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Abstract

Background: The aim was to develop scalable Whole Slide Imaging (sWSI), a WSI system based on mainstream smartphones
coupled with regular optical microscopes. This ultra-low-cost solution should offer diagnostic-ready imaging quality on par with
standalone scanners, supporting both oil and dry objective lenses of different magnifications, and reasonably high throughput.
These performance metrics should be evaluated by expert pathologists and match those of high-end scanners.

Objective: The aim was to develop scalable Whole Slide Imaging (sWSI), a whole slide imaging system based on smartphones
coupled with optical microscopes. This ultra-low-cost solution should offer diagnostic-ready imaging quality on par with standalone
scanners, supporting both oil and dry object lens of different magnification. All performance metrics should be evaluated by
expert pathologists and match those of high-end scanners.

Methods: In the sWSI design, the digitization process is split asynchronously between light-weight clients on smartphones and
powerful cloud servers. The client apps automatically capture FoVs at up to 12-megapixel resolution and process them in real-time
to track the operation of users, then give instant feedback of guidance. The servers first restitch each pair of FoVs, then automatically
correct the unknown nonlinear distortion introduced by the lens of the smartphone on the fly, based on pair-wise stitching, before
finally combining all FoVs into one gigapixel VS for each scan. These VSs can be viewed using Internet browsers anywhere. In
the evaluation experiment, 100 frozen section slides from patients randomly selected among in-patients of the participating
hospital were scanned by both a high-end Leica scanner and sWSI. All VSs were examined by senior pathologists whose diagnoses
were compared against those made using optical microscopy as ground truth to evaluate the image quality.

Results: The sWSI system is developed for both Android and iPhone smartphones and is currently being offered to the public.
The image quality is reliable and throughput is approximately 1 FoV per second, yielding a 15-by-15 mm slide under 20X object
lens in approximately 30-35 minutes, with little training required for the operator. The expected cost for setup is approximately
US $100 and scanning each slide costs between US $1 and $10, making sWSI highly cost-effective for infrequent or low-throughput
usage. In the clinical evaluation of sample-wise diagnostic reliability, average accuracy scores achieved by sWSI-scan-based
diagnoses were as follows: 0.78 for breast, 0.88 for uterine corpus, 0.68 for thyroid, and 0.50 for lung samples. The respective
low-sensitivity rates were 0.05, 0.05, 0.13, and 0.25 while the respective low-specificity rates were 0.18, 0.08, 0.20, and 0.25.
The participating pathologists agreed that the overall quality of sWSI was generally on par with that produced by high-end
scanners, and did not affect diagnosis in most cases. Pathologists confirmed that sWSI is reliable enough for standard diagnoses
of most tissue categories, while it can be used for quick screening of difficult cases.

Conclusions: As an ultra-low-cost alternative to whole slide scanners, diagnosis-ready VS quality and robustness for commercial
usage is achieved in the sWSI solution. Operated on main-stream smartphones installed on normal optical microscopes, sWSI
readily offers affordable and reliable WSI to resource-limited or infrequent clinical users.
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Introduction

Virtual slides (VSs) generated from whole slide imaging (WSI)
systems are an essential component of digitized diagnostic
processes, as they provide extended fields-of-view (FoVs) under
microscopes without handling specimens physically [1,2]. In
addition to providing a basis for automated analysis [3-5], the
reliability and efficiency of VSs is widely considered on par
with traditional light microscopy (or even superior in certain
cases [6-9]), making it one of the main trends in both digital
pathology and bioinformatics [10-12]. The conversion from
direct observation to digitization has been dramatic [13], even
though the technology is still under heavy development and
shows performance bottlenecks that may not be broken in the
near future [14,15].

In practice, however, automated scanners that are commonly
used to capture and process such data cost approximately US
$50,000 or more up-front, even for low-frequency usage. In
many developing countries, this financial obstacle alone has
significantly impeded modernizing related departments in
hospitals [16], such as that of pathology in China. Lacking
digitization undermines productivity and diagnostic accuracy,
commonly leading to poorer administrative attention and tighter
budgets, thus forming a vicious cycle.

