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Abstract

Background: Walking isacomplex cognitive motor task that is commonly completed while performing another task such as
talking or making decisions. Gait assessments performed under normal and “ dual-task” walking conditionsthus provide important
insights into health. Such assessments, however, are limited primarily to laboratory-based settings.

Objective: The objective of our study wasto create and test a smartphone-based assessment of hormal and dual-task walking
for use in nonlaboratory settings.

Methods: We created an iPhone app that used the phone's motion sensors to record movements during walking under normal
conditions and while performing a serial-subtraction dual task, with the phone placed in the user’s pants pocket. The app provided
the user with multimediainstructions before and during the assessment. Acquired datawere automatically upl oaded to acloud-based
server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they
used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the
app and a gold-standard-instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking
trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the
phone-side leg aligned with smartphone accel eration extrema, following filtering and rotation to the earth coordinate system. We
derived stride times—aclinically meaningful metric of locomotor control—from GAITRite and app data, for all strides occurring
over the GAITRIite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from
normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For
thesetrials, periods of potential turning were identified via custom-devel oped algorithms and omitted from stride-time analyses.

Results: Acrossall detected stridesin thelaboratory, stride times derived from the app and GAITRite mat were highly correlated
(P<.001, r>=.98). These correlations were independent of walking condition and pocket tightness. App- and GAITRite-derived
stride-time dual-task costs were also highly correlated (P<.001, r?=.95). The error of app-derived stride times (mean 16.9, SD
9.0 ms) was unaffected by the magnitude of stride time, walking condition, or pocket tightness. For both normal and dual-task
trials, average stride times derived from app walking trials demonstrated excellent test-retest reliability within and between both
laboratory and home-based assessments (intraclass correlation coefficient range .82-.94).

Conclusions: The iPhone app we created enabled valid and reliable assessment of stride timing—uwith the smartphone in the

pocket—during both normal and dual-task walking and within both laboratory and nonlaboratory environments. Additional work
iswarranted to expand the functionality of thistool to older adults and other patient populations.

(JMIR Mhealth Uhealth 2018;6(1):€36) doi: 10.2196/mheslth.8815
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Introduction

Walking is central to many activities of daily living and is most
typically completed while simultaneously performing unrelated
cognitive tasks, for example, talking, reading signs, or making
decisions. Evenin healthy adults, such dual tasking reduces gait
speed, prolongs stride time, and increases stride-to-stride
movement variability [1]. These performance decrements, or
“costs,” indicate that walking is regulated by a complex control
system dependent on numerous cognitive functions and
underlying brain networks. Therefore, the assessment of gait
under normal and dual-task conditions providesvaluableinsights
into not only one's physical health [2,3], but also one’s brain
health, and even the likelihood of developing dementia several
yearsinto the future [4,5].

Gait assessments are typically completed within clinical or
laboratory settings. They are thus inaccessible to those living
in remote settings and do not lend themselves well to
high-frequency monitoring. Moreover, clinical assessments
entail qualitative evaluation, are predisposed to subjective bias,
and are often insensitive to subtle gait disturbances [6-9].
Laboratory assessments overcome these limitations by
quantifying temporospatial characteristics of gait, yet they
reguire expensive equipment, dedicated laboratory space, and
trained personnel. There is thus an urgent need to develop
mobile tools that enable low-cost quantitative assessments of
gait.

Smartphones contain a 3-dimensional accelerometer, a
3-dimensional gyroscope, and adigital compassthat are similar
in sensitivity to research-grade biomechanical instrumentation.
The smartphone, when secured to an individual’s lower back
or sternum as they walk, can detect gait events such as heel
strikes[10], aswell askinematic differences between those with
and those without movement disorders, such as Parkinson
disease [11,12]. Still, studies to date have been limited to
laboratory environments and have required trained personnel
to administer assessments, provide instructions, and secure the
phone to the participant’s trunk.

