
Designs for quality appraisal in the registered protocol, we
used the Quality Assessment with Diverse Studies (QuADS)
critical appraisal tool instead, as it was better aligned with the
design and reporting characteristics of the included articles.

Information Source and Search Strategy

We developed a search strategy and sought full-text articles
published in English between January 2019 and December
2023 across three databases: PubMed, Web of Science,
and Scopus. Our search strategy incorporated three terms:
wearable device, remote monitoring, and chronic disease,
as well as relevant synonyms. We used the AND opera-
tor between the keywords and the OR operator within the
synonyms (Multimedia Appendix 1).
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Eligibility Criteria
To ensure a concentrated analysis of wearable devices for

remote monitoring of chronic diseases, we established the
following eligibility criteria.

Tegegne et al

full texts. We engaged in thorough interranker discussions
to resolve discrepant findings. For data extraction, we used
a well-organized spreadsheet (Microsoft Excel) with the
following parameters: author names, year of publication,
country, study design, study phase, device name, device

¢ Inclusion criteria:

° Articles that used wearable devices for the remote

monitoring of chronic diseases

° Articles that used sensors for the remote
collection of health parameters
Original research articles published in peer-
reviewed journals
¢ Exclusion criteria:

status, device type, sensor types, health parameters, body
locations, and medical applications (Multimedia Appendix 2).

Standardized Terminology

Overview

o

We developed a standardized terminology based on existing
evidence supplemented by insights from our research team.
° Articles that used unobtrusive, implantable, or Our terminology encompasses five predefined categories:

nonwearable devices or sensor types wearable device, sensor type, health parameter, body location,
° Articles that did not involve remote monitoring or  and medical application (Figure 1). We systematically

data collection organized the articles by these categories to facilitate a
° Nonjournal publications thorough analysis of the available evidence. The following
° Review articles sections detail the rationale and evidence.

Data Management and Extraction
We conducted data extraction through regular team commu-

nication while reviewing the articles’ titles, abstracts, and

Figure 1. Our standardized terminology framework outlines 5 categories used to guide the systematic analysis of articles on remote monitoring of
chronic diseases. CO;: carbon dioxide; ECG: electrocardiography; EEG: electroencephalography; EMG: electromyography; FEV: forced expiratory
volume in the first second; IR: infrared; PEFR: peak expiratory flow rate; PPG: photoplethysmographic; O,: oxygen; RGB: red, green, blue; SpO,:
peripheral oxygen saturation.
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Wearable Device

We defined a wearable device as an Internet of Things—
enabled electronic device that users wear externally on
the body to monitor and collect health parameters, either
continuously or sporadically, and to transmit data remotely
for health monitoring purposes [43]. Our definition encom-
passes noninvasive and minimally invasive devices that users
wear externally and that do not require surgical implanta-
tion [44]. We explicitly excluded fully implantable devices,
environmental sensors, and purely handheld devices not
designed for body attachment [45]. We categorized wearable
devices into four types:

» Smart accessory: a stand-alone electronic device that
users wear continuously on the body, including bands
(smartwatches, wristbands, armbands, and straps),
rings, necklaces, glasses, hearables, and clothing clips

* Smart textile: a device that integrates into everyday
clothing items such as vests, pants, gloves, shoes, socks,
and insoles

* Medical patch: a device with adhesive skin contact or a
minimally invasive needle

* Other device: a device that users wear sporadically
for specific measurements, such as pressure cuffs,
spirometers, breath analyzers, glucometers, body clips,
and touchable devices, which can remotely transmit
data

Sensor Type

Sensor types refer to the categories of sensing technologies
that wearable devices use for remote monitoring of chronic
diseases, grouped by the physical or chemical properties
they measure (ie, acoustical, chemical, electrical, magnetic,
mechanical, optical, and thermal) [46].

Health Parameter

Health parameters are measurable indicators that provide
insights into an individual’s health status, including core
vital signs, extended vital signs, other physiological data, and
nonphysiological data [14].

