
Review

Advancements in Wearable Sensor Technologies for Health
Monitoring in Terms of Clinical Applications, Rehabilitation, and
Disease Risk Assessment: Systematic Review

Bonsang Gu1, MS; Hyeon Su Kim1,2, BEng; HyunBin Kim2, BEng; Jun-Il Yoo3, MD, PhD
1Department of Biomedical Research Institute, Inha University Hospital, Incheon, Republic of Korea
2Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
3Department of Orthopedic Surgery, Inha University Hospital, Inha University College of Medicine, Incheon, Incheon, Republic of Korea

Corresponding Author:
Jun-Il Yoo, MD, PhD
Department of Orthopedic Surgery
Inha University Hospital, Inha University College of Medicine
27, Inhang-ro, Jung-gu
Incheon, Incheon
Republic of Korea
Phone: 82 10 3242 4980
Email: furim@daum.net

Abstract

Background: Wearable sensor technologies such as inertial measurement units, smartwatches, and multisensor systems have
emerged as valuable tools in clinical and real-world health monitoring. These devices enable continuous, noninvasive tracking
of gait, mobility, and functional health across diverse populations. However, challenges remain in sensor placement standardization,
data processing consistency, and real-world validation.

Objective: This systematic review aimed to evaluate recent literature on the clinical and research applications of wearable
sensors. Specifically, it investigated how these technologies are used to assess mobility, predict disease risk, and support
rehabilitation. It also identified limitations and proposed future research directions.

Methods: This review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines. We searched the PubMed, Scopus, and Web of Science databases up to March 9, 2025. Inclusion
criteria focused on studies using wearable sensors in clinical or real-world environments. A total of 30 eligible studies were
identified for qualitative synthesis. Data extracted included study design, population characteristics, sensor type and placement,
machine learning algorithms, and clinical outcomes.

Results: Of the included studies, 43% (13/30) were observational, 27% (8/30) were experimental, and 10% (3/30) were
randomized controlled trials. Inertial measurement unit–based sensors were used in 67% (20/30) of the studies, with wrist-worn
devices being the most common (13/20, 65%). Machine learning techniques were frequently applied, with random forest (6/30,
20%) and deep learning (5/30, 17%) models predominating. Clinical applications spanned Parkinson disease, stroke, multiple
sclerosis, and frailty, with several studies (4/30, 13%) reporting high predictive accuracy for fall risk and mobility decline (area
under the receiver operating characteristic curve up to 0.97).

Conclusions: Wearable sensors show strong potential for mobility monitoring, disease risk assessment, and rehabilitation
tracking in clinical and real-world settings. However, challenges remain in standardizing sensor protocols and data analysis.
Future research should focus on large-scale, longitudinal studies; harmonized machine learning pipelines; and integration with
cloud-based health systems to improve scalability and clinical translation.

(JMIR Mhealth Uhealth 2026;14:e76084) doi: 10.2196/76084
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Introduction

Throughout this paper, we use standardized terminology to
ensure clarity and consistency. The term “wearable sensor”
refers to any body-worn device capable of measuring
physiological or biomechanical parameters, including inertial
measurement unit (IMU)–based sensors, smartwatches, smart
insoles, and multisensor systems. “IMU” refers specifically to
devices incorporating accelerometers, gyroscopes, and
magnetometers for motion tracking. When referring to specific
device types (eg, smartwatches and smart insoles), we use the
precise terminology to distinguish their unique features and
applications.

Wearable sensors have gained significant attention in clinical
research and health care for their ability to provide continuous,
real-world assessments of mobility and physiological health.
These devices, including IMU-based sensors, smartwatches,
and multisensor systems, have transformed traditional gait and
activity monitoring by enabling remote, noninvasive tracking
of movement patterns and health status [1]. The integration of
advanced analytics, particularly machine learning (ML), has
further enhanced their diagnostic and predictive capabilities,
positioning wearable sensors as key tools in digital health and
precision medicine [2].

Gait analysis and mobility tracking have been central to
wearable sensor applications, particularly in neurological,
musculoskeletal, and age-related conditions. In Parkinson
disease (PD), wearable sensors have been used to detect subtle
changes in gait speed, stance and swing phase durations, and
postural instability, aiding in early disease detection and
progression monitoring. In stroke rehabilitation, these sensors
enable remote motor recovery assessment and provide
continuous mobility data outside traditional clinical settings [3].
Wearable sensors also demonstrate high efficacy in frailty
assessment and fall risk prediction, offering objective, real-time
alternatives to conventional tools such as the
Performance-Oriented Mobility Assessment (POMA) and Timed
Up and Go (TUG) tests.

Despite their growing clinical adoption, several challenges
hinder the widespread implementation of wearable sensor
technology. Variability in sensor placement, study
methodologies, and data processing techniques limits cross-study
comparability and reproducibility [3]. Additionally, while
controlled laboratory studies have validated their accuracy,
real-world validation remains insufficient, necessitating further
large-scale, longitudinal studies to assess their usability and
reliability across diverse populations [4]. Furthermore,
standardization of ML frameworks and data interpretation
methodologies is essential to ensure consistent clinical
application [5].

