Published on in Vol 4, No 3 (2016): Jul-Sept

Popular Nutrition-Related Mobile Apps: A Feature Assessment

Popular Nutrition-Related Mobile Apps: A Feature Assessment

Popular Nutrition-Related Mobile Apps: A Feature Assessment

Journals

  1. Hu E, Nguyen V, Langheier J, Shurney D. Weight Reduction Through a Digital Nutrition and Food Purchasing Platform Among Users With Obesity: Longitudinal Study. Journal of Medical Internet Research 2020;22(9):e19634 View
  2. Zhang L, Nawijn E, Boshuizen H, Ocké M. Evaluation of the Recipe Function in Popular Dietary Smartphone Applications, with Emphasize on Features Relevant for Nutrition Assessment in Large-Scale Studies. Nutrients 2019;11(1):200 View
  3. Tejpal S, Sanghera N, Manoharan V, Planas-Iglesias J, Myler K, Klein-Seetharaman J. Towards personalised molecular feedback for weight loss. BMC Obesity 2019;6(1) View
  4. Rozga M, Latulippe M, Steiber A. Advancements in Personalized Nutrition Technologies: Guiding Principles for Registered Dietitian Nutritionists. Journal of the Academy of Nutrition and Dietetics 2020;120(6):1074 View
  5. Segredo E, Miranda G, Ramos J, Leon C, Rodriguez-Leon C. SCHOOLTHY: Automatic Menu Planner for Healthy and Balanced School Meals. IEEE Access 2020;8:113200 View
  6. Agapito G, Simeoni M, Calabrese B, Caré I, Lamprinoudi T, Guzzi P, Pujia A, Fuiano G, Cannataro M. DIETOS: A dietary recommender system for chronic diseases monitoring and management. Computer Methods and Programs in Biomedicine 2018;153:93 View
  7. Kosa S, Monize J, D'Souza M, Joshi A, Philip K, Reza S, Samra S, Serrago B, Thabane L, Gafni A, Lok C. Nutritional Mobile Applications for CKD Patients: Systematic Review. Kidney International Reports 2019;4(3):399 View
  8. Franco R, Fallaize R, Hwang F, Lovegrove J. Strategies for online personalised nutrition advice employed in the development of the eNutri web app. Proceedings of the Nutrition Society 2019;78(3):407 View
  9. Ahmed M, Mandic I, Lou W, Goodman L, Jacobs I, L’Abbé M. Validation of a Tablet Application for Assessing Dietary Intakes Compared with the Measured Food Intake/Food Waste Method in Military Personnel Consuming Field Rations. Nutrients 2017;9(3):200 View
  10. Mandracchia F, Llauradó E, Tarro L, Valls R, Solà R. Mobile Phone Apps for Food Allergies or Intolerances in App Stores: Systematic Search and Quality Assessment Using the Mobile App Rating Scale (MARS). JMIR mHealth and uHealth 2020;8(9):e18339 View
  11. Honary M, Bell B, Clinch S, Wild S, McNaney R. Understanding the Role of Healthy Eating and Fitness Mobile Apps in the Formation of Maladaptive Eating and Exercise Behaviors in Young People. JMIR mHealth and uHealth 2019;7(6):e14239 View
  12. Simpson C, Mazzeo S. Calorie counting and fitness tracking technology: Associations with eating disorder symptomatology. Eating Behaviors 2017;26:89 View
  13. Sustamy R, Widyawati M, Suryono S. Information system implementation for the management of malnutrition in pregnant women: a systematic literature review. Journal of Physics: Conference Series 2020;1524(1):012115 View
  14. Biel J, Martin N, Labbe D, Gatica-Perez D. Bites‘n’Bits. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018;1(4):1 View
  15. Villasana M, Pires I, Sá J, Garcia N, Zdravevski E, Chorbev I, Lameski P, Flórez-Revuelta F. Mobile Applications for the Promotion and Support of Healthy Nutrition and Physical Activity Habits: A Systematic Review, Extraction of Features and Taxonomy Proposal. The Open Bioinformatics Journal 2019;12(1):50 View
