Published on in Vol 6, No 6 (2018): June

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/8122, first published .
Sleep Tracking and Exercise in Patients With Type 2 Diabetes Mellitus (Step-D): Pilot Study to Determine Correlations Between Fitbit Data and Patient-Reported Outcomes

Sleep Tracking and Exercise in Patients With Type 2 Diabetes Mellitus (Step-D): Pilot Study to Determine Correlations Between Fitbit Data and Patient-Reported Outcomes

Sleep Tracking and Exercise in Patients With Type 2 Diabetes Mellitus (Step-D): Pilot Study to Determine Correlations Between Fitbit Data and Patient-Reported Outcomes

Journals

  1. Robbins R, Seixas A, Walton Masters L, Chanko N, Diaby F, Vieira D, Jean-Louis G. Sleep Tracking: a Systematic Review of the Research Using Commercially Available Technology. Current Sleep Medicine Reports 2019;5(3):156 View
  2. de Zambotti M, Cellini N, Menghini L, Sarlo M, Baker F. Sensors Capabilities, Performance, and Use of Consumer Sleep Technology. Sleep Medicine Clinics 2020;15(1):1 View
  3. Kamei T, Kanamori T, Yamamoto Y, Edirippulige S. The use of wearable devices in chronic disease management to enhance adherence and improve telehealth outcomes: A systematic review and meta-analysis. Journal of Telemedicine and Telecare 2022;28(5):342 View
  4. Liang Z, Chapa-Martell M. Accuracy of Fitbit Wristbands in Measuring Sleep Stage Transitions and the Effect of User-Specific Factors. JMIR mHealth and uHealth 2019;7(6):e13384 View
  5. Thota D. Evaluating the Relationship Between Fitbit Sleep Data and Self-Reported Mood, Sleep, and Environmental Contextual Factors in Healthy Adults: Pilot Observational Cohort Study. JMIR Formative Research 2020;4(9):e18086 View
  6. Claudel S, Tamura K, Troendle J, Andrews M, Ceasar J, Mitchell V, Vijayakumar N, Powell-Wiley T. Comparing Methods to Identify Wear-Time Intervals for Physical Activity With the Fitbit Charge 2. Journal of Aging and Physical Activity 2021;29(3):529 View
  7. Liang Z, Chapa-Martell M. A Multi-Level Classification Approach for Sleep Stage Prediction With Processed Data Derived From Consumer Wearable Activity Trackers. Frontiers in Digital Health 2021;3 View
  8. Nagpal M, Barbaric A, Sherifali D, Morita P, Cafazzo J. Patient-Generated Data Analytics of Health Behaviors of People Living With Type 2 Diabetes: Scoping Review. JMIR Diabetes 2021;6(4):e29027 View
  9. Skovlund S, Nicolucci A, Balk-Møller N, Berthelsen D, Glümer C, Perrild H, Kjær P, Nørgaard L, Troelsen L, Pietraszek A, Hessler D, Kaplan S, Ejskjær N. Perceived Benefits, Barriers, and Facilitators of a Digital Patient-Reported Outcomes Tool for Routine Diabetes Care: Protocol for a National, Multicenter, Mixed Methods Implementation Study. JMIR Research Protocols 2021;10(9):e28391 View
  10. Martínez-Rodríguez A, Martínez-Olcina M, Mora J, Navarro P, Caturla N, Jones J. Anxiolytic Effect and Improved Sleep Quality in Individuals Taking Lippia citriodora Extract. Nutrients 2022;14(1):218 View
  11. Huhn S, Axt M, Gunga H, Maggioni M, Munga S, Obor D, Sié A, Boudo V, Bunker A, Sauerborn R, Bärnighausen T, Barteit S. The Impact of Wearable Technologies in Health Research: Scoping Review. JMIR mHealth and uHealth 2022;10(1):e34384 View
  12. Chakrabarti S, Biswas N, Jones L, Kesari S, Ashili S. Smart Consumer Wearables as Digital Diagnostic Tools: A Review. Diagnostics 2022;12(9):2110 View
  13. Mendonca F, Mostafa S, Morgado-Dias F, Ravelo-Garcia A, Penzel T. A Review of Approaches for Sleep Quality Analysis. IEEE Access 2019;7:24527 View
  14. Kyytsönen M, Vehko T, Anttila H, Ikonen J, Lai Y. Factors associated with use of wearable technology to support activity, well-being, or a healthy lifestyle in the adult population and among older adults. PLOS Digital Health 2023;2(5):e0000245 View
  15. Kytö M, Koivusalo S, Tuomonen H, Strömberg L, Ruonala A, Marttinen P, Heinonen S, Jacucci G. Supporting the Management of Gestational Diabetes Mellitus With Comprehensive Self-Tracking: Mixed Methods Study of Wearable Sensors. JMIR Diabetes 2023;8:e43979 View
  16. Jang H, Lee S, Son Y, Seo S, Baek Y, Mun S, Kim H, Kim I, Kim J. Exploring Variations in Sleep Perception: Comparative Study of Chatbot Sleep Logs and Fitbit Sleep Data. JMIR mHealth and uHealth 2023;11:e49144 View
  17. Bogaert L, Willems I, Calders P, Dirinck E, Kinaupenne M, Decraene M, Lapauw B, Strumane B, Van Daele M, Verbestel V, De Craemer M. Explanatory variables of objectively measured 24-h movement behaviors in people with prediabetes and type 2 diabetes: A systematic review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2024;18(4):102995 View
  18. Park J, Ahn E, Yoon K, Kim J. Performance of Fitbit Devices as Tools for Assessing Sleep Patterns and Associated Factors. Journal of Sleep Medicine 2024;21(2):59 View

Books/Policy Documents

  1. Liang Z. IoT Technologies for Health Care. View