Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 02.02.15 in Vol 3, No 1 (2015): Jan-Mar

This paper is in the following e-collection/theme issue:

Works citing "Validation of a Portable Device for Mapping Motor and Gait Disturbances in Parkinson’s Disease"

According to Crossref, the following articles are citing this article (DOI 10.2196/mhealth.3321):

(note that this is only a small subset of citations)

  1. Ghoraani B, Hssayeni MD, Bruack MM, Jimenez-Shahed J. Multilevel Features for Sensor-Based Assessment of Motor Fluctuation in Parkinson's Disease Subjects. IEEE Journal of Biomedical and Health Informatics 2020;24(5):1284
    CrossRef
  2. di Biase L, Di Santo A, Caminiti ML, De Liso A, Shah SA, Ricci L, Di Lazzaro V. Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring. Sensors 2020;20(12):3529
    CrossRef
  3. Morgan C, Rolinski M, McNaney R, Jones B, Rochester L, Maetzler W, Craddock I, Whone AL. Systematic Review Looking at the Use of Technology to Measure Free-Living Symptom and Activity Outcomes in Parkinson’s Disease in the Home or a Home-like Environment. Journal of Parkinson's Disease 2020;10(2):429
    CrossRef
  4. Aich S, Youn J, Chakraborty S, Pradhan PM, Park J, Park S, Park J. A Supervised Machine Learning Approach to Detect the On/Off State in Parkinson’s Disease Using Wearable Based Gait Signals. Diagnostics 2020;10(6):421
    CrossRef
  5. Hssayeni MD, Burack MA, Jimenez-Shahed J, Ghoraani B. Assessment of response to medication in individuals with Parkinson’s disease. Medical Engineering & Physics 2019;67:33
    CrossRef
  6. Almogren A. An automated and intelligent Parkinson disease monitoring system using wearable computing and cloud technology. Cluster Computing 2019;22(S1):2309
    CrossRef
  7. Punin C, Barzallo B, Clotet R, Bermeo A, Bravo M, Bermeo J, Llumiguano C. A Non-Invasive Medical Device for Parkinson’s Patients with Episodes of Freezing of Gait. Sensors 2019;19(3):737
    CrossRef
  8. Gurchiek RD, Choquette RH, Beynnon BD, Slauterbeck JR, Tourville TW, Toth MJ, McGinnis RS. Open-Source Remote Gait Analysis: A Post-Surgery Patient Monitoring Application. Scientific Reports 2019;9(1)
    CrossRef
  9. Rodríguez-Molinero A, Pérez-López C, Samà A, Rodríguez-Martín D, Alcaine S, Mestre B, Quispe P, Giuliani B, Vainstein G, Browne P, Sweeney D, Quinlan LR, Arostegui JMM, Bayes , Lewy H, Costa A, Annicchiarico R, Counihan T, Laighin G, Cabestany J. Estimating dyskinesia severity in Parkinson’s disease by using a waist-worn sensor: concurrent validity study. Scientific Reports 2019;9(1)
    CrossRef
  10. Belić M, Bobić V, Badža M, Šolaja N, Đurić-Jovičić M, Kostić VS. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease—A review. Clinical Neurology and Neurosurgery 2019;184:105442
    CrossRef
  11. Porciuncula F, Roto AV, Kumar D, Davis I, Roy S, Walsh CJ, Awad LN. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PM&R 2018;10:S220
    CrossRef
  12. Moridani MK, Shahrestani NGN. Linear and Nonlinear Analysis of Gait Motor Signal to Diagnose Parkinson’s Disease. International Journal of Bioscience, Biochemistry and Bioinformatics 2018;8(4):202
    CrossRef
  13. Silva de Lima AL, Evers LJ, Hahn T, de Vries NM, Daeschler M, Boroojerdi B, Terricabras D, Little MA, Bloem BR, Faber MJ. Impact of motor fluctuations on real-life gait in Parkinson’s patients. Gait & Posture 2018;62:388
    CrossRef