  16. Akdur G, Aydin M, Akdur G. Adoption of Mobile Health Apps in Dietetic Practice: Case Study of Diyetkolik. JMIR mHealth and uHealth 2020;8(10):e16911 View
  17. Minnens F, Marques A, Domingo J, Verbeke W. Consumers’ acceptance of an online tool with personalized health risk-benefit communication about seafood consumption. Food and Chemical Toxicology 2020;144:111573 View
  18. Katz D, Rhee L, Katz C, Aronson D, Frank G, Gardner C, Willett W, Dansinger M. Dietary assessment can be based on pattern recognition rather than recall. Medical Hypotheses 2020;140:109644 View
  19. Mauch C, Wycherley T, Laws R, Johnson B, Bell L, Golley R. Mobile Apps to Support Healthy Family Food Provision: Systematic Assessment of Popular, Commercially Available Apps. JMIR mHealth and uHealth 2018;6(12):e11867 View
  20. Zarnowiecki D, Mauch C, Middleton G, Matwiejczyk L, Watson W, Dibbs J, Dessaix A, Golley R. A systematic evaluation of digital nutrition promotion websites and apps for supporting parents to influence children’s nutrition. International Journal of Behavioral Nutrition and Physical Activity 2020;17(1) View
  21. Maringer M, van’t Veer P, Klepacz N, Verain M, Normann A, Ekman S, Timotijevic L, Raats M, Geelen A. User-documented food consumption data from publicly available apps: an analysis of opportunities and challenges for nutrition research. Nutrition Journal 2018;17(1) View
  22. Flaherty S, McCarthy M, Collins A, McAuliffe F. Can existing mobile apps support healthier food purchasing behaviour? Content analysis of nutrition content, behaviour change theory and user quality integration. Public Health Nutrition 2018;21(2):288 View
  23. Bland C, Dalrymple K, White S, Moore A, Poston L, Flynn A. Smartphone applications available to pregnant women in the United Kingdom: An assessment of nutritional information. Maternal & Child Nutrition 2020;16(2) View
  24. Tavares B, Pires I, Marques G, Garcia N, Zdravevski E, Lameski P, Trajkovik V, Jevremovic A. Mobile Applications for Training Plan Using Android Devices: A Systematic Review and a Taxonomy Proposal. Information 2020;11(7):343 View
  25. Flaherty S, McCarthy M, Collins A, McCafferty C, McAuliffe F. A phenomenological exploration of change towards healthier food purchasing behaviour in women from a lower socioeconomic background using a health app. Appetite 2020;147:104566 View
  26. Pendergast F, Leech R, McNaughton S. Novel Online or Mobile Methods to Assess Eating Patterns. Current Nutrition Reports 2017;6(3):212 View
  27. Li Y, Ding J, Wang Y, Tang C, Zhang P. Nutrition-Related Mobile Apps in the China App Store: Assessment of Functionality and Quality. JMIR mHealth and uHealth 2019;7(7):e13261 View
  28. Maringer M, Wisse-Voorwinden N, Veer P, Geelen A. Food identification by barcode scanning in the Netherlands: a quality assessment of labelled food product databases underlying popular nutrition applications. Public Health Nutrition 2018:1 View
  29. Samoggia A, Riedel B. Assessment of nutrition-focused mobile apps' influence on consumers' healthy food behaviour and nutrition knowledge. Food Research International 2020;128:108766 View
  30. Teasdale N, Elhussein A, Butcher F, Piernas C, Cowburn G, Hartmann-Boyce J, Saksena R, Scarborough P. Systematic review and meta-analysis of remotely delivered interventions using self-monitoring or tailored feedback to change dietary behavior. The American Journal of Clinical Nutrition 2018;107(2):247 View