Body Location

Body location specifies the outer body regions for sensor
placement to collect health parameters. On the basis of the
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classification proposed by Kim et al [47], we grouped these
regions into four categories: head, torso, upper limb, and
lower limb.

Medical Application

Medical applications refer to the specific uses of wear-
able devices and sensors designed to monitor, manage,
or support health conditions. The primary application of
wearable devices focuses on chronic disease management
while optionally offering wellness and lifestyle tracking,
which can supplement disease monitoring. After identifying
more than 10 distinct diseases, we categorized them into
five groups based on their physiological systems: cardiovas-
cular (eg, heart diseases and hypertension), cancer, neurolog-
ical (eg, stroke, epilepsy, neurodegenerative disorders, and
peripheral neuropathy), metabolic (eg, diabetes and obe-
sity), respiratory (eg, asthma, chronic obstructive pulmonary
disease), and other diseases [48.,49]. This allows us to focus
on broader applications of wearable devices across various
diseases rather than focusing solely on specific conditions.

Quality Appraisal

Our review encompassed various study designs, including
user-centered design, observational, experimental, and mixed
methods articles. To assess the quality of these diverse
articles, we used the QuADS critical appraisal tool [50].
The QuADS includes 13 criteria rated on a scale ranging
from O to 3 (O=not at all, 1=very slightly, 2=moderately, and
3=complete), with a total quality score ranging from O to 39
(Multimedia Appendix 3) [51].

Results

Identified Articles

We identified 1160 articles from the 3 electronic databases.
After removing duplicates, we considered 812 articles for title
and abstract screening and excluded 586. Of the 226 articles
screened, 18 were unavailable in full text. We thoroughly
assessed 208 full-text articles for eligibility and excluded 147
that did not meet the inclusion and exclusion criteria. Finally,
we included 61 articles (Figure 2).
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Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart describing the article selection process for this

review. RPM: remote patient monitoring.
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Characteristics of Included Articles

The included articles span Europe, North America, and
the Asia-Pacific region. A total of 29 (48%) articles were
conducted in Europe, with Italy contributing the most [25,31,
52-55], followed by the United Kingdom [54,56-59]. North
America ranks second, with nearly all articles conducted
in the United States [26-28,32,34,60-73], except one article
conducted in Canada [74].

Researchers used various research methodologies and
study designs. Observational designs were the most prevalent
(29/61, 48%), followed by 13 (21%) articles using user-cen-
tered design paired with experimental validation. Nine (15%)
articles relied solely on experimental methods, and 7 (11%)
articles focused exclusively on user-centered design. Only
3 (5%) articles adopted a mixed methods approach. In line
with these designs, most articles (52/61, 85%) aimed to
develop RPM systems and conduct feasibility and usability
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testing. In contrast, only 9 (15%) articles focused on late-
stage validation and clinical efficacy evaluation.

We identified 74 instances of wearable devices used
across the included articles. Of these, 28 (38%) instances
involved dedicated medical devices approved by regulatory
bodies, such as the US Food and Drug Administration (FDA)
or the European Conformity Medical Device Regulation
(CE-MDR). Most of these (24/28, 86%) collected vital
signs and other physiological parameters. Twenty-six (35%)
instances were consumer-grade wellness devices lacking
medical certification, nearly all (23/26, 88%) designed as
bands. Fourteen (19%) instances represented the early-stage
development of research prototype devices. Additionally,
6 (8%) used consumer-grade devices with certified med-
ical functions (FDA/CE-MDR/HIPAA [Health Insurance
Portability and Accountability Act] approved) [29,34,65,70,
75,76] (Table 1).
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Table 1. Summary of the characteristics of the included articles (N=61).

Tegegne et al

Characteristics and category Articles, n (%)?