This systematic review aimed to provide a comprehensive
evaluation of wearable sensor research, analyzing their clinical
applications, technological advancements, and methodological
challenges. By synthesizing evidence from recent studies, we
highlight key trends in wearable sensor use, discuss their
implications for health care, and propose future directions to
enhance their impact in mobility monitoring and rehabilitation.

Methods

Study Design
The protocol of this review was not registered in PROSPERO
due to its exploratory nature and inclusion of emerging sensor
studies. However, the review process followed the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) 2020 guidance to ensure methodological
transparency. The study selection process followed PRISMA
2020 guidelines, including identification, screening, eligibility
assessment, and final inclusion. This review focused on studies
published in the last 10 years that investigated the applications
and effectiveness of wearable sensors, including smartwatches,
in remote health monitoring, rehabilitation, and disease
assessment. Full-text articles were included to ensure a
comprehensive analysis. We aimed to synthesize evidence on
clinical and research applications of wearable sensors,
particularly for gait analysis, fall risk assessment, and disease
monitoring. Given study heterogeneity, we categorized and
synthesized the findings narratively, emphasizing
disease-specific insights and sensor use trends.

Search Strategy
A comprehensive database search was conducted across
PubMed, Scopus, and Web of Science.

The search strategy combined terms related to wearable
technologies, inertial sensors, digital biomarkers, and
rehabilitation. Representative Boolean operators were used as
follows:

(“smartwatch” OR “smart watch” OR “wearable
sensor” OR “wearable sensor”) AND
(“accelerometer” OR “acceleration sensor” OR
“inertial sensor” OR “IMU”) AND (“remote
monitoring” OR “digital biomarkers” OR
“telemedicine” OR “wearable health tracking”) AND
(aging OR older adults OR elderly OR Parkinson OR
stroke OR “gait disorders” OR “neurological
disorders” OR “movement disorders” OR “fall risk”
OR rehabilitation OR “functional mobility” OR
sarcopenia OR osteoarthritis OR dementia) NOT
review.

The initial search yielded 4226 records. Of these 4226 records,
after removing duplicates and studies unrelated to clinical
applications (n=3664, 86.7%), 562 (13.3%) remained for
screening. Of these 562 studies, those focusing solely on
technical performance comparisons (n=501, 89.1%) were
excluded, leaving 61 (10.9%) for eligibility assessment. Of these
61 studies, an additional 31 (51%) were excluded due to limited
relevance to disease-related applications, resulting in 30 (49%)
studies included in the final review. The search was finalized
on March 9, 2025. In total, 30 studies met the inclusion criteria
and were included in the final synthesis. Additional references
cited throughout the manuscript (n=43) were used for
background, context, and methodological justification.
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Study Selection Process
A single researcher conducted study selection and data
extraction following a predefined protocol to minimize bias.
The eligibility criteria were clearly defined and consistently
applied. Studies published from March 9, 2015, to March 9,
2025, were considered, reflecting a 10-year search window.
Eligible study designs included randomized controlled trials
(RCTs), observational studies, and experimental validation
studies conducted in either clinical or real-world settings. Both
research-grade and commercial wearable sensors were included
provided that they reported measurable health or functional
outcomes. Only English-language, peer-reviewed articles were
included, and conference abstracts, reviews, and purely technical
feasibility reports without human participants were excluded.
Quality appraisal using the Newcastle-Ottawa Scale (NOS),
Joanna Briggs Institute (JBI) appraisal tools, or version 2 of the
Cochrane risk-of-bias tool for randomized trials (RoB 2) was
conducted to describe study rigor but did not influence inclusion
decisions.

Any uncertainties during the selection process were resolved
by re-evaluating studies against the predefined inclusion criteria.
Data extraction was conducted manually using a standardized
form. No independent reviewers cross-checked the extracted
data, which is acknowledged as a limitation. Missing or unclear
data were clarified when possible, by contacting the
corresponding authors. No automation tools were used for data
collection.

Participant Selection in the Included Studies
The included studies targeted diverse populations, including
healthy adults; older individuals; and patients diagnosed with
neurological disorders (eg, stroke and PD), musculoskeletal
disorders (eg, sarcopenia and osteoarthritis), or metabolic
conditions (eg, diabetes). Participants could walk independently
and provided informed consent. We excluded studies lacking
clear participant definitions or standard gait analysis metrics to
maintain consistency. Pediatric studies were excluded except
for those including toddler cohorts (aged <3 years) and
specifically designed for developmental gait analysis. To ensure
data quality, studies were required to report a minimum wear
time of 30 minutes of valid sensor data per session.

Wearable Sensor Technology
The wearable sensors reviewed featured advanced components
such as high-precision accelerometers, gyroscopes, and pressure
sensors. These sensors accurately captured key gait and mobility
parameters: step length, stance and swing phase durations,
plantar pressure distribution, and center of pressure.
Smartwatches were primarily used for activity tracking and
remote monitoring, whereas wearable sensors and foot-mounted
sensors specialized in gait and postural assessments. The
wearable sensors integrated seamlessly into daily life, ensuring
high usability and real-world applicability.