  31. Conrad J, Nöthlings U. Innovative approaches to estimate individual usual dietary intake in large-scale epidemiological studies. Proceedings of the Nutrition Society 2017;76(3):213 View
  32. Villasana M, Pires I, Sá J, Garcia N, Zdravevski E, Chorbev I, Lameski P, Flórez-Revuelta F. Mobile Applications for the Promotion and Support of Healthy Nutrition and Physical Activity Habits: A Systematic Review, Extraction of Features and Taxonomy Proposal. The Open Bioinformatics Journal 2019;13(1):50 View
  33. Demiris G, Iribarren S, Sward K, Lee S, Yang R. Patient generated health data use in clinical practice: A systematic review. Nursing Outlook 2019;67(4):311 View
  34. Eldridge A, Piernas C, Illner A, Gibney M, Gurinović M, De Vries J, Cade J. Evaluation of New Technology-Based Tools for Dietary Intake Assessment—An ILSI Europe Dietary Intake and Exposure Task Force Evaluation. Nutrients 2018;11(1):55 View
  35. Potemkina N, Bolshakov A, Krutko V, Mamikonova O. INFORMATION AND COMPUTER SUPPORT OF HEALTHY NUTRITION AS A CURRENT METHOD OF HEALTH SAVING AND FOOD HYGIENE IN MODERN ENVIRONMENTAL CONDITIONS. Hygiene and sanitation 2019;96(11):1078 View
  36. Fallaize R, Zenun Franco R, Pasang J, Hwang F, Lovegrove J. Popular Nutrition-Related Mobile Apps: An Agreement Assessment Against a UK Reference Method. JMIR mHealth and uHealth 2019;7(2):e9838 View
  37. Osadchiy T, Poliakov I, Olivier P, Rowland M, Foster E. Progressive 24-Hour Recall: Usability Study of Short Retention Intervals in Web-Based Dietary Assessment Surveys. Journal of Medical Internet Research 2020;22(2):e13266 View
  38. Zhang P, Dong L, Chen H, Chai Y, Liu J. The Rise and Need for Mobile Apps for Maternal and Child Health Care in China: Survey Based on App Markets. JMIR mHealth and uHealth 2018;6(6):e140 View
  39. Minnens F, Marques A, Domingo J, Verbeke W. Consumers’ acceptance of an online tool with personalized health risk-benefit communication about seafood consumption (Preprint). JMIR Formative Research 2019 View
  40. Fallaize R, Franco R, Hwang F, Lovegrove J, Portero-Otin M. Evaluation of the eNutri automated personalised nutrition advice by users and nutrition professionals in the UK. PLOS ONE 2019;14(4):e0214931 View
  41. Pentikäinen S, Tanner H, Karhunen L, Kolehmainen M, Poutanen K, Pennanen K. Mobile Phone App for Self-Monitoring of Eating Rhythm: Field Experiment. JMIR mHealth and uHealth 2019;7(3):e11490 View
  42. Ahmed M, Oh A, Vanderlee L, Franco-Arellano B, Schermel A, Lou W, L’Abbé M. A randomized controlled trial examining consumers’ perceptions and opinions on using different versions of a FoodFlip© smartphone application for delivery of nutrition information. International Journal of Behavioral Nutrition and Physical Activity 2020;17(1) View
  43. Tejpal S, Sanghera N, Manoharan V, Planas-Iglesias J, Bastie C, Klein-Seetharaman J. Angiotensin Converting Enzyme (ACE): A Marker for Personalized Feedback on Dieting. Nutrients 2020;12(3):660 View
  44. Calegari L, Barbosa J, Marodin G, Fettermann D. A conjoint analysis to consumer choice in Brazil: Defining device attributes for recognizing customized foods characteristics. Food Research International 2018;109:1 View
  45. Gadenz S, Harzheim E, Amaral H, Drehmer M. Development and Assessment of a Mobile Nutritional Counseling Tool for Primary Care Physicians. Telemedicine and e-Health 2020;26(6):805 View
  46. Holmes W, Moorhead S, Coates V, Bond R, Zheng H. Impact of digital technologies for communicating messages on weight loss maintenance: a systematic literature review. European Journal of Public Health 2019;29(2):320 View