  14. Johansson D, Malmgren K, Alt Murphy M. Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: a mixed-methods systematic review. Journal of Neurology 2018;265(8):1740
    CrossRef
  15. Bayés , Samá A, Prats A, Pérez-López C, Crespo-Maraver M, Moreno JM, Alcaine S, Rodriguez-Molinero A, Mestre B, Quispe P, de Barros AC, Castro R, Costa A, Annicchiarico R, Browne P, Counihan T, Lewy H, Vainstein G, Quinlan LR, Sweeney D, ÓLaighin G, Rovira J, Rodrigue z-Martin D, Cabestany J. A “HOLTER” for Parkinson’s disease: Validation of the ability to detect on-off states using the REMPARK system. Gait & Posture 2018;59:1
    CrossRef
  16. Thorp JE, Adamczyk PG, Ploeg H, Pickett KA. Monitoring Motor Symptoms During Activities of Daily Living in Individuals With Parkinson's Disease. Frontiers in Neurology 2018;9
    CrossRef
  17. Rodríguez-Molinero A, Samà A, Pérez-López C, Rodríguez-Martín D, Alcaine S, Mestre B, Quispe P, Giuliani B, Vainstein G, Browne P, Sweeney D, Quinlan LR, Moreno Arostegui JM, Bayes , Lewy H, Costa A, Annicchiarico R, Counihan T, Laighin G, Cabestany J. Analysis of Correlation between an Accelerometer-Based Algorithm for Detecting Parkinsonian Gait and UPDRS Subscales. Frontiers in Neurology 2017;8
    CrossRef
  18. Rodríguez-Martín D, Pérez-López C, Samà A, Català A, Moreno Arostegui J, Cabestany J, Mestre B, Alcaine S, Prats A, Cruz Crespo M, Bayés . A Waist-Worn Inertial Measurement Unit for Long-Term Monitoring of Parkinson’s Disease Patients. Sensors 2017;17(4):827
    CrossRef
  19. Samà A, Pérez-López C, Rodríguez-Martín D, Català A, Moreno-Aróstegui J, Cabestany J, de Mingo E, Rodríguez-Molinero A. Estimating bradykinesia severity in Parkinson's disease by analysing gait through a waist-worn sensor. Computers in Biology and Medicine 2017;84:114
    CrossRef
  20. Pérez-López C, Samà A, Rodríguez-Martín D, Català A, Cabestany J, Moreno-Arostegui J, de Mingo E, Rodríguez-Molinero A. Assessing Motor Fluctuations in Parkinson’s Disease Patients Based on a Single Inertial Sensor. Sensors 2016;16(12):2132
    CrossRef
  21. Kassavetis P, Saifee TA, Roussos G, Drougkas L, Kojovic M, Rothwell JC, Edwards MJ, Bhatia KP. Developing a Tool for Remote Digital Assessment of Parkinson's Disease. Movement Disorders Clinical Practice 2016;3(1):59
    CrossRef
  22. Shah N, Aleong R, So I. Novel Use of a Smartphone to Measure Standing Balance. JMIR Rehabilitation and Assistive Technologies 2016;3(1):e4
    CrossRef
  23. Rodríguez-Molinero A, Pérez-Martínez D, Gálvez-Barrón C, Hernández-Vara J, Martínez-Castrillo J, Álvarez R, de Fabregues O, Samà A, Pérez-López C, Romagosa J, Bregman J. Remote control of apomorphine infusion rate in Parkinson's disease: Real-time dose variations according to the patients' motor state. A proof of concept. Parkinsonism & Related Disorders 2015;21(8):996
    CrossRef
  24. Pan D, Dhall R, Lieberman A, Petitti DB. A Mobile Cloud-Based Parkinson’s Disease Assessment System for Home-Based Monitoring. JMIR mHealth and uHealth 2015;3(1):e29
    CrossRef
  25. Lieber B, Taylor BE, Appelboom G, McKhann G, Connolly ES. Motion Sensors to Assess and Monitor Medical and Surgical Management of Parkinson Disease. World Neurosurgery 2015;84(2):561
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/mhealth.3321)

:
  1. Pérez-López C, Samà A, Rodríguez-Martín D, Català A, Cabestany J, de Mingo E, Rodríguez-Molinero A. Advances in Computational Intelligence. 2015. Chapter 38:461
    CrossRef