Data Acquisition and Analysis
Data were collected using a variety of wearable sensor systems,
including IMUs, smart insoles, smartwatches, and
pressure-sensing devices. Sensor placement varied by study
objective and included the wrist, waist, ankle, thigh, lumbar

spine, and foot. The IMU sensors incorporated accelerometers,
gyroscopes, and magnetometers with sampling rates ranging
from 10 to 1149 Hz depending on the device and measurement
context. Pressure-sensitive insoles provided additional
biomechanical insights through plantar pressure distribution
and force-time characteristics.

Wireless data transmission via Bluetooth or cloud platforms
enabled real-time monitoring and digital biomarker extraction.
Embedded preprocessing algorithms were applied to reduce
noise, improve signal quality, and enhance feature extraction
accuracy. Studies used various ML techniques, including random
forest (6/30, 20%), deep learning (5/30, 17%), elastic net
regression (4/30, 13%), and principal component analysis (PCA;
2/30, 7%), for pattern recognition, mobility classification, and
disease risk prediction. All reported quantitative values (eg,
area under the receiver operating characteristic curve [AUROC],
accuracy, and improvement rate) were extracted from individual
studies and are presented descriptively, not as pooled estimates.

The methodological quality of the included studies was
systematically evaluated using appropriate assessment tools
based on the study design. The NOS was applied to prospective
cohort studies, whereas the JBI critical appraisal checklist was
used for observational, cross-sectional, and experimental studies.
For RCTs, the RoB 2 tool was used to ensure a robust evaluation
of study quality. The results of the quality assessment guided
the interpretation of the reliability and clinical applicability of
the findings. Studies were categorized as low (JBI or NOS score
of ≥8), moderate (JBI or NOS score of 6-7), or high (JBI or
NOS score of ≤5) risk of bias according to established
thresholds.

Ethical Considerations
All studies included adhered to ethical standards for human
research, following the Declaration of Helsinki. As this study
is a systematic review of published literature and did not involve
human participants, interventions, or identifiable private data,
ethics approval was not required. Data privacy and participant
well-being were prioritized across the studies.

Results

Study Design and Population Characteristics
A total of 4226 records were identified through database
searching. After removing duplicates and screening titles and
abstracts, 562 articles remained for full-text assessment. Of
these, 30 studies met the inclusion criteria and were included
in the final review. The full screening process is summarized
in Figure 1 (PRISMA 2020 flow diagram). Among the analyzed
studies, the most frequently used research design was
prospective observational studies, accounting for 43% (13/30)
of the total. Experimental studies comprised 27% (8/30),
whereas RCTs were limited to 10% (3/30). Cross-sectional
studies and cohort studies accounted for 13% (4/30) and 7%
(2/30), respectively. Observational studies were most common
due to their feasibility, whereas experimental studies validated
sensor-based assessments. RCTs were scarce, indicating limited
rigorous intervention-based evaluations. Cohort studies were
included in long-term monitoring applications.
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Figure 1. PRISMA flow diagram illustrating the screening process of papers for study selection.

The studies focused on various populations, with healthy adults
being the most common participant group, as summarized in
Table 1. Studies involving neurodegenerative diseases such as
PD, stroke, Huntington disease, and multiple sclerosis (MS)
were also prevalent. Healthy adults were often included for
sensor validation and reliability assessment, whereas studies on
neurodegenerative diseases primarily aimed at mobility and
functional monitoring. Research on frailty in older adults (4/30,
13%) focused on mobility assessment, balance, and fall risk
analysis. The reviewed studies covered a wide range of age
groups and health conditions. Studies involving healthy adults
typically included participants from early adulthood to middle

age, with some extending to adolescent and pediatric
populations. Research on neurodegenerative diseases such as
PD and Huntington disease focused primarily on older adults,
whereas cardiovascular disease– and frailty-related studies
involved older participants as well. Certain studies (12/30, 40%)
targeted specific conditions such as osteoarthritis, rheumatoid
arthritis, MS, cystic fibrosis, stroke, and spinal cord injury,
highlighting the diverse application of wearable sensors,
particularly smartwatches, in different clinical populations. The
distribution of male and female participants varied across
studies, with some (1/30, 3%) focusing specifically on age-based
differences in sensor performance and health monitoring.

JMIR Mhealth Uhealth 2026 | vol. 14 | e76084 | p. 4https://mhealth.jmir.org/2026/1/e76084
(page number not for citation purposes)

Gu et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Summary of study populations in the reviewed studies.

Health conditionNumber of male/female participantsParticipant age (y)Study

Knee osteoarthritis6/8Mean 66.8 (SD 7.0)Bolam et al [6], 2021

Healthy adults9/11Mean 26.8 (SD NRa; range 23-54)Angelucci and Aliverti [7],
2023

PD27/17PDb 1 (clinical cohort): mean 67.3 (SD 7.1); PD 2
(exercise cohort): mean 64.9 (SD 7.3)

Greene et al [8], 2021

HDc9/8Mean 51 (SD 12)Gordon et al [9], 2019

Healthy adults and adoles-
cents

6/12Range 13-24Presley et al [10], 2023

CVDd and heart failure65/24Mean 63 (SD 1)De Cannière et al [11],
2020

HD, pre-HD stage, and con-
trols

8/8 (HD group)HD: mean 51.9 (SD 11); pre-HD stage: mean 36.5
(SD 13.1); control: mean 58.9 (SD 12.2)