  47. Flaherty S, McCarthy M, Collins A, McAuliffe F. A different perspective on consumer engagement: exploring the experience of using health apps to support healthier food purchasing. Journal of Marketing Management 2019;35(3-4):310 View
  48. Schiro J, Shan L, Tatlow-Golden M, Li C, Wall P. #Healthy: smart digital food safety and nutrition communication strategies—a critical commentary. npj Science of Food 2020;4(1) View
  49. Alfonsi J, Choi E, Arshad T, Sammott S, Pais V, Nguyen C, Maguire B, Stinson J, Palmert M. Carbohydrate Counting App Using Image Recognition for Youth With Type 1 Diabetes: Pilot Randomized Control Trial. JMIR mHealth and uHealth 2020;8(10):e22074 View
  50. Shinozaki N, Murakami K. Evaluation of the Ability of Diet-Tracking Mobile Applications to Estimate Energy and Nutrient Intake in Japan. Nutrients 2020;12(11):3327 View
  51. Sudo K, Murasaki K, Kinebuchi T, Kimura S, Waki K. Machine Learning–Based Screening of Healthy Meals From Image Analysis: System Development and Pilot Study. JMIR Formative Research 2020;4(10):e18507 View
  52. Windasari N, Lin F, Kato-Lin Y. Continued use of wearable fitness technology: A value co-creation perspective. International Journal of Information Management 2021;57:102292 View
  53. Zečević M, Mijatović D, Kos Koklič M, Žabkar V, Gidaković P. User Perspectives of Diet-Tracking Apps: Reviews Content Analysis and Topic Modeling. Journal of Medical Internet Research 2021;23(4):e25160 View
  54. Flaherty S, McCarthy M, Collins A, McCafferty C, McAuliffe F. Exploring engagement with health apps: the emerging importance of situational involvement and individual characteristics. European Journal of Marketing 2021;55(13):122 View
  55. Vasiloglou M, Christodoulidis S, Reber E, Stathopoulou T, Lu Y, Stanga Z, Mougiakakou S. Perspectives and Preferences of Adult Smartphone Users Regarding Nutrition and Diet Apps: Web-Based Survey Study. JMIR mHealth and uHealth 2021;9(7):e27885 View
  56. Zhang L, Misir A, Boshuizen H, Ocké M. A Systematic Review and Meta-Analysis of Validation Studies Performed on Dietary Record Apps. Advances in Nutrition 2021;12(6):2321 View
  57. Briggs T, Quick V, Hallman W. Feature Availability Comparison in Free and Paid Versions of Popular Smartphone Weight Management Applications. Journal of Nutrition Education and Behavior 2021;53(9):732 View
  58. Lucassen D, Lasschuijt M, Camps G, Van Loo E, Fischer A, de Vries R, Haarman J, Simons M, de Vet E, Bos-de Vos M, Pan S, Ren X, de Graaf K, Lu Y, Feskens E, Brouwer-Brolsma E. Short and Long-Term Innovations on Dietary Behavior Assessment and Coaching: Present Efforts and Vision of the Pride and Prejudice Consortium. International Journal of Environmental Research and Public Health 2021;18(15):7877 View
  59. Cao J, Lim Y, Sengoku S, Guo X, Kodama K. Exploring the Shift in International Trends in Mobile Health Research From 2000 to 2020: Bibliometric Analysis. JMIR mHealth and uHealth 2021;9(9):e31097 View
  60. Lee H, Ahn J, Lee J. Development and Validation of a Questionnaire on the Feasibility of a Mobile Dietary Self-Monitoring Application. Korean Journal of Community Nutrition 2022;27(2):146 View
  61. Srivastava R, Kushwaha S, Khanna P, Gupta M, Bharti B, Jain R. Comprehensive overview of smartphone applications delivering child nutrition information. Nutrition 2022;103-104:111773 View