Reference

Location
Europe 29 (48)
North America 20 (33)
Asia-Pacific 12 (20)
Study design®
User-centered design 7(11)
Observational 29 (48)
Experimental 9 (15)
User-centered design with experimental validation 13 (21)
Mixed methods 3(5)
Study phase®
Technology development and piloting 21 (34)
Feasibility and usability testing 31(51)
Clinical validation 5(8)
Clinical outcome evaluation 4 (7)
Device status?
Dedicated medical device (FDAe/CE—MDRf 28 (38)
approved)
Consumer-grade device with certified medical 6 (8)
function (FDA/CE-MDR/HIPAAS# approved)
Consumer-grade wellness device 26 (35)
Research prototype device 14 (19)

[24.2529,31,33,35,52-59,75-89]
[26-28,32,34,60-74]
[90-101]

[27,55,71,77,85,96,97]

[24.28.29,32.33,35,53,57.58.61-64,67,69,70,72-74,76,79.,81-83,86,90,94,
95,99]

[34,54,66,68,75,78,89,93,100]
[25,31,52,56,59,60,65,84,87,88,91,92 98]
[26,80,101]

[26,27,31,52,55,56,59-61,65,71,77,84,85.,87,88.91,92,96-98]

[24,25,28.32,33,35,54,57,58.63,64.,66-70,72-74.,76.78-82.90,93.95 99-
101]

[29,62,75.,86,94]
[34,53,83,89]

[28,32,53,55,57,58,60-62,64,66,68,71,73,79-83,86,88,93,100]

[29,34,65,70,75,76]

[24,26,29.35,54,57,61,63-65,67,69,72,78,80,84,87,89-91,95,96 ,99]
[24,25,27.,52,54,56,58,59,77,80,85,92,98,101]

@Percentages may not total 100% due to rounding.

bThe study design describes the methodological approach used in each article.
“The study phase indicates the stage of development or evaluation addressed.
IThe regulatory status reflects the device’s classification at the time of the study, not its current status. Some articles used multiple devices; therefore,

device status is reported based on 74 wearable device instances.
°FDA: US Food and Drug Administration.

fCE-MDR: the European Conformity Medical Device Regulation.
EHIPAA: Health Insurance Portability and Accountability Act.

Wearable Device

We identified 16 distinct wearable devices for remote
monitoring of chronic diseases (Figure 3). Bands, noninvasive
patches, and pressure cuffs emerged as the most frequently
used devices across various chronic diseases, appearing in
39 (64%), 10 (16%), and 6 (10%) articles, respectively.
Neurological disease monitoring used 9 devices, with bands
being the most common [24,25,31,35,54,56,65,72,73,87,89,
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91,98,101]. Researchers used 8 distinct wearable devices for
metabolic diseases, with invasive patches [32,53,55,60,80,83]
being exclusive to this category and the most frequently
used, followed by bands [29,55,80,95,96]. Cardiovascular
monitoring involved 6 wearable devices, primarily bands
[67,69,75,76,84,93,94] and noninvasive patches [33,62,71,
85]. For cancer monitoring, the articles almost exclusively
reported on bands [34,58,63,64,78,81,82,90,97,99,100].
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Figure 3. Occurrence of wearable devices by categories summarized in Figure 1. Rows represent the number of articles (N=61) that use each
wearable device; colored columns (disease categories) may exceed N because some articles report on multiple devices.
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Sensor Type

The wearable devices feature 14 sensor types. Accelerome-
ters, PPG sensors, biopotential meters, pressure meters, and
thermometers are most frequently used to monitor chronic
conditions, appearing in 39 (64%), 18 (30%), 17 (28%),
11 (18%), and 9 (15%) articles, respectively. The weara-
ble devices typically monitor neurological diseases using a
diverse array of 10 sensors, preferring accelerometers [24,25,
27,31,35,54,56,65,68,72,73,87,89,.91,98,101], gyroscopes [24,
25,27,31,35,54,56,65,68,73,91,98,101], and magnetometers
[24,25,31,56,65,73,98] being the most common. Research-
ers used force meters [54,56], torsion meters [27,98], and
wearable cameras [70], exclusively for neurological diseases.
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We identified sensors such as biopotential meters [33,62,
71,75,77,79,85,86], accelerometers [62,67,71,79,84,86,93],
PPG sensors [67,69,74,84 93], pressure meters [74,76,77,94],
and thermometers [62,71,93] as key sensors for the remote
monitoring of cardiovascular diseases, ranked by their usage
frequency. Similarly, we identified that these sensors monitor
cancer, although their frequency varies. Accelerometers [34,
58,63,64,81,82,90,99,100], PPG sensors [78,81,82,97,99],
biopotential meters [64,81,82], thermometers [81,82,97], and
pressure meters [64] are the most common. Additionally, our
analysis showed that the articles used glucose sensors [32,
53,55,60,80,83,96] exclusively and frequently for monitoring
metabolic diseases (Figure 4).
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Figure 4. Occurrence of sensor types by categories summarized in Figure 1. Rows represent the number of articles (N=61) that use each sensor;
colored columns (disease categories) may exceed N because some articles report on multiple sensors. IR: infrared; PPG: photoplethysmographic;