In recent years, two alternative solutions have attracted much
academic and commercial interest. One solution is aborting the
automation feature, thus leaving the operator to control the
microscope manually, reducing the product package to a
dedicated digital camera and software [17-19], and costing as
little as US $10,000. Other attempts have made use of
smartphones, which not only have integrated capturing and
processing abilities, but are also widely distributed among
clinical professionals, thus lowering the start-up cost to near
zero. A small number of products in the latter category in both
research and commercial stages have been evaluated by clinical
professionals [20], but to the knowledge of the authors, all are
made exclusively for relatively expensive iPhones and are not
yet commercially available. Although rarely explained explicitly,
robustness of full automation and guarantees of successful
VSgeneration could be serious obstacles between publishable
research and commercial products. Additionally, diversity in
hardware and operating systems might be the reason that
Android phones, although dominating handset markets in
developing countries, are largely ignored.

In this paper, a WSI system on mainstream smartphones that
just became publicly available with commercial-quality and

low cost (named scalable WSI; sWSI [21]), is introduced and
evaluated. sWSI offers fast and reliable WSI on most handsets,
average Androids or flagship iPhones alike, reducing the
up-front cost to approximately US $100 and the average service
cost per scan is as low as US $1. Pathologists recognize sWSI
as an attractive alternative to stand-alone scanners, especially
for quick scans (eg, frozen sections) as well as
medium/low-frequency usages.

Beyond technical development of the sWSI system, this research
also included evaluating it with cryosections, also known as the
frozen section procedure. Cryosectioning is widely used in
oncological surgeries, which require significantly faster
preparation and diagnoses compared to traditional histology
techniques. Frozen section samples have much lower technical
quality, making them very difficult to analyze for whole slide
scanners [22], but this process offers a good challenge to test
the limits of sWSI.

Methods

System Overview
There are two essential and costly components in a typical WSI
scanner: the capturing unit, typically a set of lenses with a
distortion-calibrated digital eyepiece; and on-board or external
high-performance computers. Like any dedicated devices, since
both parts are specifically built for the system, they are mostly
nonproductive when the system is idle and thus waste much of
their value when underused. Unfortunately, this is commonly
the case for smaller hospitals in which complicated pathological
diagnoses occur only occasionally. This situation, coupled with
consumer electronics' performance approaching that of
medical-grade tools, led to the idea of creating sWSI with the
structure illustrated in Figure 1.

Hardware
To provide full WSI functionality at a dramatically lower cost,
sWSI aims to reduce the cost of both hardware necessities. For
the optical part, sWSI reversibly upgrades existing microscopes
with built-in cameras of smartphones and compensates for the
unknown optical distortions computationally, as discussed in
detail in the On-the-fly Image Distortion Correction subsection
below. For the computing part, sWSI utilizes smartphones for
light-weight real-time processing and transfers the major bulk
of the work to shared remote servers to allow
temporal-multiplexing for improving utilization rate and
cost-sharing.
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Figure 1. Simplified sWSI solution structure.

Table 1. Minimal and optional hardware specifications.

Recommended SpecificationMinimal SpecificationItem

N/AAndroid 4.2 or iOS 9Operating System Version

Quad-core @ 2.4 GHzDual-core @ 1.2 GHzCentral Processing Unit

12 megapixels3 megapixelsCamera

Although the prices of mainstream smartphones vary widely,
much of the cost comes in the form of user-friendly features
(eg, security or battery life) that are largely irrelevant to sWSI.
Thanks to the fast expansion of smartphone markets, their
cameras, which used to be the critical link in such clinical
applications, are now on par with main-stream dedicated digital
eyepieces [23,24]. Overall, newer smartphone models can easily
meet the minimal requirements listed in Table 1 at prices as low
as US $100. It should also be noted that the higher-end
smartphones that meet the optional specification for better
performance may be bought at deep discounts as used or
refurbished, which may suffer short battery life or a repaired
screen, but do not affect the performance of sWSI.

Most professionals in research and health care services already
own a handset that meets the criteria listed in Table 1, so sWSI
requires installing only one adapter for each pair of existing
smartphone and optical microscope. These
microscope-smartphone adaptors are available with many
commercial options as well as open-source designs for
do-it-yourself 3-dimensional printing [25], although the ones
specifically built for each phone model are preferred, to
minimize the need for adjusting camera-eyepiece alignment and
to block disrupting light sources. One setup is demonstrated in
Figure 2, utilizing a used iPhone 6 costing US $200 installed
on an Olympus BH2-BHS microscope with a scalScope adapter,
which took about 15 seconds to set up, and was used for the
clinical evaluation discussed later.

