Published on in Vol 6 , No 8 (2018) :August

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/9691, first published .
Correlations Between Objective Behavioral Features Collected From Mobile and Wearable Devices and Depressive Mood Symptoms in Patients With Affective Disorders: Systematic Review

Correlations Between Objective Behavioral Features Collected From Mobile and Wearable Devices and Depressive Mood Symptoms in Patients With Affective Disorders: Systematic Review

Correlations Between Objective Behavioral Features Collected From Mobile and Wearable Devices and Depressive Mood Symptoms in Patients With Affective Disorders: Systematic Review

Journals

  1. Goodday S. The unique utility of digital technology for bipolar disorder. Bipolar Disorders 2020;22(2):197 View
  2. Radhakrishnan K, Kim M, Burgermaster M, Brown R, Xie B, Bray M, Fournier C. The potential of digital phenotyping to advance the contributions of mobile health to self-management science. Nursing Outlook 2020;68(5):548 View
  3. Gashi S, Di Lascio E, Stancu B, Swain V, Mishra V, Gjoreski M, Santini S. Detection of Artifacts in Ambulatory Electrodermal Activity Data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2020;4(2):1 View
  4. Jacobson N, Weingarden H, Wilhelm S. Using Digital Phenotyping to Accurately Detect Depression Severity. Journal of Nervous & Mental Disease 2019;207(10):893 View
  5. Torous J, Wisniewski H, Bird B, Carpenter E, David G, Elejalde E, Fulford D, Guimond S, Hays R, Henson P, Hoffman L, Lim C, Menon M, Noel V, Pearson J, Peterson R, Susheela A, Troy H, Vaidyam A, Weizenbaum E, Naslund J, Keshavan M. Creating a Digital Health Smartphone App and Digital Phenotyping Platform for Mental Health and Diverse Healthcare Needs: an Interdisciplinary and Collaborative Approach. Journal of Technology in Behavioral Science 2019;4(2):73 View
  6. Chung M, Leung S, Välimäki M. Use of tracking technology to examine life-space mobility among people with depression: a systematic review protocol. BMJ Open 2020;10(1):e034208 View
  7. Henson P, Barnett I, Keshavan M, Torous J. Towards clinically actionable digital phenotyping targets in schizophrenia. npj Schizophrenia 2020;6(1) View
  8. Weingarden H, Matic A, Calleja R, Greenberg J, Harrison O, Wilhelm S. Optimizing Smartphone-Delivered Cognitive Behavioral Therapy for Body Dysmorphic Disorder Using Passive Smartphone Data: Initial Insights From an Open Pilot Trial. JMIR mHealth and uHealth 2020;8(6):e16350 View
  9. Rashidisabet H, Thomas P, Ajilore O, Zulueta J, Moore R, Leow A. A systems biology approach to the digital behaviorome. Current Opinion in Systems Biology 2020;20:8 View
  10. Thieme A, Belgrave D, Doherty G. Machine Learning in Mental Health. ACM Transactions on Computer-Human Interaction 2020;27(5):1 View
  11. H. Birk R, Samuel G. Can digital data diagnose mental health problems? A sociological exploration of ‘digital phenotyping’. Sociology of Health & Illness 2020;42(8):1873 View
  12. Di Matteo D, Fotinos K, Lokuge S, Yu J, Sternat T, Katzman M, Rose J. The Relationship Between Smartphone-Recorded Environmental Audio and Symptomatology of Anxiety and Depression: Exploratory Study. JMIR Formative Research 2020;4(8):e18751 View
  13. Fillekes M, Giannouli E, Kim E, Zijlstra W, Weibel R. Towards a comprehensive set of GPS-based indicators reflecting the multidimensional nature of daily mobility for applications in health and aging research. International Journal of Health Geographics 2019;18(1) View
  14. Moura I, Teles A, Silva F, Viana D, Coutinho L, Barros F, Endler M. Mental health ubiquitous monitoring supported by social situation awareness: A systematic review. Journal of Biomedical Informatics 2020;107:103454 View
  15. Aubourg T, Demongeot J, Provost H, Vuillerme N. Circadian Rhythms in the Telephone Calls of Older Adults: Observational Descriptive Study. JMIR mHealth and uHealth 2020;8(2):e12452 View
  16. Bauer M, Glenn T, Geddes J, Gitlin M, Grof P, Kessing L, Monteith S, Faurholt-Jepsen M, Severus E, Whybrow P. Smartphones in mental health: a critical review of background issues, current status and future concerns. International Journal of Bipolar Disorders 2020;8(1) View