RGB: red, green, blue.
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Wearable Device, Sensor Type, and
Chronic Disease Mapping

A Sankey diagram visually illustrates the relationships among
wearable devices, sensor types, and the corresponding chronic
diseases they monitor (Figure 5). Bands have emerged
as the most widely used wearable devices, integrating 8
sensor types. They primarily incorporate accelerometers [24,
25,31,35,54,56,65,72,73,87,89,91,98,101], gyroscopes [24,25,
31,35,54,56,65,73,91,98,101], and magnetometers [24,25,31,
56,65,73,98] to facilitate remote monitoring of neurological

https://mhealth.jmir.org/2026/1/e74071

diseases. They also often feature PPG sensors [29,54,55,57,
61,67,69,78,80-82,84,93,96,97,99] and biopotential meters
[64,75] to track heart rate and ECG. Moreover, bands
are increasingly equipped with other sensor types such
as electrodermal activity (EDA) biopotential meters [54,
81,82], skin thermometers [54,81,82,93,97], oscillometric
blood pressure meters [76,94], barometric altimeters [80],
and ambient light sensors [80], enabling remote monitor-
ing of skin conductance, body temperature, blood pressure,
atmospheric pressure, and illumination, respectively.
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Figure 5. A Sankey diagram illustrating the mapping between wearable devices, sensor types, and the chronic diseases targeted for remote

monitoring. Node and link widths reflect match frequency, and node colors correspond to wearable device and sensor types. PPG: photoplethysmo-

graphic; RGB: red, green, blue.
Wearable device

Sensor type Chronic disease

Other

Smart accessory Medical patch

Noninvasive medical patches incorporate accelerometers [58,
62,71,80] and thermometers [62,71], in addition to common
types of biopotential meters such as ECG [33,62,71,80,88],
electroencephalography [66,92], electromyography [26], and
impedance [85]. Notably, glucose sensors are the only sensor
type integrated into minimally invasive devices [32,53,55,
60,80,83]. Furthermore, traditional pressure cuffs, such as
the blood pressure monitors iHealth (iHealth Labs Inc) [88,
96] and Withings (Withings) [29], now transmit their data
remotely. Additionally, pulse oximeters such as iHealth [96]
and Onyx (Nonin Medical Inc) [88] enhance the functionality
of traditional body clips by enabling the remote transmission
of peripheral oxygen saturation (SpO,) and heart rate data.

Health Parameter

Sensors gather a total of 25 health parameters for remote
monitoring of chronic diseases (Figure 6). Acceleration is a

https://mhealth.jmir.org/2026/1/e74071

Chemical

Electrical Magnetic Mechanical = Optical = Thermal

key health parameter for monitoring various chronic diseases,
as indicated by 39 (64%) articles. Specifically, it is the most
commonly collected health parameter in the remote moni-
toring of neurological diseases [24,25,27,31,35,54,56,65,68,
72,73,87,89,91,98,101] and cancer [34,58,63,64,81,82,90,99,
100].