Nunes et al [12], 2024

PDControl: 27/33; PD: 23/12Control: mean 43.9 (SD 10); PD: mean 68.1 (SD
8.1)

Mahadevan et al [13],
2020

Stroke (upper-limb hemipare-
sis)

12/7Mean 61 (SD 12)Seo et al [14], 2024

Healthy adults16/12Mean 27.25 (SD NR; range 20-56)Odhiambo et al [15], 2023

Healthy adults6/6Mean 29.8 (SD 6.8)Hwang and Effenberg
[16], 2021

Healthy adults2/2Mean 48 (range 26-66)Wu et al [17], 2021

Stroke vs healthy older adultsControl: 6/8; Stroke: 8/6Control: mean 74 (SD 8.7); Stroke: mean 69 (SD
8.4)

John and Soangra [18],
2022

Multiple sclerosis5/16Mean 51 (SD 7)Meyer et al [19], 2022

StrokeNot specifiedNot specifiedToumieux et al [20], 2015

Healthy runners6/3Not specifiedElstub et al [21], 2022

RA, PA, and OARA: 18 female; PA: 2 female; OA:
10 female; healthy: 15 female

RAe: mean 50.7 (SD 11.4); PAf: mean 47.5 (SD

15.5); OAg: mean 60.7 (SD 4.5); healthy: mean 48
(SD 13.6)

Perraudin et al [22], 2018

Frailty levels12/39Mean 77.5 (SD 8.4)Giggins et al [23], 2025

Cystic fibrosis6/18Mean 37.5 (SD 11.5)Savi et al [24], 2020

Healthy adults22/8Mean 26.7 (SD NR)Haghi et al [25], 2023

Multiple sclerosis28/86Mean 52 (SD 10.6)DasMahapatra et al [26],
2018

Healthy adultsOA: 4/6; YA: 6/6OA: mean 78.2 (SD 6.1); YAh: mean 24.4 (SD 3.9)Sun et al [27], 2019

Older adults with multiple
chronic conditions

Community: 41/104; hospital: 5/4Community: mean 82.16 (SD 9.55); hospital: mean
84.22 (SD 13.87)

Ramezani et al [28], 2019

Healthy adults9/9Mean 20.8 (SD 1.6)Liew et al [29], 2024

Healthy toddlers10/1213-35 months (1-year-olds: 11; 2-year-olds: 11)Kwon et al [30], 2019

CVD prevention and obesity26/22Mean 58 (SD 8; range 18-69)Martin et al [31], 2015

OHCAi and SCAjNot specifiedVariousHup et al [32], 2024

Pediatric obesity9/11Mean 13.3 (SD 2.3)Browne et al [33], 2020

Rotator cuff and shoulder painNot specified≥18Burns et al [34], 2020

Spinal cord injury and
wheelchair users

11/4Mean 51 (SD 9; range 28-63)Bailey et al [35], 2024

aNR: not reported.
bPD: Parkinson disease.
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cHD: Huntington disease.
dCVD: cardiovascular disease.
eRA: rheumatoid arthritis.
fPA: psoriatic arthritis.
gOA: old adult.
hYA: young adult.
iOHCA: out-of-hospital cardiac arrest.
jSCA: sudden cardiac arrest.

Sensor Use and Data Analysis in Wearable Research
Studies relied heavily on IMU sensors (20/30, 67%) and
smartwatches (8/30, 27%). Shoe-mounted sensors and
multisensor systems incorporating electrocardiograms were less
frequently used. Wrist-worn sensors (13/30, 43%) were the most
common due to ease of wear and practical data collection.
Smartwatches, as a subset of wrist-worn devices, were
frequently used for continuous activity tracking and health
monitoring. Additionally, ankle and thigh placements (7/30,
23%) were primarily used for gait analysis, whereas foot and
insole sensors (2/30, 7%) were implemented for more
specialized balance and gait assessments.

The predominant activity type studied was gait analysis, which
appeared in 60% (18/30) of the studies, followed by activities
of daily living (12/30, 40%), balance assessments (8/30, 27%),
energy expenditure evaluations (6/30, 20%), and rehabilitation
exercises (6/30, 20%). Gait analysis was especially relevant in
research focused on neurodegenerative diseases and mobility
impairments, where smartwatches were often used for free-living
gait monitoring. Studies on activities of daily living leveraged
smartwatches for continuous data collection in real-world

settings. Balance assessments were primarily conducted for
frailty and fall risk evaluations, with some smartwatch-based
apps integrating accelerometry for postural control analysis.

Data processing in wearable sensor research used a range of
ML techniques. Random forest was the most commonly applied
method (6/30, 20%), followed by deep learning models (5/30,
17%), elastic net regression and support vector machines
(SVMs; 4/30, 13%), and PCA (2/30, 7%). Random forest was
frequently used in gait analysis and activity recognition, whereas
deep learning models were applied for long-term movement
pattern analysis, particularly in smartwatch-based apps. Elastic
net and SVM were commonly used for classification tasks, and
PCA was used for dimensionality reduction, optimizing the
performance of wearable sensor data processing.