  17. Til K, McInnis M, Cochran A. A comparative study of engagement in mobile and wearable health monitoring for bipolar disorder. Bipolar Disorders 2020;22(2):182 View
  18. Bardram J, Matic A. A Decade of Ubiquitous Computing Research in Mental Health. IEEE Pervasive Computing 2020;19(1):62 View
  19. Lorenz N, Spada J, Sander C, Riedel-Heller S, Hegerl U. Circadian skin temperature rhythms, circadian activity rhythms and sleep in individuals with self-reported depressive symptoms. Journal of Psychiatric Research 2019;117:38 View
  20. Wilhelm S, Weingarden H, Ladis I, Braddick V, Shin J, Jacobson N. Cognitive-Behavioral Therapy in the Digital Age: Presidential Address. Behavior Therapy 2020;51(1):1 View
  21. Tazawa Y, Liang K, Yoshimura M, Kitazawa M, Kaise Y, Takamiya A, Kishi A, Horigome T, Mitsukura Y, Mimura M, Kishimoto T. Evaluating depression with multimodal wristband-type wearable device: screening and assessing patient severity utilizing machine-learning. Heliyon 2020;6(2):e03274 View
  22. Spinazze P, Rykov Y, Bottle A, Car J. Digital phenotyping for assessment and prediction of mental health outcomes: a scoping review protocol. BMJ Open 2019;9(12):e032255 View
  23. Aubourg T, Demongeot J, Renard F, Provost H, Vuillerme N. Association between social asymmetry and depression in older adults: A phone Call Detail Records analysis. Scientific Reports 2019;9(1) View
  24. . Grant Report on SCH: Personalized Depression Treatment Supported by Mobile Sensor Analytics. Journal of Psychiatry and Brain Science 2020 View
  25. Torous J, Gershon A, Hays R, Onnela J, Baker J. Digital Phenotyping for the Busy Psychiatrist: Clinical Implications and Relevance. Psychiatric Annals 2019;49(5):196 View
  26. Seppälä J, De Vita I, Jämsä T, Miettunen J, Isohanni M, Rubinstein K, Feldman Y, Grasa E, Corripio I, Berdun J, D'Amico E, Bulgheroni M. Mobile Phone and Wearable Sensor-Based mHealth Approaches for Psychiatric Disorders and Symptoms: Systematic Review. JMIR Mental Health 2019;6(2):e9819 View
  27. Busk J, Faurholt-Jepsen M, Frost M, Bardram J, Vedel Kessing L, Winther O. Forecasting Mood in Bipolar Disorder From Smartphone Self-assessments: Hierarchical Bayesian Approach. JMIR mHealth and uHealth 2020;8(4):e15028 View
  28. Zulueta J, Leow A, Ajilore O. Real-Time Monitoring: A Key Element in Personalized Health and Precision Health. FOCUS 2020;18(2):175 View
  29. Hilty D, Armstrong C, Edwards-Stewart A, Gentry M, Luxton D, Krupinski E. Sensor, Wearable, and Remote Patient Monitoring Competencies for Clinical Care and Training: Scoping Review. Journal of Technology in Behavioral Science 2021;6(2):252 View
  30. Stanislaus S, Vinberg M, Melbye S, Frost M, Busk J, Bardram J, Kessing L, Faurholt-Jepsen M. Smartphone-based activity measurements in patients with newly diagnosed bipolar disorder, unaffected relatives and control individuals. International Journal of Bipolar Disorders 2020;8(1) View
  31. Wang Y, Ren X, Liu X, Zhu T. Examining the Correlation Between Depression and Social Behavior on Smartphones Through Usage Metadata: Empirical Study. JMIR mHealth and uHealth 2021;9(1):e19046 View
  32. Goltermann J, Emden D, Leehr E, Dohm K, Redlich R, Dannlowski U, Hahn T, Opel N. Smartphone-Based Self-Reports of Depressive Symptoms Using the Remote Monitoring Application in Psychiatry (ReMAP): Interformat Validation Study. JMIR Mental Health 2021;8(1):e24333 View
  33. Peltonen E, Sharmila P, Opoku Asare K, Visuri A, Lagerspetz E, Ferreira D. When phones get personal: Predicting Big Five personality traits from application usage. Pervasive and Mobile Computing 2020;69:101269 View
  34. Levin H, Egger D, Andres L, Johnson M, Bearman S, de Barbaro K. Sensing everyday activity: Parent perceptions and feasibility. Infant Behavior and Development 2021;62:101511 View
  35. Ebner-Priemer U, Mühlbauer E, Neubauer A, Hill H, Beier F, Santangelo P, Ritter P, Kleindienst N, Bauer M, Schmiedek F, Severus E. Digital phenotyping: towards replicable findings with comprehensive assessments and integrative models in bipolar disorders. International Journal of Bipolar Disorders 2020;8(1) View