The articles consistently reported on monitoring heart rate,
body temperature, blood pressure, and SpO,, as reported in
24 (39%), 9 (15%), 8 (13%), and 7 (11%) articles, respec-
tively. These core and extended vital signs are essential
health parameters for remote monitoring of cardiovascular,
cancer, and metabolic diseases. On the other hand, articles
primarily monitor neurological diseases using nonphysiologi-
cal parameters. Furthermore, metabolic monitoring focuses on
core and extended vital signs and nonphysiological parame-
ters (Figure 6).
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Figure 6. Occurrence of health parameters by categories summarized in Figure 1. Rows represent the number of articles (N=61) that collect each
health parameter; colored columns (disease categories) may exceed N because some articles collect multiple health parameters. COy: carbon dioxide;
ECG: electrocardiography; EEG: electroencephalography; EMG: electromyography; FEV |: forced expiratory volume in the first second; IR: infrared;
PEFR: peak expiratory flow rate; PPG: photoplethysmographic; O;: oxygen; RGB: red, green, blue; SpO;: peripheral oxygen saturation.
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Body Location accommodating 5 sensor types. Researchers commonly place

The wrist is the most frequent body location for sensor
placement, comprising 8 different sensor types. A San-
key diagram illustrates the linkage between accelerometers,
PPG sensors, and gyroscopes to the wrist, highlighting
that these sensor types are mostly positioned on the wrist
(Figure 7). The upper arm is the second-most frequent
body location, comprising 8 sensor types, including pressure
meters [29,64,74,77,88,96] and accelerometers [35,56,81,82,
93.98]. The chest is the third-most common body location,

https://mhealth.jmir.org/2026/1/e74071

biopotential meters [33,62,71,79,80,88] here to monitor
cardiovascular diseases. Additionally, the waist is an ideal
location for IMU sensors, including accelerometers [64,65,68,
72,73,80,95], gyroscopes [65,68,73,80], and magnetometers
[65,73,95] for monitoring neurological, metabolic, and cancer
diseases. Furthermore, researchers place various sensors on
the hand, forearm, upper, and lower legs to monitor neurolog-
ical diseases [26,27,31,56,73,98].
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Figure 7. A Sankey diagram illustrating body locations for sensor placement in the remote monitoring of various chronic diseases. Node and link
widths reflect match frequency, and node colors correspond to sensor type and body locations. PPG: photoplethysmographic; RGB: red, green, blue.
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Medical Application

The articles primarily highlighted the use of wearable devices
for monitoring specific chronic diseases as their primary
medical application, with the option to include wellness
and lifestyle monitoring. Among chronic diseases, neurolog-
ical diseases are the primary focus, accounting for more
than one-third (21/61, 34%) of the articles. Cardiovascular
diseases follow, with 15 (25%) articles, while wearable
devices monitored cancer, metabolic diseases, and respira-
tory diseases in 11 (18%), 10 (16%), and 3 (5%) articles,
respectively (Figure 8).

Lower limb

Upper limb

Head Torso

Furthermore, more than half (39/61, 64%) of the arti-
cles targeted wellness and lifestyle applications alongside
disease-specific metrics. Activity tracking is a fundamental
wellness and lifestyle metric collected across 39 (100%)
articles. Notably, activity remains essential for monitor-
ing neurological diseases. Furthermore, sleep monitoring is
another application widely reported in 10 (26%) articles for
various chronic conditions. For cancer, neurological, and
metabolic diseases, the articles described remote stress-level
monitoring (Figure 8).

Figure 8. Frequency of key medical applications by categories summarized in Figure 1. Rows represent the number of articles (N=61 for chronic
disease monitoring and N=39 for wellness and lifestyle applications); colored columns may exceed N because some articles report on multiple

wellness or lifestyle applications.