In collaboration with Sage Bionetworks (Seattle, WA, USA)
and supported by the Football Players Health Study at Harvard
University, the objective of this study was to create an
i Phone-based app enabling the administration of astandardized
gait assessment, under both normal and dual-task conditions,
within nonlaboratory settings. The app wasdesigned to provide
multimediainstructionsto the user, acquire datawith the phone
placed in the user’s pocket, and derive stride times from bouts
of walking. We chose stride time because it can be directly
derived from gait events (eg, hedl strikes), is closely linked to
gait speed [13], and has been associated with aging [14],
movement disorders [15], cognitive impairment [16], and the
development of falls [17]. As turning significantly disrupts
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stridetiming [ 18], we a so devel oped amethod of automatically
detecting turns. We determined the validity and reliability of
the app by (1) comparing the accuracy of stride times derived
from the app versus those derived from gold-standard laboratory
instrumentation, and (2) determining the test-retest reliability
of app-derived stride times within both laboratory- and
home-based settings.

Methods

Smartphone App

The app was designed to recreate a common laboratory-based
dual-task gait assessment, namely, eval uation of walking under
normal conditionsand again while verbalizing seria subtractions
of 3 from arandom number between 200 and 999 [19,20]. The
app provided multimedia instructions to the participant to help
ensure reliability of results. Participants first watched an
animation devel oped by Wondros Inc (Los Angeles, CA, USA)
that provided a general overview of the assessment (Figure 1).
The user was then presented with several on-screen text
instructions. The last page instructed the participant to press
Start and place the phone in their preferred front pocket. The
iPhone speaker was then used to provide audible instructions
to the participant for the remainder of the assessment. These
instructions provided the procedural details of each walking
trial, cues for the start and end of each tria, and, for dual-task
tridls, a randomly generated starting number for the
serial-subtraction task.

We designed walking assessments to include one 45-second
trial of norma walking and one 45-second trial of dual-task
walking. Trial start and end cues triggered acquisition of
accelerometer, gyroscope, and magnetometer data, which were
stored on the phone’sinternal storage capacity. Following each
assessment, the participant was prompted to answer a
multiple-choice question (see following section) presented in
text format on the smartphone screen. Kinematic and
guestionnaire datawere then automatically uploaded viaWi—Fi
to aremote, cloud-based data server for offline analyses.

Participants

We recruited men and women aged 18 to 35 years via local
advertisement. Exclusion criteria were an inability to walk
unassisted; self-report of major disease, such as stroke,
Parkinson disease, diabetes mellitus, or cardiovascular disease;
history or presence of ulceration, amputation, or other painful
symptoms in the lower extremities; drug or acohol abuse; and
hospitalization within the past 6 months. Interested and eligible
individuals provided written informed consent as approved by
the Hebrew SeniorLife Institutional Review Board (Hebrew
SeniorLifelnstitute for Aging Research, Rodindale, MA, USA,;
approval number: IRB-2015-40).

JMIR Mhealth Uhealth 2018 | vol. 6 | iss. 1| €36 | p. 2
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MHEALTH AND UHEALTH

Manor et al

Figurel. Screenshot of the animated instruction for dual-task walking. The app providestext and animated instructions prior to the assessment, followed
by voice instructions during the assessment, to enable gait analysis from data acquired while the user walks with their phone placed in the pocket of
their pants or shorts. Gait is assessed while individuals walk normally, and again while they walk and simultaneously perform a serial-subtraction

cognitive dual task.

Study Procedures

Participants completed 2 |aboratory visits separated by 1 week.
They completed the same assessments of locomotor control
within each visit, during which data were simultaneously
collected viathe app and a 14-foot instrumented GAITRite mat
(CIR Systems, Inc, Franklin, NJ, USA). Participants additionally
used the app to complete walking assessments within their
homes on 3 separate days, in between their 2 |aboratory visits.
No instructions were provided regarding time of day for home
assessment completion.

Laboratory Assessments

Participants completed 2 laboratory visits separated by at least
one week. We instructed them to wear comfortable shoes and
pants or shorts with front pockets for each visit. The same
procedures were completed on each visit to enable testing of
between-visit test-retest reliability. Within each visit,
participants completed the app walking assessment 3 separate
times, such that they completed 3 pairs of norma walking and
dual-task walking trials. Trial order was randomized with each
pair.