Figure 2. Typical hardware setup (left) and user interface (right).
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Software
In addition to image compressing, transferring and VS
synthesizing is needed in any whole slide scanning systems,
and the software in sWSI is also responsible for automatically
measuring and compensating hardware diversity. Unfortunately,
fully localizing many of these functions is beyond the reach of
mass produced mobile devices. Synthesizing the VS from FoVs
requires at least several gigabytes of random access memory
and sequentially processing hundreds of FoVs at full resolution
can take an hour or more on a mobile central processing unit
(CPU). The VSs will be stored remotely anyway, so there is
little extra cost in moving the bulk of processing onto remote
servers, as implemented in sWSI. The downside of this
distributed computing model is introducing significant risks of
failure by splitting the processing work-flow into asynchronous
halves, but in sWSI this is solved, as explained in Fail-Proof
Distributed Processing subsection below.

Another practical issue worth noting is that due to architecture
and driver support issues beyond the scope of this paper, most

Android phones only support JPEG image capture at higher
resolution, which cannot be directly processed pixel-by-pixel.
This issue significantly constrains data flux since each FoV
taken must go through an extra encoding-decoding routine
costing several hundred milliseconds, depending on CPU power
and resolution. As a result, the sWSI Android app limits the
capturing resolution to approximately 3 megapixels and
generally achieves throughput of approximately 1 to 3 FoVs
per second, except for rare models with drivers offering
high-resolution pixel data of images captured.

Fail-Proof Distributed Processing

Basic Scan Procedures and Interaction
In sWSI, a smartphone client app is responsible for gathering
user inputs, capturing and processing the FoVs, and guiding
users interactively, with a user interface during the scan (Figure
2). There is very little difference between the scanning procedure
with sWSI shown in Figure 3 and that practiced by most
microscope users, except for choosing a few parameters.

Figure 3. Microscope observation procedures adapted for sWSI. ROI: region of interest.
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Table 2.

DescriptionError code

The translation is too far, so the KP matching in SURF may be unreliableMoving too fast

No reliable translation can be obtained: the causes cannot be further distinguished by the machine but should be
noticeable to the users, such as moving so fast that there is little overlapping between the current pair of FOVs or
the camera is out of focus

Lost

There are few KPs detected, so the FoV is likely near a boundaryTouching a boundary

The translation is reliableNo error

Real-Time Feedback on Clients
The client's share of processing focuses on speed and robustness
instead of accuracy, and therefore uses down-sampled copies
of camera input. An algorithm roughly estimates pairwise
translation of FoVs by stitching each captured FoV with the
last one through key point (KP) detection and matching with
the speeded-up robust features (SURF) algorithm [26,27]. This
translation is then used in three ways: updating a mini-map
illustrating current location on the slide, feeding a finite-state
machine to manage the kernel asynchronously, and providing
feedback to users as guidance for operating the microscope.
The feedback and their trigger descriptions are listed in Table
2.

With users following the hints, sWSI essentially creates a closed
feedback loop that allows scan-time interference against
potential failure, such as inability to focus properly on thick
samples or to track positioning on barren regions. This
mechanism prevents most flops due to sample preparation and
user operation before spending a long time in completing the
scan, which is a common issue with automatic scanners.

Full Resolution Processing With A-Priori Knowledge
on Servers
The cloud servers in sWSI are the primary powerhouses of
computation. With full resolution FoVs and scan results from
clients, servers restitch the adjacent FoVs at maximal accuracy,
correct distortion, and generate the virtual whole slide. The
asynchronous two-staged stitching performed respectively on

the clients and servers, however, has inherent weak spots on
both stability and efficiency.

The FoV pairwise stitching is based on KP detection and
matching, whose outcome in turn is resolution-dependent. As
a result, such outcomes in down-sampled and original resolution
may potentially be significantly inconsistent. In many cases, as
in almost every VS constructed from 100 FoVs or more with
prototypes of sWSI, the full-resolution stitching produced
unreliable matching at least once.

Conversely, by the law of large numbers, it is desirable to match
as many KP pairs as possible for accurate estimation of the
FoV-wise matching function, especially where this function has
high degrees of freedom (as is the case of sWSI where raw
images are nonlinearly distorted in unknown patterns). The
computational cost of brute-and-force KP matching, however,
grows quadratically with the number of KPs.