Medical application ©© Cardiovascular M Cancer

Chronic disease 15 - 11
Activity 7 - 9
L
2
w
% Sleep 3 I 2 I |
]
=
~
2
E Stress I 2 I 1
o
=
Other 2

W Neurological

-l 1
- b :

' Metabolic Respiratory Other

I3 1
| 1
| 1

Frequency

https://mhealth.jmir.org/2026/1/e74071

JMIR Mhealth Uhealth 2026 | vol. 14 | ¢74071 | p. 11
(page number not for citation purposes)


https://mhealth.jmir.org/2026/1/e74071

JMIR MHEALTH AND UHEALTH

Quality Assessment of Included Articles

More than half of the included articles fully met 11 of the 13
QuADS criteria, receiving the top rating (Complete) on the
QuADS scale (Table 2). Specifically, 56 (92%) and 54 (89%)
articles clearly described the data collection procedure and
stated the research aim, respectively. Fifty-two (85%) articles
provided detailed descriptions of the research setting and

Tegegne et al

population, used an appropriate format and content for the
data collection tool, and applied proper methods of analysis to
address the research aim. In contrast, only 15 (25%) articles
thoroughly addressed stakeholder involvement in the design
and conduct of the article, while 11 (18%) articles did not
report stakeholder involvement at all (Multimedia Appendix
3).

Table 2. Quality assessment scores for the 13 Quality Assessment with Diverse Studies (QuADS) criteria [50].

QuADS criteria

Rating scale?, n (%)°

Not at all Very slightly Moderately Complete
Theoretical or conceptual underpinning to the research 0(0) 1(2) 25 (41) 35(57)
Statement of research aim/s 0(0) 1(2) 6 (10) 54 (89)
Clear description of research setting and target population 0(0) 2(3) 7(11) 52 (85)
Study design appropriate to address the stated research aim/s 0(0) 0(0) 17 (28) 44 (72)
Appropriate sampling to address the research aim/s 2(3) 5(8) 31 (51) 23 (38)
Rationale for choice of data collection tool/s 3(5 5(8) 16 (26) 37 (61)
Format and content of data collection tool appropriate to research aim/s 0 (0) 0(0) 9 (15) 52 (85)
Description of data collection procedure 0 (0) 0 (0) 5(8) 56 (92)
Recruitment data provided 4(7) 5(8) 14 (23) 38 (62)
Justification for analytic method selected 7(11) 5(8) 18 (30) 31(51)
Method of analysis appropriate to answer the research aim/s 2(3) 0(0) 7(11) 52 (85)
Evidence that stakeholders were considered in design/conduct 11 (18) 12 (20) 23 (38) 15 (25)
Strengths and limitations critically discussed 5(8) 0(0) 23 (38) 33 (54)

8Each cell indicates the number of articles (N=61) that met the corresponding QuADS criterion at the given rating scale.

bPercentages may not total 100% due to rounding.

Discussion

Principal Findings and Interpretation

We identified the wearable devices, sensor types, health
parameters, body locations, and medical applications for
remote monitoring of various chronic diseases. We found
a clear trend toward wrist-worn bands primarily tracking
acceleration, followed by core and extended vital signs.
These devices mainly monitor neurological and cardiovascu-
lar diseases.

Wearable devices predominantly come in the form of
bands, a trend driven by consumer electronics giants such
as Fitbit [34,55,67,72,90], Apple [55,69,84,99], Garmin [57,
80], Huawei [94,96], Samsung [99], Withings [75], Omron
HeartGuide [76], and Misfit [63]. These brands offer a
diverse range of wearable devices, including smartwatches,
wristbands, armbands, and straps. However, most consumer-
grade wellness devices lack medical certification, and 23
of 26 are bands. This finding urges future researchers
and clinicians to look beyond wearability and user-friend-
liness and to consider regulatory status. The emergence
of consumer-grade wellness devices with certified medi-
cal functions (FDA/CE-MDR approval), although still a
minority, represents a significant development for RPM
systems by addressing the need for clinical validation.

https://mhealth.jmir.org/2026/1/e74071

A wide range of wearable devices integrated accelerom-
eters to track acceleration, which emerged as the most
frequently monitored and clinically relevant health parameter
across multiple chronic diseases. This is because accelera-
tion offers valuable insights for designing activity plans that
support wellness and slow disease progression [102]. Our
findings further highlight its particular prevalence in the
remote monitoring of neurological disorders and cancer. This
aligns with previous research, demonstrating that tracking
acceleration enables researchers to gain a deeper understand-
ing of movement patterns, serving as key indicators of
Parkinson disease [103-105], and to assess motor function
and recovery following a stroke [106,107]. Acceleration is
also a key health parameter for monitoring physical fitness
levels and evaluating treatment effectiveness in patients with
cancer [108].