Within thelaboratory, each walking trial was completed around
an oval-shaped, 24-m indoor track. We placed the GAITRite
mat along one long side of the track. Each trial began with
participants standing just behind the beginning of the mat to
ensure that the first footfall of each trial was captured by the
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mat. Participants used the app instructions to initiate and
complete each trial.

After all trials, the app prompted participants to use the iPhone
touch screen to answer the following multiple-choice question:
“How tight isthe pocket in which you placed the phone? (tight,
medium or loose).” We did this to study the effects of this
variable on the ability to collect valid and reliable data over
time. The questionnaire wasincorporated into the app using the
SageBridge online portal (Sage Bionetworks).

Home Assessments

We asked participants to use the app to complete a walking
assessment (1 normal walk and 1 dual-task walk) at home on 3
Separate days in between their laboratory visits. The app
provided the same instructions to the participant as during the
laboratory visit. Additionally, the app instructed participantsto
complete the walk in a quiet room or hallway, and to walk
continuously throughout the trial, making turns if and when
needed. On compl etion of both trials, partici pantswere prompted
to answer the same multiple-choice question regarding pocket
tightness as described in the laboratory assessment.

Data Analysis

Laboratory Assessments

The app sampled kinematic dataat afrequency of 100 Hz. Raw,
3-dimensional accelerometer and gyroscope time series were
each transformed from the device coordinate system to an earth
coordinate system using the quaternion rotation matrix.
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Following this rotation, the z-axis formed a line between the
center of the earth and the phone, and was thus approximately
vertical to the ground (see Figure 2, part A, for example
acceleration data). Each rotated z-axis time series was then
filtered with a common Butterworth filter. These time series,
which contained peaks that alternated between relatively high
and low amplitudes, aligned with heel-strike and toe-off events
derived from the GAITRite mat (Figure 2, part B). Specifically,
each heel strike corresponded to the trough nadir following each
relatively high peak, whereastoe-offs corresponded to the trough
nadir following each relatively low peak.

We defined stride time as the time elapsed between 2
consecutive heel strikes of the same foot. We calculated it by
determining the number of data points between 2 consecutive
trough nadirsfollowing relatively high peaks, and then dividing
by the sampling frequency of 100 Hz. For all strides that took
place on the GAITRIite mat, we calculated stride times from
both gait mat and app data and used these for analyses.

Automatic Turn Detection

Walking trials completed at home likely included variable
amounts of turning. Turning, whileitself animportant functional
measure, alters stride timing [18]. We therefore developed a
method to identify relatively sharp, rapid turns to enable
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stride-time cal culation from bouts of walking without such turns.
Turning produces alarge deviation in the angular velocity about
the body’svertical axis. In pilot studies of straight-linewalking
with the phone placed in the pocket, z-axis gyroscope data
contained fluctuations of relatively small amplitude with
frequent zero crossings (Figure 3, part A, black line portions).
However, during a 180° turn, this angular velocity was
significantly greater in 1 direction—depending on the direction
of turning relative to the phone’s orientation in the pocket—with
no zero crossings (see Figure 3, part A, red line portion).