  62. van Rossum C, ter Borg S, Nawijn E, Oliveira A, Carvalho C, Ocké M. Literature review on methodologies and tools for national dietary surveys; results of ERA EU‐menu‐project. EFSA Supporting Publications 2022;19(12) View
  63. Zenun Franco R, Fallaize R, Weech M, Hwang F, Lovegrove J. Effectiveness of Web-Based Personalized Nutrition Advice for Adults Using the eNutri Web App: Evidence From the EatWellUK Randomized Controlled Trial. Journal of Medical Internet Research 2022;24(4):e29088 View
  64. Martinon P, Saliasi I, Bourgeois D, Smentek C, Dussart C, Fraticelli L, Carrouel F. Nutrition-Related Mobile Apps in the French App Stores: Assessment of Functionality and Quality. JMIR mHealth and uHealth 2022;10(3):e35879 View
  65. Granheim S, Løvhaug A, Terragni L, Torheim L, Thurston M. Mapping the digital food environment: A systematic scoping review. Obesity Reviews 2022;23(1) View
  66. Szinay D, Perski O, Jones A, Chadborn T, Brown J, Naughton F. Perceptions of Factors Influencing Engagement With Health and Well-being Apps in the United Kingdom: Qualitative Interview Study. JMIR mHealth and uHealth 2021;9(12):e29098 View
  67. Fornasaro-Donahue V, Walls T, Thomaz E, Melanson K. A Conceptual Model for Mobile Health-enabled Slow Eating Strategies. Journal of Nutrition Education and Behavior 2023;55(2):145 View
  68. Marvin H, Bouzembrak Y, van der Fels-Klerx H, Kempenaar C, Veerkamp R, Chauhan A, Stroosnijder S, Top J, Simsek-Senel G, Vrolijk H, Knibbe W, Zhang L, Boom R, Tekinerdogan B. Digitalisation and Artificial Intelligence for sustainable food systems. Trends in Food Science & Technology 2022;120:344 View
  69. Marra F. Food Products and Digital Tools: The Unexpected Interconnections. Frontiers in Nutrition 2022;9 View
  70. Mello M, Souza M, Berry M. Uso de apps na área de Nutrição: revisão de literatura e perfil do usuário. Revista Vértices 2019;21(1):70 View
  71. Modrzejewska J, Modrzejewska A, Czepczor-Bernat K, Matusik P, Mahmoud A. The role of body mass index, healthy eating-related apps and educational activities on eating motives and behaviours among women during the COVID-19 pandemic: A cross sectional study. PLOS ONE 2022;17(3):e0266016 View
  72. Siniarski A, Sobieraj P, Samel-Kowalik P, Sińska B, Milewska M, Bzikowska-Jura A. Nutrition-related mobile applications - Should they be used for dietary prevention and treatment of cardiovascular diseases?. Nutrition, Metabolism and Cardiovascular Diseases 2022;32(11):2505 View
  73. Choudhury A, Asan O. Impact of using wearable devices on psychological Distress: Analysis of the health information national Trends survey. International Journal of Medical Informatics 2021;156:104612 View
  74. Horiuchi Y, Kato T. A feature assessment of smartphone applications providing menus. Journal for the Integrated Study of Dietary Habits 2021;32(2):87 View
  75. Stancu V, Frank D, Lähteenmäki L, Grunert K. Motivating consumers for health and fitness: The role of app features. Journal of Consumer Behaviour 2022;21(6):1506 View
  76. Gazan R, Vieux F, Mora S, Havard S, Dubuisson C. Potential of existing online 24-h dietary recall tools for national dietary surveys. Public Health Nutrition 2021;24(16):5361 View
  77. Devecchi A, Bo S, De Carli L, Breda E, Ponzo V, Pezzana A. Improve adherence to the Mediterranean diet through an innovative app: a pilot study. Nutrition & Food Science 2023;53(1):138 View
  78. Ulfa M, Setyonugroho W, Lestari T, Widiasih E, Nguyen Quoc A, Schiavo L. Nutrition-Related Mobile Application for Daily Dietary Self-Monitoring. Journal of Nutrition and Metabolism 2022;2022:1 View