Vital sign monitoring remains a cornerstone for the remote
management of chronic diseases [109], as it provides critical
insights into a patient’s overall physiological status [110] and
serves as an early warning signal for detecting and preventing
patient deterioration [111]. Our findings support this principle
in the context of wearable devices, revealing that articles
frequently use PPG sensors, biopotential meters, pressure
meters, and thermometers to track core and extended vital
signs, including heart rate, body temperature, blood pressure,
and SpO;.
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The wrist is the dominant body location for sensor
placement, primarily due to ongoing technological innova-
tions in bands, which improve comfort and usability [112]
while enabling the integration of key sensor types, such
as accelerometers and PPG sensors [113,114]. When data
quality is essential, researchers often choose the upper arm
to minimize motion artifacts that corrupt health parameters,
compared to the more dynamic wrist and hand [115]. Sensor
placement is specific to the health parameter. The chest
remains the major site for placing biopotential meters (ECG
tracking), which reflects clinical practice [116]. Conversely,
PPG sensors do not perform well when placed on the chest,
likely due to factors such as skin type and hair density [117-
120]. To quantify motor symptoms in the limbs, researchers
monitoring neurological diseases often place IMUs on the
extremities (eg, the upper arm, forearm, hand, and leg) [121-
123].

Wearable devices primarily target neurological and
cardiovascular diseases. A recent report from the Institute
for Health Metrics and Evaluation supports our findings,
identifying neurological diseases as the leading global cause
of disease burden and disability, affecting 3.4 billion people,
and surpassing the impact of cardiovascular diseases [124,
125]. The effectiveness of wearable-based RPM systems for
early prediction and prevention is mainly due to their ability
to capture quantifiable biomarkers, such as gait analysis,
tremors, speech patterns, and cognitive functions. Alongside
this, researchers continue to use wearable devices to monitor
cardiovascular diseases, which are the leading cause of death
globally [126].

Beyond chronic disease monitoring, there is a signifi-
cant emphasis on wellness and lifestyle monitoring. Approx-
imately two-thirds of the articles track physical activities,
such as counting steps and determining movement. Addition-
ally, movement-related parameters, such as tremors, motor
symptom assessment, and muscle vibration, are essential
for diagnosing neurological diseases. This aligns with the
WHO report, which states that promoting healthy behaviors
or responding to warning signs can prevent 80% of chronic
diseases [127]. Furthermore, our results align with previ-
ous research, demonstrating that regular physical activity is
essential for managing chronic diseases [128,129], preventing
the onset of new diseases [130-132], reducing medication
needs [133,134], and enhancing quality of life [135-138].
This emphasizes the importance of setting physical activity
plans as a strategy to prevent the progression of chronic
diseases.

Another application of this lifestyle approach is the
growing focus on remote sleep monitoring. Evidence from
the Centers for Disease Control and Prevention [139] and
the Population Reference Bureau [140] supports our findings,
highlighting the strong association between poor sleep
and various chronic diseases, including cardiovascular and
metabolic disorders. As a result, we emphasize the impor-
tance of monitoring and addressing sleep problems to prevent
deterioration in health and promote healthy behaviors in
patients with chronic conditions.
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Comparison With Prior Work

Several systematic reviews examined the use of weara-
ble devices for remote monitoring of chronic diseases.
Some reviews evaluated the impact of wearable-based RPM
systems on patient outcomes [36,41,141]. However, these
articles do not specify the wearable devices, sensor types,
body locations, or health parameters. Other reviews analyze
medical applications of RPM systems [142,143], but they
do not provide cross-disease mapping of wearable devices,
sensor types, body locations, or monitored health parameters.
Some reviews focus on specific applications, such as primary
health care [37], rehabilitation [14], or physical activity
monitoring [144], but do not compare wearable devices or
parameters across health conditions.