The total angular distance traveled in 1 direction can be
calculated by integrating the angular velocity time series
between 2 consecutive zero crossings (ie, area under the curve
[AUC]). A 180° turn of the phone’s gyroscope would thus equal
3.14 radians (ie, m). The AUC related to the 180° turn depicted
inFigure 3, part A, was 3.37. We also noted in our unpublished
pilot studiesthat relatively rapid turnswerelesslikely to contain
higher-frequency angular velocity fluctuationsthat crossed zero.
For this analysis, we therefore defined a turn as any period
between 2 consecutive zero crossings within rotated, filtered
z-axis angular velocity time series in which the product of the
AUC and thetime between zero crossings eclipsed apredefined
threshold.
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Figure2. Exampleof (A) raw and (B) filtered smartphone-recorded accel erations along the earth coordinate system vertical axis during straight walking,
relative to identified gait events. Phone-side leg heel-strike and toe-off events derived from a GAI TRite mat were overlaid on vertical-axis accelerations
acquired by a smartphone placed in the participant’s pocket. These heel-strike and toe-off events correspond to trough nadirs following relatively high
peaks and low peaks, respectively, within the filtered acceleration time series.
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Figure 3. Example of smartphone-recorded (A) angular velocity and (B) acceleration relative to the earth coordinate system vertical axis during straight
walking and a180° turn. In apilot trial, a participant walked straight across the laboratory before turning around acone. Angular velocitieswererelatively
small and contained numerous zero crossings during the straight-walking portion of the trial. Turning, on the other hand, was associated with a large
nonstationarity in angular velocity between the 2 adjacent zero crossings. Accel eration patternswere noticeably atered during this period. Thisobservation
was subsequently used to develop a method to identify potential turns from walking trials collected during in-home assessments.
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Figure 4 illustrates an example of 2 identified turns within a
selected trial of walking within the home. For all homewalking
trials, we first detected all potential turns as described above.
We then calculated stridetimesfrom all z-axis accel eration data
that occurred outside of detected periods of turning (using the
same methods as those described in the “Laboratory
Assessments’ subsection.

Statistical Analysis

We performed the following analyses with IMP Pro 13 (SAS
Ingtitute) and R version 3.3.1 (R Foundation). We set the
significance level for all teststo P<.05.

Validity

We examined the validity of app-derived stride times by first
assessing their agreement with corresponding stride times
derived from the GAITRite mat using a Passing-Bablok
orthogonal regression model, an appropriate approach for
comparing methods while acknowledging measurement error
[21]. Modelsincluded every stride that occurred during thefirst
pass over the mat, for all trials of both normal and dual-task
walking for each participant. We further examined the
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relationship between individual stride times derived from each
device using linear regression and included visit (laboratory
visits 1 and 2), task condition (normal or dual-task walking),
and pocket tightness (tight, medium, or loose) as model effects
to determine whether these factors influenced the observed
relationship between derived stride times. In this model, we
included participant as a random effect variable, as each
contributed multiple data points to the model. We also used
similar orthogonal and linear regression models to assess the
agreement between dual-task costs to stride time as measured
by the app and the GAITRite mat. We cal cul ated cost from each
pair of normal and dual-task walking trials as the percentage
change (ie, increase) in average stride time.

For each individual stride that occurred on the GAITRite mat,
we then calculated the magnitude of error between its stride
time as calculated by the app and the GAITRite mat. We
produced a Bland-Altman plot of this error to visualize this
error asafunction of stridetime (ie, the average of theindividual
stridetime as calculated by the app and the GAITRite mat). We
used 2-way ANOVA to determine whether the magnitude of
error, a the individua stride level, was influenced by task
condition or pocket tightness.
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Figure4. Example of smartphone-recorded (A) angular velocity and (B) accel eration rel ative to the earth coordinate system vertical axisduring in-home
walking with 2 detected periods of turning. Turns were identified from angular velocity time series and defined as any period between 2 consecutive
zero crossings in which the product of the area under the curve and the time between zero crossings was >2.00 radian-seconds. Acceleration patterns
were noticeably different during these periods. Average stride times from home assessment trials were thus computed from stride times derived only

from nonturning periods.
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Reliability Results

We examined the test-retest reliability of the app assessment
by computing several intraclass correlation coefficients (ICCs).
We calculated | CCs separately for normal and dual-task walking
trias, for each of the following 4 conditions: (1) across trias
within each laboratory assessment, (2) across trials over the 3
home assessments, (3) between the 2 laboratory visits, and (4)
between laboratory and home assessments. For conditions 1
and 2, the unit of interest was the average stride time derived
from each tria (ICC 1, 1). For conditions 3 and 4, the unit of
interest was the average stride time, averaged across al trials
of the same condition (ie, normal or dua task; ICCs 1, 3). We
took ICC values greater than .80 to reflect excellent test-retest
reliability.