To resolve both issues at once, sWSI employs an a-priori
knowledge-based SURF KP detection and a matching algorithm
on the server. SURF detects KPs from a virtual image pyramid
that has lower resolution on higher layers. In sWSI, instead of
detecting with one threshold across all layers, multiple
thresholds are chosen adaptively as described in Figure 4.

Afterwards, instead of brute-and-force matching by calculating
difference of all pairs of KPs and picking the optimal set of
matches, sWSI selectively calculates those within a constant
distance from the coordinates indicated by the scan stage
translation with up-sampling and assumes all others are infinitely
large. Figure 5 further details this process.

Figure 4. Adaptive thresholding in SURF.
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Figure 5. Computational benefits of selective KP matching.

Since KP matching takes a large number of float point
operations and consumes a large portion of time, this reduction
boosts the overall efficiency of sWSI by over 50%.

On-the-Fly Image Distortion Correction
When stitching each FoV pair to match KPs, the projection
function can be in any format as long as it minimizes error
without overfitting. Combining all FoVs into a single continuous
view, however, requires the projection to be linear so the
nonlinear distortion must be corrected first. If the distortion is
not corrected, the order of the stacked-up nonlinear transfer
function of each FoV onto the whole slide will keep growing
by each FoV and become very inefficient to solve.

Designed to fit any combination of microscope and smartphone
model, sWSI assumes a generalized high-order polynomial
(HOP) inverse-distortion model [28], which mathematically
approximates any function with marginal error if the order is
sufficiently high, as proven by Taylor's theorem [29].
Specifically, it is assumed that there exists a constant but
unknown HOP projection function for each scan procedure that
maps the raw FoVs into a corrected 2-dimensional space, where
any matched pixel pairs in overlapping FoVs share the same
phase difference for that FoV pair. After the raw FoVs are
corrected by a HOP function, each adjacent FoV pair can be
stitched with translation onto each other with small error. In
sWSI, this HOP projection matrix is solved iteratively based
on FoV-pair-wise KP matching, formulated as described in
Figure 6.

Clinical Evaluation Setup
To assess the diagnosis-readiness of sWSI VSs of challenging
cases, a clinical evaluation experiment was carried out in
Pathology Center, Shanghai General Hospital, School of

Medicine, Shanghai Jiaotong University (SJTU-PC) between
February 23rd, 2017 and April 15th, 2017. A total of 100 frozen
section slides (from one of the five categories listed in Table 3)

gathered among inpatients between February 23rd, 2017 and
April 1st, 2017 were randomly selected as the test dataset. The
slides varied significantly in size and shape, were prepared
routinely by technicians in the department, and may have had
common issues with frozen sections, such as unevenness and
folding. Consideration of both possibilities of tumors as well
as benign lesions were included in the diagnosis, following
generally accepted practice standards [30-32].

All samples went through three diagnosis procedures using
optical microscopy, sWSI VSs, and high-end standalone scanner
VSs under a 20X objective lens. In each procedure, each sample
was examined by one or two pathologists independently. These
diagnoses were then compared against each other to obtain
agreement statistics. The full procedure is illustrated in Figure
7. This would be the first of a planned sequence of experiments
evaluating sWSI on a wide range of samples, so we focused on
using iPhones (on which the international version of sWSI is
supported). The smartphones used were: one iPhone 5s, one
iPhone 6, and one iPhone 6 plus, purchased from the
second-hand market between US $120 and $200. The
microscopes for sWSI scanning were: an Olympus BH2-BHS,
an Olympus CX21, and a Phoenix PH50-1B43L-PL, all being
low-end bio-microscopes. The scanner used in this experiment
was Aperio AT2 from Leica, which is a high-end model. The
microscope for optical microscopy was an Olympus BX51,
which is another high-end model. Pathologists A, B, C and D
are all senior faculty members from SJTU-PC, while the work
of pathologist E was carried out by 10 senior and respected
pathologists invited from top hospitals across China, as listed
in Acknowledgements.

Table 3. Sample categories, counts, and notes.

NotesCountsCategory

Requiring median image quality20Breast

Requiring median image quality20Uterine corpus

Requiring high image quality; one sample of scanner VS missing28Thyroid

Requiring very high quality; one sample of sWSI VS missing (physically damaged)31Lung

Accidentally included, as it was assumed to be a thyroid sample; diagnosis only considered in calculating
overall statistics

1Ovary
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Figure 6. On-the-fly distortion correction based on matched KPs.