In contrast, our systematic review provides a framework
for wearable devices, sensor types, body locations, health
parameters, and medical applications. We visualize relation-
ships among wearable devices, sensor types, and chronic
diseases, as well as between sensor types, body locations,
and chronic diseases. Building on the recommendation from
Cajamarca et al [145], we argue that managing multiple
chronic conditions represents a forward-looking approach to
address the global rise in multimorbidity. For instance, data
from Watson et al [146] show that 51.4% of US adults
live with multiple chronic conditions. By identifying shared
components across chronic conditions, our findings provide
foundational evidence for designing generalized wearable-
based RPM systems. Such multifunctional systems cost-effec-
tively monitor multiple chronic conditions simultaneously,
moving beyond disease-specific solutions [147].

Martins et al [148] highlighted the need for common
standards to address ongoing interoperability challenges
across diverse RPM systems. Identifying shared components
across pilot projects, commercial products, and CE/FDA-
approved wearable devices represents a critical first step
toward the semantic harmonization of clinical data across
chronic conditions [149]. Our work fosters a deeper under-
standing of the increasing diversity of RPM systems, supports
the assessment of Fast Healthcare Interoperability Resources
requirements, encourages performing concept mapping, and
promotes the development of extensions to medical terminol-
ogies, including International Classification of Diseases, 11th
Revision [150], Systematized Nomenclature of Medicine—
Clinical Terms [151], and Logical Observation Identifiers
Names and Codes [152].

Limitations and Future Research
Directions

This review has several limitations. First, we limited the
scope to wearable devices used for the remote monitoring
of chronic diseases, excluding unobtrusive or implantable
sensors, as well as articles that do not implement RPM
systems. While this allows for a more targeted analysis, it
may reduce the generalizability of the results to broader
sensor technologies. Second, most of the included articles
(52/61, 85%) focused on developing RPM systems and
conducting early-stage feasibility and usability assessments.

JMIR Mhealth Uhealth 2026 | vol. 14 174071 | p. 13
(page number not for citation purposes)


https://mhealth.jmir.org/2026/1/e74071

JMIR MHEALTH AND UHEALTH

Although the field demonstrates strong innovation, it lacks
substantial late-stage validation and evaluation of clinical
impact on patient outcomes. Consequently, our findings
are primarily based on reported device usage frequencies
in early-stage and feasibility studies, rather than on dem-
onstrated clinical outcomes. Therefore, readers should not
interpret the frequency of a device’s appearance in this
review as evidence of its clinical effectiveness. Third, we
did not evaluate technical aspects, such as long-term device
reliability, low power consumption, or the impact of motion
artifacts on sensor accuracy. While these factors significantly
affect the long-term monitoring of chronic diseases, they fall
outside the predefined objectives of this review and require
further investigation in future research.

Given this predominance of early-stage feasibility articles,
we strongly recommend a shift in research priorities.
Future work should prioritize late-stage clinical trials that
use medically certified wearable devices. Such articles are
essential for rigorously evaluating the clinical efficacy, data

Tegegne et al

privacy, and system maturity, and the impact of motion
artifacts, thereby moving RPM systems beyond proof-of-con-
cept toward evidence-based implementation.

Conclusions

This review confirms that the most frequent devices for
remote monitoring of chronic diseases are bands, with the
wrist being the preferred body location, followed by the
upper arm and the chest. The most common sensor types are
accelerometers, PPG sensors, and biopotential meters, which
primarily collect health parameters such as acceleration, heart
rate, and body temperature. Key applications of wearable
devices include monitoring neurological and cardiovascu-
lar diseases, tracking activity, and assessing sleep quality.
Overall, these findings highlight the need for a foundational
road map for designing generalized RPM systems that can
manage multimorbidity and support standardized terminology
to enhance interoperability across digital health systems.
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RPM: remote patient monitoring
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