Clinical Applications of Wearable Sensors

Overview
The diverse clinical applications of wearable sensors,
categorized into 5 main areas—healthy individuals, age-related
conditions, neurological conditions, musculoskeletal disorders,
and metabolic conditions—are summarized in Table 2.
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Table 2. Summary of clinical results for wearable sensors across populations.

Clinical significance and utilityKey findingsCategory and condition

Rehabilitation assessment and functional recovery

IMUd-based wearables support accurate postoperative
monitoring and personalized recovery for knee arthro-
plasty.

Bone stimulus: +52%; impact load: +371%;

OKSc: +52%; EQ-5D: +32%
Knee arthroplasty (TKAa and

UKAb)

CR progress can be reliably tracked remotely, improving
long-term care.

6MWDf prediction error: 42.8 m; R2=0.661CRe

IMUs enable remote monitoring of home-based rehabil-
itation, enhancing adherence and personalization.

Movement quality classification accuracy: 92%;
F1-score: 0.95

Stroke—upper-limb rehabilitation

Smartwatches improve rehabilitation compliance and
exercise tracking at home.

Exercise classification accuracy: 99.99%Rotator cuff injury rehabilitation

Wrist-worn sensors allow for remote lumbar mobility
assessment for rehabilitation use.

Significant ROMg differences between wrist and
lumbar sensors (up to 8, P=.003)

Lumbar mobility assessment

Disease state prediction and risk assessment

Wearables objectively monitor PD symptoms and fall
risk for early intervention.

Tremor detection accuracy: 83%; sensitivity: 86%;

specificity: 86%; fall risk prediction RMSEi: 0.42
PDh—tremor and fall risk

HD motor decline can be tracked remotely for personal-
ized care.

Sensitivity: 85%; specificity: 72%; accuracy: 81%;

AUROCk: 0.82
HDj

Wearables detect frailty early, enabling preventive inter-
vention in older adults.

QTUGl accuracy: 75.8%; ScanWatch-enhanced
model: 79.3%

Frailty assessment in older adults

OHCA can be detected in real time via wearables for
rapid emergency response.

Optimized balance between sensitivity and speci-
ficity

OHCAm detection

Activity and behavior tracking

IMUs enable noninvasive, remote tracking of arthritis
pain and function.

5-STSn performance significantly correlated with
morning pain scores (P<.05)

Arthritis—pain and function moni-
toring

Consumer wearables offer scalable, affordable physical
activity monitoring.

Fitbit and iOS smartphone showed strong agree-

ment with SWAp
CFo—activity monitoring

Fitbit-level devices reliably track sedentary behavior
and activity levels.

Z-Track sedentary behavior detection:

AUCq=0.95; MVPAr detection: AUC=0.93

Consumer vs research-grade wear-
ables (activity monitoring)

Wearables automate medication tracking, improving
adherence in chronic care.

Medication intake detection accuracy: 93.6%;
sensitivity: 92%

Medication adherence monitoring

Gait analysis and balance assessment

Head-worn sensors support gait symmetry analysis for
neurological rehabilitation.

Gait event detection accuracy: 99.35%Gait symmetry analysis (head-worn
sensor)

Smartwatches enable balance monitoring at home to
prevent falls.

Strong correlation between smartwatch and re-
search-grade sensors (r=0.861-0.970)

Balance assessment (smartwatch
based)

Wearables track long-term mobility and balance in MS,
supporting personalized rehabilitation.

AUROC=0.97MSs—balance and mobility

aTKA: total knee arthroplasty.
bUKA: unicompartmental knee arthroplasty.
cOKS: Oxford knee score.
dIMU: inertial measurement unit.
eCR: cardiac rehabilitation.
f6MWD: 6-minute walk distance.
gROM: range of motion.
hPD: Parkinson disease.
iRMSE: root mean square error.
jHD: Huntington disease.
kAUROC: area under the receiver operating characteristic curve.
lQTUG: quantitative timed up and go.

JMIR Mhealth Uhealth 2026 | vol. 14 | e76084 | p. 7https://mhealth.jmir.org/2026/1/e76084
(page number not for citation purposes)

Gu et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


mOHCA: out-of-hospital cardiac arrest.
n5-STS: 5-time sit-to-stand assessment.
oCF: cystic fibrosis.
pSWA: sensewear armband.
qAUC: area under the curve.
rMVPA: moderate to vigorous physical activity.
sMS: multiple sclerosis.

Rehabilitation Assessment and Functional Recovery
Wearable sensors were used to analyze gait metrics in both
young and older adults. Studies on young adults focused on
plantar pressure distribution, step length, swing time, and ground
reaction force, achieving high accuracy in real-time gait analysis,
such as 95% using the FreeWalker system with a 1000-Hz
sampling frequency. Advanced ML techniques further enhanced
center of pressure prediction accuracy by over 30%. Among
older adults, wearable sensors were effective in assessing fall
risk and mobility. Improvements were observed in swing time
(+6.45%) and slip and trip classification accuracy, which
exceeded 98% (P<.05).

Disease State Prediction and Risk Assessment
Studies addressed frailty and fall history using wearable sensors
to measure load distribution, gait phases, and stance and swing
time. Load distribution assessments demonstrated high
reliability, with intraclass correlation coefficient values reaching
0.91 and strong correlations for the left (r=0.7171) and right
(r=0.7502) foot. Fall risk indexes provided significant predictive
accuracy, with AUROC values of 0.919 (P<.05), making them
comparable to traditional tools such as the POMA and TUG
tests. These findings emphasize the potential of wearable sensors
for early identification of frailty and fall risk in older adults.