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 9 | e132 | p. 7http://mhealth.jmir.org/2017/9/e132/
(page number not for citation purposes)

Yu et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 7. sWSI clinical evaluation procedure.

As part of the evaluation, quantifying the learning curve of
manual scanning with sWSI was covered in this experiment.
The VS quality depends on the sample being in focus and even
the scan speed in the scanning process, so it is positively linked
to the level of skill of operator or inversely to the time
consumed. Presumably, as the operator gains experience, they
would scan faster while maintaining the same quality. An
intuitive way to measure this assumption is by comparing the
time consumption of carefully scanning a unit area of samples
under a fixed objective lens magnification against the number
of slides scanned by operator. To this end, a total of 15 interns,
medical school students, and assistant technicians who were
well trained to use microscopes but had no prior experience
with sWSI volunteered to scan the slides with sWSI. With
duplication, each participant scanned 10 of the 100 slides after
watching a demonstration, with the approximate sample size
and time consumption recorded. Only one of the duplicated
scans of the same sample was randomly selected for accuracy
evaluation.

Results

Sensitivity and Specificity
The accuracy of diagnosis in this evaluation experiment was
measured on a slide-wise level, since the classifications of
regions in the sample can be subjective and pathologists usually
consolidate multiple patterns across the whole sample into a
conclusion. The sensitivity is defined as whether a pathologist

can use a VS to correctly identify all critical regions of interest
across the sample. The specificity is defined as whether the
pathologist can correctly analyze each region of interest and
identify patterns based on a VS.

To represent the performance based on the sensitivity and
specificity defined above, each diagnosis was classified into
one of three categories: accurate, low sensitivity (LSen), or low
specificity (LSpe). For each VS, if the pathologist missed any
critical region of interest, the VS was deemed as LSen. With
the VS past the sensitivity check, if the pathologist then correctly
identified patterns of all regions of interest, it was classified as
being accurate; otherwise it was LSpe. When averaged, these
metrics were weighted by their sample counts.

Using optical microscopy as the ground truth, the sWSI system
achieved good performance similar to that of the standalone
scanner in most sample categories except lung, as summarized
in Table 4,Table 5,Table 6, and Table 7. For easier comparison,
the per-category metrics are plotted in Figure 8, Figure 9, Figure
10, and Figure 11, with the average in Figure 12. Screen shots
of VS regions where sWSI provided adequate or poor image
quality are illustrated in Figure 13 and Figure 14. Although the
performance was not ideal in absolute terms, all pathologists
involved in this experiment firmly agreed that sWSI performed
very well for these frozen section samples after viewing the
results in retrospect. The pathologists also suggested that sWSI
is clinically reliable for daily use on easier and more common
samples, such as margins or paraffin sections, which are not
covered in this experiment.
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Table 4. Accuracy of diagnosis based on sWSI VS by pathologist A. Results are presented as ratios between 0.00 and 1.00.

LSpeLSenAccurateCategory

0.25 (5/20)0.05 (1/20)0.70 (14/20)Breast

0.15 (3/20)0.10 (2/20)0.75 (15/20)Uterine corpus

0.21 (6/28)0.11 (3/28)0.68 (19/28)Thyroid

0.27 (8/31)0.30 (9/31)0.43 (13/31)Lung

0.00 (0/1)1.00 (1/1)0.00 (0/1)Ovary

0.22 (22/100)0.16 (16/100)0.61 (61/100)Average

Table 5. Accuracy of diagnosis based on sWSI VS by pathologist B. Results are presented as ratios between 0.00 and 1.00.

LSpeLSenAccurateCategory

0.10 (2/20)0.05 (1/20)0.85 (17/20)Breast

0.00 (0/20)0.00 (0/20)1.00 (20/20)Uterine corpus

0.18 (5/28)0.14 (4/28)0.68 (19/28)Thyroid

0.23 (7/31)0.20 (6/31)0.57 (17/31)Lung

1.00 (1/1)0.00 (0/1)0.00 (0/1)Ovary

0.15 (15/100)0.11 (11/100)0.74 (73/100)Average

Table 6. Accuracy of diagnosis based on scanner VS by pathologist D. Results are presented as ratios between 0.00 and 1.00.