Effects of Participant Characteristics, Walking
Condition, and Testing Setting

We used Pearson correl ationsto examine rel ationshi ps between
average stride times and participant height and body mass. We
used 2-way ANOVAs to examine the effects of walking
condition (normal walking, dual tasking), setting (laboratory,
home), and their interaction on average stride time. Significance
level was set to P<.05.
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We recruited 14 healthy participants aged 22 to 35 years (8
female; mean age 29.6, SD 4.2 years; mean height 168, SD 12
cm; mean body mass 76, SD 14 kg). All 14 participants
completed both laboratory visits and all 3 home assessments.
Across al 69 recorded assessments, 10 were completed with
self-report of loose-fitting pockets, 24 with tight-fitting pockets,
and 35 with pockets of medium tightness. For the 41 assessments
completed at home, 11 were conducted in the morning, 13 in
the afternoon, and 17 in the evening. Across participants, the
average day-to-day variation in the range of timing of the 3
home assessmentswas 4.0 (SD 4.0) hours. The average number
of strides detected in each 45-second home-based trial, after
removal of turns, was 21.6 (SD 6.4) (range 13-28 strides).

Validity of Smartphone-Derived Stride Time

For each detected stride across al participants and laboratory
trials, stride times derived from the app demonstrated excellent
validity as compared with the GAITRite mat. Orthogonal
regression analysis revealed that stride times derived from the
app were highly correlated with those measured by the

GAITRite mat (P<.001, r>=.98; Figure 5).
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Figure 5. Correlation and agreement between stride times derived from a smartphone placed in the pocket and a GAITRIte mat. (A) The timing of
each individual stride that occurred over the GAITRIte mat during all trials of normal and dual-task walking over 2 visits are presented separately for
each participant. Stride timeswere noticeably longer during dual-task walking than during normal walking, for multiple participants. The gray background
plot in each subplot is the same and represents the entire sample of stride times. Stride times derived from the app and the GAITRite mat were strongly

correlated with one another (r2:.98, P<.001). The orthogonal best fit line of this entire sample had a slope of approximately 1 and an intercept of
approximately 0. (B) Bland-Altman scatterplot depicting the difference (error) in measured time, as a function of the average time, for each stride as
derived from the app and GAITRite mat.
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Table 1. Test-retest reliability of laboratory- and home-based assessments of average stride times during normal and dual-task walking.

Tests Normal walking Dual-task walking
Icc? P value 95% CI ICC P value 95% ClI
GAITRite mat
Within-visit 94 <.001 .88-.98 .89 <.001 77-.95
Between-visit .93 <.001 .79-.97 .83 <.001 .52-94
Smartphone app
L aboratory assessment
Within-visit 94 <.001 .88-.98 .90 <.001 .79-.96
Between-visit .92 <.001 J7-97 .83 <.001 .51-.94
Home assessment .83 <.001 .62-.94 .82 <.001 .60-.94
Laboratory vs home .87 <.001 .57-.96 .89 <.001 .65-.97
8 CC: intraclass correlation coefficient.
Linear regression models further indicated that this correlation Discussion

was unaffected by task condition, laboratory visit number, or
self-report of pocket tightness.

The dual-task coststo average stride time derived from the app
and the GAITRite mat were aso highly correlated (P<.001,

r?=.95; Figure 6). This correlation was also independent of
laboratory visit number and self-reported pocket tightness.

The average magnitude of error of individual app-derived stride
times, as compared with the corresponding stride time derived
from the gait mat, was 16.9 (SD 9.0) ms. Figure 5 (part B)
depictsaBland-Altman plot, whichillustrates that the magnitude
of error was not noticeably influenced by stride time. ANOVA
model s further indicated that the magnitude of error wassimilar
across|aboratory visits (F;346=0.24, P=.63) and was unaffected
by either walking conditions (F;34=0.03, P=.86) or pocket
tightness (F346=0.91, P=.40).