  79. Dodd C, Adam M, Rollo M. Speech Recording for Dietary Assessment: A Systematic Literature Review. IEEE Access 2022;10:37658 View
  80. Mattes R, Rowe S, Ohlhorst S, Brown A, Hoffman D, Liska D, Feskens E, Dhillon J, Tucker K, Epstein L, Neufeld L, Kelley M, Fukagawa N, Sunde R, Zeisel S, Basile A, Borth L, Jackson E. Valuing the Diversity of Research Methods to Advance Nutrition Science. Advances in Nutrition 2022;13(4):1324 View
  81. Vrinten J, Van Royen K, Pabian S, De Backer C, Matthys C. Motivations for nutrition information-seeking behavior among Belgian adults: a qualitative study. BMC Public Health 2022;22(1) View
  82. Threapleton D, Beer S, Foley D, Gibson L, Trevillion S, Burke D, Wheatstone P, Gath J, Hex N, Setters J, Greenwood D, Cade J. Usability of myfood24 Healthcare and Mathematical Diet Optimisation in Clinical Populations: A Pilot Feasibility Randomised Controlled Trial. Nutrients 2022;14(9):1768 View
  83. Prowse R, Carsley S. Digital Interventions to Promote Healthy Eating in Children: Umbrella Review. JMIR Pediatrics and Parenting 2021;4(4):e30160 View
  84. Hauptmann H, Leipold N, Madenach M, Wintergerst M, Lurz M, Groh G, Böhm M, Gedrich K, Krcmar H. Effects and challenges of using a nutrition assistance system: results of a long-term mixed-method study. User Modeling and User-Adapted Interaction 2022;32(5):923 View
  85. Samad S, Ahmed F, Naher S, Kabir M, Das A, Amin S, Islam S. Smartphone apps for tracking food consumption and recommendations: Evaluating artificial intelligence-based functionalities, features and quality of current apps. Intelligent Systems with Applications 2022;15:200103 View
  86. Guo L, Gu L, Peng Y, Gao Y, Mei L, Kang Q, Chen C, Hu Y, Xu W, Chen J. Online media exposure and weight and fitness management app use correlate with disordered eating symptoms: evidence from the mainland of China. Journal of Eating Disorders 2022;10(1) View
  87. Popov A, Leonteva G, Stolina E, Airapetova E, Bagrova E, Fedotova L, Akimova A. Nutritional approaches to correction of metabolic syndrome before abdominoplasty. Ural Medical Journal 2022;21(1):92 View
  88. van der Haar S, Raaijmakers I, Verain M, Meijboom S. Consumers’ needs in nutrition apps to start and maintain usage: a mixed methods study (Preprint). JMIR mHealth and uHealth 2022 View
  89. Razavi R, Xue G. Predicting Unreported Micronutrients From Food Labels: Machine Learning Approach. Journal of Medical Internet Research 2023;25:e45332 View
  90. Batista S, Cupertino A, Cupertino A, Botelho R, Pimentel J, Cartujano-Barrera F, Ginani V. Nutrition and Diet Apps: Brazilian Panorama before and during the COVID-19 Pandemic. Nutrients 2023;15(16):3606 View
  91. Keller V, Ercsey I. Thematic analysis of google play reviews of lifestyle apps. Human Technology 2023;19(1):82 View
  92. Alnooh G, Alessa T, Noorwali E, Albar S, Williams E, de Witte L, Hawley M. Identification of the Most Suitable Mobile Apps to Support Dietary Approaches to Stop Hypertension (DASH) Diet Self-Management: Systematic Search of App Stores and Content Analysis. Nutrients 2023;15(15):3476 View
  93. Martin-Vicario L, Bustos Díaz J, Martínez-Sánchez M, Nicolas-Sans R. Mobile applications for weight-loss in the Spanish-speaking market: Usability and engagement. Obesity Medicine 2023;41:100499 View
  94. Martin-Vicario L, Bustos Díaz J, Nicolas-Sans R, Yan Z. Weight Loss App Descriptors in App Stores: A Qualitative Analysis of the Spanish Market. Human Behavior and Emerging Technologies 2023;2023:1 View