Activity and Behavior Tracking
Wearable sensors were used to evaluate gait characteristics in
individuals with stroke, MS, and PD. Among stroke survivors,
significant reductions in gait speed and step length were
observed compared to controls, with strong correlations between
Fugl-Meyer Assessment lower-limb scores and stance time

differences (R2=0.71). In MS, high agreement was reported
between the FeetMe and GAITRite systems (intraclass

correlation coefficient>0.8), validating the utility of wearable
sensors for mobility monitoring. For individuals with PD,
significant differences were detected in gait speed, stride length,
and swing and stance time compared to healthy controls (P<.05),
demonstrating the role of wearable sensors in tracking disease
progression.

Gait Analysis and Balance Assessment
Wearable sensors were effective in managing diabetes and other
metabolic disorders. For diabetes, total contact casts reduced
forefoot contact area by 5% and peak pressure by 8% (P<.05),
effectively offloading pressure and reducing the risk of
complications. These devices provide actionable data that
support better management of metabolic health and reduce
disease-related complications.

Quality Assessment Results
The quality assessment results are summarized in Table 3, with
the studies rated using the JBI critical appraisal tools scoring
between 5 and 8 out of 10, NOS-rated cohort studies scoring
between 6 and 7 out of 9, and RoB 2–rated RCTs scoring 8 out
of 10. Of the 30 included studies, 6 (20%) were rated as low
risk, and 24 (80%) were rated as having a moderate risk of bias.
Studies investigating wearable sensor–based mobility
assessments, gait analysis, and rehabilitation applications
showed high feasibility and reliability, particularly those
incorporating real-time monitoring and signal processing
techniques. However, several studies (26/30, 87%) exhibited
limitations such as small sample sizes, lack of validation in
real-world settings, and limited applicability to diverse patient
populations. Additionally, some studies (12/30, 40%) faced
technical challenges, including sensor displacement errors,
signal-to-noise ratio issues, and data synchronization difficulties.
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Table 3. Quality assessment summary of the reviewed studies.

Risk-of-bias categoryQuality scoreStudy designStudy

Moderate7/9 (NOSa)Prospective cohort studyBolam et al [6], 2021

Moderate6/10 (JBIb tool)Experimental studyAngelucci and Aliverti [7], 2023

Moderate7/10 (JBI tool)Experimental studyGreene et al [8], 2021

Moderate6/10 (JBI tool)Observational studyGordon et al [9], 2019

Low8/10 (JBI tool)Experimental studyPresley et al [10], 2023

Moderate7/9 (NOS)Prospective cohort studyDe Cannière et al [11], 2020

Moderate6/10 (JBI tool)Observational studyNunes et al [12], 2024

Low8/10 (JBI tool)Observational studyMahadevan et al [13], 2020

Moderate7/10 (JBI tool)Observational studySeo et al [14], 2024

Low8/10 (JBI tool)Experimental studyOdhiambo et al [15], 2023

Moderate7/10 (JBI tool)Observational studyHwang and Effenberg [16], 2021

Moderate7/10 (JBI tool)Observational studyWu et al [17], 2021

Moderate6/10 (JBI tool)Observational studyJohn and Soangra [18], 2022

Moderate7/10 (JBI tool)Observational studyMeyer et al [19], 2022

Moderate5/10 (JBI tool)Experimental studyToumieux et al [20], 2015

Moderate7/10 (JBI tool)Experimental studyElstub et al [21], 2022

Low7/10 (JBI tool)Observational studyPerraudin et al [22], 2018

Moderate6/10 (JBI tool)Cross-sectional studyGiggins et al [23], 2025

Moderate7/10 (JBI tool)Cross-sectional studySavi et al [24], 2020

Moderate8/10 (JBI tool)Experimental studyHaghi et al [25], 2023

Low6/10 (JBI tool)Observational studyDasMahapatra et al [26], 2018

Moderate7/10 (JBI tool)Experimental studySun et al [27], 2019

Moderate6/10 (JBI tool)Pilot studyRamezani et al [28], 2019

Moderate6/10 (JBI tool)Cross-sectional studyLiew et al [29], 2024

Moderate7/10 (JBI tool)Observational studyKwon et al [30], 2019

Low8/10 (RoB 2d)RCTcMartin et al [31], 2015

Moderate7/10 (JBI tool)Clinical studyHup et al [32], 2024

Moderate8/10 (RoB 2)RCTBrowne et al [33], 2020

Moderate7/9 (NOS)Prospective cohort studyBurns et al [34], 2020

Moderate7/10 (JBI tool)Cross-sectional studyBailey et al [35], 2024

aNOS: Newcastle-Ottawa Scale.
bJBI: Joanna Briggs Institute.
cRCT: randomized controlled trial.
dRoB 2: version 2 of the Cochrane risk-of-bias tool for randomized trials.