Reliability of Smartphone-Measured Stride Time

Average stride times derived from each app triadl—for both
norma and dual-task walking—demonstrated excellent
test-retest reliability across repeated trials within laboratory
assessments, acrosstrial s between the 2 |aboratory assessments
separated by 1 week, and across home assessment days (Table
1). In general, we observed that ICC values were (1) slightly
higher for trials of normal walking than for dual-task walking,
(2) similar in value between app- and GAITRite-based
measurements within each laboratory visit and between 2
laboratory visits, and (3) similar in value for home assessments
and for laboratory assessments.

Effects of Participant Characteristics, Walking
Condition, and Setting on Stride Time
Average stride times were not significantly correlated with

participant height or body mass. Stride times were longer
(F1155=4.67, P=.03) when dua tasking (mean 1.18, SD 0.16 s)
than when walking normally (mean 1.05, SD 0.16 ). Testing
setting (ie, laboratory vs home) did not affect average stride
times (F1155=0.001, P=.99).

http://mhealth jmir.org/2018/1/e36/

This study provides a proof-of-concept in healthy adults that a
smartphone placed in the front pocket of one's pants or shorts
can provide multimedia instructions to the participant and
accurately measure stride times during walking under different
experimental conditions. The app can detect mgjor turns and
compute average stridetimes during forward walking with high
test-retest reliability within alaboratory or home setting.

Body-worn sensors, including those contained within
smartphones, can be used to capture the kinematic properties
of gait. Previous work has typically secured the smartphone or
sensor tightly to the individual’s trunk [11,22-24] or lower
extremities[10,25,26]. While that approach has been proven to
enable measurement of gait metrics with enough sensitivity to
distinguish between disease states, it has used additional
equipment (eg, Velcro or elastic straps) together with trained
personnel in a laboratory setting to provide assessment
instructions. Our approach places the phone in the pocket,
provides automated instructions to the participant, and uploads
acquired data automatically via Wi—Fi to cloud-based storage,
thus providing a widely accessible and cost-effective tool for
the assessment of walking within both laboratory and
nonlaboratory settings. Such atool may be particularly useful
and cost effectivefor large-scal e national or international studies
of mobility by obviating the need for local research staff to
instruct participants or apply special instruments.

Walking in everyday life is frequently conducted while
executing cognitive tasks. Seria subtraction is most typically
used within laboratory dual-task paradigms becauseit is easily
implemented, disruptsthe gait of even healthy adults (see Figure
5, part A), and produces measurable dual-task costs that are
sensitive to concussion [27,28], aging [20,29], future fals
[30,31], and cognitive decline [32,33]. Dual-task assessments
are influenced by the instructions provided to the participant
prior to each trial of walking, especialy with respect to task
prioritization [34,35]. In this study, use of the smartphone to
provide standardized i nstructions viaacombination of animated,
written, and audible instructions led to excellent test-retest
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reliability of average stride times derived from dual-task trials,
both within the laboratory and at home, that were comparable
with or even higher than published reports of similar assessments
led by trained personnel [23,36]. Future work is therefore
warranted to test and optimize this smartphone approach in
older adults and those with varying levels of cognitive and
physical impairment. Moreover, efforts are needed to use
smartphone voice recognition software to quantify
serial-subtraction performance in order to adjust dual-task cost
outcomes for this important variable and to standardize
cognitive-task difficulty acrossindividuals.

The proposed method of identifying periods of walking that
likely included turning, and subsequently removing these periods
from the calculation of stride times, led to excellent test-retest
reliability of average stride time. It is expected that the future
development and application of more sophisticated turn
identification algorithms will further improve test-retest
reliability of this and other metrics by ensuring that strides
included in subsequent analyses were not influenced by turning.
Moreover, turning is critical to the navigation of one's
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environment, and the kinematic characteristics of turning indeed
provide important insight into the integrity of the locomotor
control system [37-39]. Such an approach that leads to the
accurate detection of aturn during remote walking assessments
would aso be highly valuable by enabling assessment of the
kinematic properties of the turn itself.

Thisstudy has provided evidencethat stridetiming—aclinically
meaningful outcome of locomotor control—can be accurately
and reliably derived from kinematic data acquired by the
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heterogeneous populations and in those with abnormal gait
patterns.
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