  95. Gadenz S, Harzheim E, Rados D, Castro S, Drehmer M. Mobile Application Increased Nutrition Knowledge Among Brazilian Physicians. Journal of Nutrition Education and Behavior 2024;56(2):92 View
  96. Ko J, Wang J, Mbue N, Schembre S, Cron S. Effect of the Implementation of a Multiple-Behavior Self-Monitoring Intervention on Dietary Intake in Type 2 Diabetes: Secondary Data Analysis. JMIR Formative Research 2024;8:e49589 View
  97. Marconi S, Carrara E, Gilberti G, Castellano M, Zanini B. Digital native students using nutritional apps: are they more adherent to a mediterranean diet model? Results from the good APPetite survey. Smart Health 2024;33:100497 View
  98. Lubasinski N, Thabit H, Nutter P, Harper S. What Is the Tech Missing? Nutrition Reporting in Type 1 Diabetes. Nutrients 2024;16(11):1690 View
  99. Liang Y, Xiao R, Huang F, Lin Q, Guo J, Zeng W, Dong J. AI nutritionist: Intelligent software as the next generation pioneer of precision nutrition. Computers in Biology and Medicine 2024;178:108711 View
  100. Li X, Yin A, Choi H, Chan V, Allman-Farinelli M, Chen J. Evaluating the Quality and Comparative Validity of Manual Food Logging and Artificial Intelligence-Enabled Food Image Recognition in Apps for Nutrition Care. Nutrients 2024;16(15):2573 View
  101. Ioannidou P, Dóró Z, Schalla J, Wätjen W, Diel P, Isenmann E. Analysis of combinatory effects of free weight resistance training and a high-protein diet on body composition and strength capacity in postmenopausal women - A 12-week randomized controlled trial. The Journal of nutrition, health and aging 2024;28(10):100349 View
  102. Fernandez-Lazaro C, Santamaría G, Fernandez Milano A, Martin-Vergel M, Fernandez-Lazaro D. Nutrition-Related Mobile Apps in the Spanish App Stores: Quality and Content Analysis. JMIR mHealth and uHealth 2024;12:e52424 View
  103. Nogueira-Rio N, Varela Vazquez L, Lopez-Santamarina A, Mondragon-Portocarrero A, Karav S, Miranda J. Mobile Applications and Artificial Intelligence for Nutrition Education: A Narrative Review. Dietetics 2024;3(4):483 View
  104. Alnooh G, AlTamimi J, Williams E, Hawley M. An Investigation of the Feasibility and Acceptability of Using a Commercial DASH (Dietary Approaches to Stop Hypertension) App in People With High Blood Pressure: Mixed Methods Study. JMIR Formative Research 2024;8:e60037 View

Books/Policy Documents

  1. de Moraes Lopes M, Ferreira D, Ferreira A, da Silva G, Caetano A, Braz V. Artificial Intelligence in Precision Health. View
  2. Valentim Pereira G, Pires I, Marques G, Garcia N, Zdravevski E, Lameski P, Flórez-Revuelta F, Spinsante S. Internet of Things and Big Data Applications. View
  3. Kwong K, Collins A. Enhancing Student-Centred Teaching in Higher Education. View
  4. Giazitzi K, Karathanos V, Boskou G. Quality Assurance in the Era of Individualized Medicine. View
  5. Al-Sayed L. Food Tech Transitions. View
  6. Weech M, Fallaize R, Kelly E, Hwang F, Franco R, Lovegrove J. Smartphone Apps for Health and Wellness. View
  7. Harris P, Nithin M, Kannan S, Prasanth R, Kumar M. Second International Conference on Image Processing and Capsule Networks. View
  8. Ghosh U, Das D, Chatterjee P, Shillingford N. Internet of Things. Advances in Information and Communication Technology. View
  9. Sartori F, Shala K, Moglia A, Talpini J, Savi M. Metadata and Semantic Research. View
  10. Lurz M, Prommegger B, Böhm M, Krcmar H. Human-Computer Interaction. View