  36. Mercier H, Hamner J, Torous J, Onnela J, Taylor J. Digital Phenotyping to Quantify Psychosocial Well-Being Trajectories After Spinal Cord Injury. American Journal of Physical Medicine & Rehabilitation 2020;99(12):1138 View
  37. Peis I, López-Moríñigo J, Pérez-Rodríguez M, Barrigón M, Ruiz-Gómez M, Artés-Rodríguez A, Baca-García E. Actigraphic recording of motor activity in depressed inpatients: a novel computational approach to prediction of clinical course and hospital discharge. Scientific Reports 2020;10(1) View
  38. Craven M, Andrews J, Lang A, Simblett S, Bruce S, Thorpe S, Wykes T, Morriss R, Hollis C. Informing the Development of a Digital Health Platform Through Universal Points of Care: Qualitative Survey Study. JMIR Formative Research 2020;4(11):e22756 View
  39. Goodday S, Geddes J, Friend S. Disrupting the power balance between doctors and patients in the digital era. The Lancet Digital Health 2021;3(3):e142 View
  40. Wu C, Barczyk A, Craddock R, Harari G, Thomaz E, Shumake J, Beevers C, Gosling S, Schnyer D. Improving prediction of real-time loneliness and companionship type using geosocial features of personal smartphone data. Smart Health 2021;20:100180 View
  41. Hilty D, Armstrong C, Luxton D, Gentry M, Krupinski E. A Scoping Review of Sensors, Wearables, and Remote Monitoring For Behavioral Health: Uses, Outcomes, Clinical Competencies, and Research Directions. Journal of Technology in Behavioral Science 2021;6(2):278 View
  42. Koltsova O, Mararitsa L, Terpilovskii M, Sinyavskaya Y. Social signature in an online environment: Stability and cognitive limits. Computers in Human Behavior 2021;122:106856 View
  43. Opoku Asare K, Terhorst Y, Vega J, Peltonen E, Lagerspetz E, Ferreira D. Predicting Depression From Smartphone Behavioral Markers Using Machine Learning Methods, Hyperparameter Optimization, and Feature Importance Analysis: Exploratory Study. JMIR mHealth and uHealth 2021;9(7):e26540 View
  44. Vlisides-Henry R, Gao M, Thomas L, Kaliush P, Conradt E, Crowell S. Digital Phenotyping of Emotion Dysregulation Across Lifespan Transitions to Better Understand Psychopathology Risk. Frontiers in Psychiatry 2021;12 View
  45. Zhang Y, Folarin A, Sun S, Cummins N, Ranjan Y, Rashid Z, Conde P, Stewart C, Laiou P, Matcham F, Oetzmann C, Lamers F, Siddi S, Simblett S, Rintala A, Mohr D, Myin-Germeys I, Wykes T, Haro J, Penninx B, Narayan V, Annas P, Hotopf M, Dobson R. Predicting Depressive Symptom Severity Through Individuals’ Nearby Bluetooth Device Count Data Collected by Mobile Phones: Preliminary Longitudinal Study. JMIR mHealth and uHealth 2021;9(7):e29840 View
  46. Tønning M, Faurholt-Jepsen M, Frost M, Bardram J, Kessing L. Mood and Activity Measured Using Smartphones in Unipolar Depressive Disorder. Frontiers in Psychiatry 2021;12 View
  47. MacLeod L, Suruliraj B, Gall D, Bessenyei K, Hamm S, Romkey I, Bagnell A, Mattheisen M, Muthukumaraswamy V, Orji R, Meier S. A Mobile Sensing App to Monitor Youth Mental Health: A Short-term Pilot Study (Preprint). JMIR mHealth and uHealth 2020 View
  48. Roth C, Papassotiropoulos A, Brühl A, Lang U, Huber C. Psychiatry in the Digital Age: A Blessing or a Curse?. International Journal of Environmental Research and Public Health 2021;18(16):8302 View
  49. Di Matteo D, Fotinos K, Lokuge S, Mason G, Sternat T, Katzman M, Rose J. Automated Screening for Social Anxiety, Generalized Anxiety, and Depression From Objective Smartphone-Collected Data: Cross-sectional Study. Journal of Medical Internet Research 2021;23(8):e28918 View
  50. Nickels S, Edwards M, Poole S, Winter D, Gronsbell J, Rozenkrants B, Miller D, Fleck M, McLean A, Peterson B, Chen Y, Hwang A, Rust-Smith D, Brant A, Campbell A, Chen C, Walter C, Arean P, Hsin H, Myers L, Marks Jr W, Mega J, Schlosser D, Conrad A, Califf R, Fromer M. Toward a Mobile Platform for Real-world Digital Measurement of Depression: User-Centered Design, Data Quality, and Behavioral and Clinical Modeling. JMIR Mental Health 2021;8(8):e27589 View