Discussion

Expanding the Role of Wearable Sensors in Health
Monitoring
Wearable sensor technology, including IMU-based
smartwatches, smart insoles, and multisensor systems, has
significantly transformed health monitoring, rehabilitation
tracking, and disease risk assessment [36]. These devices enable
continuous, real-world tracking of mobility and functional

health, addressing key limitations of traditional clinical
assessments [37]. The reviewed studies highlight these devices’
diverse applications in neurological, musculoskeletal,
cardiovascular, and metabolic conditions, supporting early
disease detection, remote therapy adherence, and precision
rehabilitation [38].

Observational studies accounted for 43% (13/30) of the reviewed
studies, reflecting the feasibility of longitudinal monitoring,
whereas experimental studies made up 27% (8/30), playing a
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crucial role in validating sensor-based assessments. However,
the limited number of RCTs, representing only 10% (3/10) of
the studies, underscores the need for rigorous intervention-based
research to establish causal relationships between wearable
sensor use and patient outcomes. The study populations were
diverse, with healthy individuals comprising 33.3% of the
participants, often included for sensor validation and reliability
testing. Clinical populations, including individuals with PD,
stroke, frailty, and cardiovascular conditions, were the primary
focus of applied research, demonstrating the potential for
wearable sensors to support patient management in real-world
health care settings.

Evolution of Wearable Sensor Applications
In our review, 30% (9/30) of the included studies conducted
validation in healthy adults, indicating that early wearable-sensor
research primarily focused on device feasibility and performance
testing before expanding into clinical populations. These devices
have revolutionized mobility monitoring, particularly in
neurodegenerative conditions such as PD, MS, and stroke, where
continuous tracking of gait parameters enables early detection
of motor impairments and disease progression. They also play
a significant role in frailty assessment (4/30, 13%) and fall risk
prediction. Smart insoles demonstrate high predictive accuracy
(AUROC=0.919; P<.05) as noninvasive, real-world mobility
assessment tools.

Technological Integration and Advances in Data
Processing
The studies primarily used IMU-based systems (20/30, 67%)
and smartwatches (8/30, 27%). Wrist-worn sensors were the
most common, representing 43% (13/30) of the devices used,
as they offer practicality, ease of wear, and convenience for
everyday use. Ankle- and thigh-mounted sensors accounted for
23% (7/30) of applications and were primarily used for gait and
posture assessments, whereas multisensor systems integrating
electrocardiograms and pressure sensors provided additional
biomechanical and cardiovascular insights, although they were
less frequently studied.

Advances in ML have significantly enhanced data interpretation
and predictive capabilities in wearable sensor applications [2].
Random forest models, applied in 20% (6/30) of the studies,
were widely used for gait classification and activity recognition,
whereas deep learning techniques were applied in 17% (5/30)
of the studies and demonstrated high accuracy in long-term
movement analysis. Elastic net regression and SVMs were used
in 13% (4/30) of cases for classification tasks, whereas PCA
was used in 7% (2/30) of the studies to reduce dimensionality
and optimize data processing. However, variability in feature
extraction methods remains a challenge. Standardized
approaches are needed to improve reproducibility and clinical
translation.

Clinical Applications of Wearable Sensors
Wearable sensors demonstrated strong feasibility across multiple
health care applications, including rehabilitation monitoring,
disease risk assessment, activity tracking, and gait analysis. For
rehabilitation assessment, wearable sensors improved
postsurgical monitoring in patients who underwent knee

arthroplasty, showing 52% better bone stimulus and 371% better
impact load tracking. Wearable sensors for cardiac rehabilitation
demonstrated reliable 6-minute walk distance prediction, with

an error of 42.8 m and an R2 value of 0.661, facilitating remote
patient monitoring. In stroke rehabilitation, IMU-based
movement quality assessments achieved 92% accuracy
(F1-score=0.95), supporting their use for personalized therapy
and remote monitoring.

Recent studies have also extended the application of IMU-based
wearable sensors to shoulder rehabilitation. Tranquilli et al [39]
demonstrated that a single IMU could simultaneously capture
joint mobility and muscle strength dynamics during postinjury
recovery. Ajčević et al [40] applied IMU sensors to quantify
shoulder kinematics and evaluate therapeutic response in
adhesive capsulitis, whereas Parel et al [41] introduced a
kinematic biofeedback program integrating inertial sensors for
patients after rotator cuff repair. These studies highlight the
versatility of IMU technology for upper-limb functional
assessment and real-time feedback during rehabilitation.

Wearable sensors also played a key role in disease prediction
and risk assessment. In PD monitoring, wearable technology
achieved an accuracy of 83% in tremor detection and both a
sensitivity and specificity of 86% in fall risk prediction,
supporting the feasibility of early intervention strategies. Fall
risk assessments using wearable sensors reached an AUROC
value of 0.919, demonstrating their ability to provide
noninvasive, real-world alternatives to clinical assessments such
as the TUG and POMA tests.

Activity and behavior tracking applications showed high
accuracy, particularly in arthritis-related pain and function
monitoring, where significant correlations were observed
between morning pain scores and 5-time sit-to-stand
performance, with P values of less than .05. Consumer
wearables such as Fitbit and iOS-integrated smartwatches
achieved a strong agreement with research-grade sensors, with
an AUROC of 0.93, demonstrating their feasibility for
large-scale, real-world activity tracking. In medication adherence
monitoring, smartwatch-based tracking achieved an accuracy
of 93.6%, highlighting its potential for improving adherence in
chronic disease management.

