Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Monday, March 11, 2019 at 4:00 PM to 4:30 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?


Currently accepted at: JMIR mHealth and uHealth

Date Submitted: May 8, 2019
Open Peer Review Period: May 9, 2019 - May 17, 2019
Date Accepted: Jul 4, 2019
(closed for review but you can still tweet)

This paper has been accepted and is currently in production.

It will appear shortly on 10.2196/14657

The final accepted version (not copyedited yet) is in this tab.

Response Time as Implicit Self-Schema Indicator for Depression Among Undergraduate Students: Preliminary Findings From a Mobile App-Based Depression Assessment

  • Kyungmi Chung; 
  • Jin Young Park; 
  • DaYoung Joung; 
  • Kyungun Jhung


Response times to depressive symptom items in a mobile-based depression screening instrument has potential as an implicit self-schema indicator for depression but has yet to be determined; the instrument was designed to readily record depressive symptoms experienced on a daily basis. In this study, the well-validated Korean version of the Center for Epidemiologic Studies Depression Scale-Revised (K-CESD-R) was adopted.


The purpose of this study was to investigate the relationship between depression severity (ie, explicit measure: total K-CESD-R Mobile scores) and the latent trait of interest in schematic self-referent processing of depressive symptom items (ie, implicit measure: response times to items in the K-CESD-R Mobile scale). The purpose was to investigate this relationship among undergraduate students who had never been diagnosed with, but were at risk for, major depressive disorder (MDD) or comorbid MDD with other neurological or psychiatric disorders.


A total of 70 participants—36 males (51%) and 34 females (49%)—aged 19-29 years (mean 22.66, SD 2.11), were asked to complete both mobile and standard K-CESD-R assessments via their own mobile phones. The mobile K-CESD-R sessions (binary scale: yes or no) were administered on a daily basis for 2 weeks. The standard K-CESD-R assessment (5-point scale) was administered on the final day of the 2-week study period; the assessment was delivered via a text message, including a link to the survey, directly to participants’ mobile phones.


A total of 5 participants were excluded from data analysis. The result of polynomial regression analysis showed that the relationship between total K-CESD-R Mobile scores and the reaction times to the depressive symptom items was better explained by a quadratic trend—F (2, 62)=21.16, P<.001, R2=.41—than by a linear trend—F (1, 63)=25.43, P<.001, R2=.29. It was further revealed that the K-CESD-R Mobile app had excellent internal consistency (Cronbach alpha=.94); at least moderate concurrent validity with other depression scales, such as the Korean version of Quick Inventory for Depressive Symptomatology-Self Report (ρ=.38, P=.002) and the Patient Health Questionnaire-9 (ρ=.48, P<.001); a high adherence rate for all participants (65/70, 93%); and a high follow-up rate for 10 participants whose mobile or standard K-CESD-R score was 13 or greater (8/10, 80%).


As hypothesized, based on a self-schema model for depression that represented both item and person characteristics, the inverted U-shaped relationship between the explicit and implicit self-schema measures for depression showed the potential of an organizational breakdown; this also showed the potential for a subsequent return to efficient processing of schema-consistent information along a continuum, ranging from nondepression through mild depression to severe depression. Further, it is expected that the updated K-CESD-R Mobile app can play an important role in encouraging people at risk for depression to seek professional follow-up for mental health care.


Please cite as:

Chung K, Park JY, Joung D, Jhung K

Response Time as Implicit Self-Schema Indicator for Depression Among Undergraduate Students: Preliminary Findings From a Mobile App-Based Depression Assessment

JMIR mHealth and uHealth. (forthcoming/in press)

DOI: 10.2196/preprints.14657


Request queued. Please wait while the file is being generated. It may take some time.

© The authors. All rights reserved. This is a privileged document currently under peer-review/community review (or an accepted/rejected manuscript). Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review and ahead-of-print citation purposes only. While the final peer-reviewed paper may be licensed under a cc-by license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.