LSpeLSenAccurateCategory

0.00 (0/20)0.05 (1/20)0.95 (19/20)Breast

0.05 (1/20)0.00 (0/20)0.95 (19/20)Uterine corpus

0.15 (4/28)0.00 (0/28)0.85 (23/28)Thyroid

0.06 (2/31)0.16 (5/31)0.77 (24/31)Lung

0.00 (0/1)0.00 (0/1)1.00 (1/1)Ovary

0.07 (7/100)0.06 (6/100)0.87 (86/100)Average

Table 7. Accuracy of diagnosis based on scanner VS by pathologist E. Results are presented as ratios between 0.00 and 1.00.

LSpeLSenAccurateCategory

0.25 (5/20)0.05 (1/20)0.70 (14/20)Breast

0.05 (1/20)0.00 (0/20)0.95 (19/20)Uterine corpus

0.26 (7/28)0.00 (0/28)0.74 (20/28)Thyroid

0.16 (5/31)0.13 (4/31)0.71 (22/31)Lung

1.00 (1/1)0.00 (0/1)0.00 (0/1)Ovary

0.19 (19/100)0.05 (5/100)0.75 (75/100)Average

For validation purposes, all VSs in this experiment captured by
sWSI and the scanner can be viewed online through the links
provided in Multimedia Appendix 1. Details of each sample
and the diagnosis, including the ground truth and those made

based on standalone scanners or sWSI, are provided in
Multimedia Appendix 2. Limited by time, this record is mostly
in its original language (Chinese) but may be translated and
requested from the authors.
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Figure 8. Performance based on scanner and sWSI virtual slides. Sample type: breast. LSen: low sensitivity; LSpe: low specificity.

Figure 9. Performance based on scanner and sWSI virtual slides. Sample type: uterine corpus. LSen: low sensitivity; LSpe: low specificity.
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Figure 10. Performance based on scanner and sWSI virtual slides. Sample type: thyroid. LSen: low sensitivity; LSpe: low specificity.

Figure 11. Performance based on scanner and sWSI virtual slides. Sample type: lung. LSen: low sensitivity; LSpe: low specificity.

Learning Curve
The learning curve, which is inversely approximated by the
scan time normalized for a 15-by-15 mm sample being plotted
against the number of samples scanned, is shown in Figure 15.
In the experiment, productivity varied significantly among
operators, as the slower ones consumed up to 50% more time
at the beginning of the experiment. However, the slower
operators caught up swiftly through practice and eventually

reached just over 35 minutes for every 15-by-15 mm sample,
which is comparable to automatic scanners. Most operators
reached a stable level of proficiency after scanning just 5 slides.
It should be noted that the 20X objective lens for frozen section
samples is a relatively challenging application, as the samples
are often uneven and require frequent focus adjustments. As a
result, the scan speed in Figure 15 may be considered as a
worst-case scenario.
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Figure 12. Performance based on scanner and sWSI virtual slides, averaged. LSen: low sensitivity; LSpe: low specificity.

Figure 13. Selected virtual slide regions from sWSI (right) with good quality, compared to those from the Leica scanner (left).
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Figure 14. Selected virtual slide regions from sWSI (right) with poor quality, compared to those from the Leica scanner (left).

Figure 15. Normalized scan time versus number of samples scanned.

Discussion

Current Limitations
First, a significant performance gap exists among different
sample categories that are challenging and require very high
image quality. Based on the experimental results, sWSI
diagnoses of leiomyoma of the uterus, adenomyosis, papillary

carcinoma of the thyroid, invasive breast carcinoma, and
fibroadenoma of the breast are relatively more reliable than
standard procedures, but those for follicular carcinoma of the
thyroid, intraductal papillary neoplasms of the breast, and lung
cancer are much worse. On the positive side, since the quality
can be assessed after scanning and before inspection by the
pathologists, these mistakes may be largely avoided in practice,
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especially those of LSpe (which should be analyzed by optical
microscopy). However, this finding does reveal the fact that the
current version of sWSI may not be suitable to all types of
samples, or at least that testing may be required before formally
adopting sWSI for applications requiring the highest quality
images.

Second, similar to standalone scanners, sWSI is strongly affected
by the physical preparation quality of the samples. Common
problems include samples being broken into multiple pieces,
varying thickness, and poor staining quality.