Gait and balance assessments using wearable sensors provided
highly accurate insights into functional mobility. Head-worn
IMU–based gait symmetry analysis reached an accuracy of
99.35%, indicating its effectiveness in neuromuscular
rehabilitation and postural correction. Wearable sensor–based
assessments of balance and mobility for patients with MS
achieved an AUROC of 0.97, reinforcing their potential to
support personalized rehabilitation planning and disease
progression monitoring.

The included studies encompassed diverse populations,
including healthy adults, neurological patients (eg, PD),
individuals with musculoskeletal disorders, and pediatric or
rehabilitation cohorts. This diversity introduces biomechanical
and physiological variability in gait patterns, movement
strategies, and sensor placement feasibility. Differences in
muscle coordination, assistive device use, and experimental
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environments further contribute to heterogeneity. Given these
variations, direct quantitative comparisons between studies were
avoided. Instead, a narrative synthesis was used to identify
overarching technological and methodological trends across
populations. This approach emphasizes generalizable
insights—such as the importance of standardized placement,
calibration, and cross-population validation—while
acknowledging disease-specific distinctions in biomechanics
and sensor performance.

Many of the included studies (19/30, 63%) used ML algorithms
such as random forest, deep learning, elastic net regression, and
PCA for signal interpretation and disease classification.
However, reporting transparency and methodological rigor
varied substantially. Several studies (26/30, 87%) were limited
by small sample sizes and internal validation only, increasing
the risk of model overfitting. In addition, few studies (4/30,
13%) provided sufficient details regarding cross-validation
protocols, feature selection strategies, or hyperparameter
optimization.

Adherence to standardized ML reporting frameworks—such as
the Transparent Reporting of a Multivariable Model for
Individual Prognosis or Diagnosis–Artificial Intelligence and
Prediction of Model Risk of Bias Assessment Tool–Artificial
Intelligence—was rarely observed, which may affect
reproducibility and generalizability.

Future research should emphasize external validation,
open-source code sharing, and adherence to established ML
reporting standards to ensure reliability and transparency in
sensor-based clinical modeling.

Challenges in Wearable Sensor Research
Despite the promising applications of wearable sensors, several
challenges remain that must be addressed to ensure widespread
clinical adoption and real-world impact.

First, small sample sizes (26/30, 87% of the studies) and limited
real-world validation (12/30, 40% of the studies) reduced finding
generalizability. Short study durations (8/30, 27%) also hindered
long-term effectiveness assessment. Beyond these
methodological limitations, the scope of this review was
restricted to English-language, peer-reviewed publications,
excluding gray literature such as conference abstracts and theses.
This language restriction and publication bias may have favored
studies reporting positive or statistically significant outcomes,
potentially overestimating the clinical impact of wearable sensor
technologies. Furthermore, although some studies (3/30, 10%)
discussed the potential cost-effectiveness of sensor-based
systems, no direct economic evaluations were identified, limiting
the ability to substantiate financial feasibility claims.

Technical challenges also persist. Variability in signal-to-noise
ratios, sensor displacement errors, and inconsistencies in data
collection protocols underscore the need for improved hardware
design and standardized preprocessing algorithms. Differences
in feature extraction and model architectures limit cross-study
comparisons and reproducibility.

Finally, the field urgently requires greater standardization.
Variability in sensor placement, protocols, and data
interpretation hinders reproducibility and large-scale
comparison. Establishing consensus-driven guidelines for
wearable sensor research—including standardized task
protocols, data reporting frameworks, and model transparency
criteria—will be essential to enable scalability, reproducibility,
and eventual clinical translation.

Future Directions
To fully realize the potential of wearable sensors in health care,
future research should focus on several key areas. Expanding
RCTs is essential to establish causal relationships between
wearable sensor use and health outcomes beyond feasibility
studies. Standardized data analysis frameworks will improve
comparability and reproducibility, enabling integration into
multicenter trials and large-scale studies. Long-term, multicenter
studies will enhance real-world validation and assess sensor
accuracy, usability, and adoption across health care settings.

Integration with cloud-based platforms and telemedicine will
enhance scalability and enable real-time remote monitoring
across diverse populations [42]. Cost-effectiveness analyses
will determine financial feasibility and accessibility, supporting
broader health care adoption and effective use in
resource-limited settings [43].

Conclusions
This systematic review highlights the growing clinical relevance
of wearable sensors for rehabilitation monitoring, disease risk
assessment, and personalized health care. IMU-based
smartwatches, multisensor systems, and gait-monitoring devices
demonstrate high accuracy in mobility assessment, fall risk
prediction, and chronic disease management for digital health
and precision medicine.

Despite their utility, the following challenges remain: small
sample sizes, real-world validation gaps, and inconsistent ML
methodologies. Future research should standardize protocols,
expand clinical trials, and integrate sensors into telemedicine
and cloud-based analytics platforms.

Overcoming these challenges will enable wearable sensors to
revolutionize health care through real-time, noninvasive
monitoring that bridges traditional clinical assessments and
continuous real-world health tracking.
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