Finally, sWSI suffers from an inferior setup of hardware and
environments, which comes with its focus on cost and
scalability, and may make its competition against standalone
scanners challenging. One such example is data storage:
standalone scanners are mostly designed to work with
high-speed wired and local networks. Since sWSI provides
wireless connection-based data transmission and Web
browser-based viewing, limits on bandwidth may severely affect
image quality. Another example is that VSs produced by
scanners are displayed on specialized work station monitors
with high coverage of red/green/blue color space and 4K
resolution, while those of sWSI are reviewed on normal
monitors, or even smartphones with small screens.

The design of the experiment can be improved in future work.
Based on discussions with participating pathologists, it can be
safely assumed that there would be little error in diagnoses made
by senior pathologists. However, from experimental results and
comments, there are significant differences in the level of
confidence that pathologists have regarding dubious cases where
the provided VSs alone are not sufficient for a firm decision.
In practical procedures, pathologists would undertake further
investigation with other techniques, such as paraffin embedding
and sectioning, which is more reliable (but far more time
consuming) than frozen sectioning. In this experiment,
participants were required to make binary decisions when
judging thresholds that were different from each other. As a
result, using multiple probabilities instead of a firm answer
might be a better alternative.

Future Work
There are a number of technical issues to be solved in future
research and development. First, some parameters on Android
phones cannot be controlled through publicly available
programing interfaces for older Android operating systems.
Weakened control may lead to improper configurations, such
as a long exposure time causing blur. Second, the openGL driver
which offers general-purpose graphic processing unit (GPGPU)
computing potential is very difficult to work with and produces
unexpected results on many smartphone models for unknown
reasons. Preliminary research using GPGPU on iPhones brought
a dramatic boost in processing speed over 60%, but certain
models behave improperly. Finally, the real-time movement
tracking is inaccurate and leads to location mismatch in
subsequent mini-map construction. Although this issue does

not affect the VS generation, the mis-drawing in the mini-map
can be confusing.

Limited by time and development cost, the international version
of sWSI is only offered on iOS. The Chinese version (Tai Rui
Jing Xia), which has a complicated still-FoV capturing tool and
clinical report system, supports both Android and iOS but may
not be accessible from abroad. In follow-up studies, both
versions will be evaluated and compared. More quantitative
metrics may also be covered (eg, the measure of absolute image
quality) even though most pathologist users suggest such
measurements have very limited implications in clinical settings.

On the clinical side, only the basic scanning function of sWSI
was evaluated in this experiment, leaving sWSI's many other
useful functions to be tested. These functions include swift
scanning at a lower magnification then adding static FoVs at
higher magnification to cover both speed and detail, recording
z-stacks of thick smears with video clips, and potential
application of sWSI in fluorescent or dark-field microscopy.
The validation of these functions, as well as experiments with
expanded sample sizes, are planned in future work.

Conclusions
In this paper, an ultra-low-cost WSI system named sWSI (with
clients hosted on mainstream Android and iOS smartphones)
was introduced and analyzed. Compared to automatic scanners
and high-end computer-based solutions, this alternative
dramatically reduces the setup cost to as low as US $100 per
unit with service costs of US $1-$10 per scan. Although sWSI
may not replace existing dedicated devices, it could become a
reliable alternative that weighs more on cost-effectiveness.

By employing distributed image processing, both robustness
and efficiency are covered. Through high performance
computing and real-time feedback, user friendliness is optimized
with minimal manual input, leaving most interface-kernel
coordination (and even image distortion correction) fully
automated. Based on clinical evaluation using 100 frozen section
samples, sWSI is considered adequate by expert pathologists
for making a diagnosis for most sample types. The overall
accuracy based on sWSI VSs is slightly poorer than that based
on high-end scanners, which is the current solution for digitizing
whole slides. This gap is largely attributed to low specificity
for samples requiring higher levels of detail (eg, lungs), which
means that most of the inadequacy of sWSI comes from
relatively low image quality, which can be identified before
diagnoses are made.

In the experiment, 15 operators with no prior experience with
sWSI learned to use the manual scanning very quickly. User
throughput stably reached between 27 and 36 minutes per
15-by-15 mm sample area under a 20X objective lens after
scanning 9 slides each, similar to that of mid-to-low-end
scanners. In low-frequency usage situations (eg, remote or
low-tier hospitals), this level of labor may be considered
cost-effective, given the vast financial savings from deploying
sWSI instead of scanners.
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