Published on in Vol 10, No 1 (2022): January

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/28095, first published .
The Association Between Home Stay and Symptom Severity in Major Depressive Disorder: Preliminary Findings From a Multicenter Observational Study Using Geolocation Data From Smartphones

The Association Between Home Stay and Symptom Severity in Major Depressive Disorder: Preliminary Findings From a Multicenter Observational Study Using Geolocation Data From Smartphones

The Association Between Home Stay and Symptom Severity in Major Depressive Disorder: Preliminary Findings From a Multicenter Observational Study Using Geolocation Data From Smartphones

Journals

  1. Matcham F, Carr E, White K, Leightley D, Lamers F, Siddi S, Annas P, de Girolamo G, Haro J, Horsfall M, Ivan A, Lavelle G, Li Q, Lombardini F, Mohr D, Narayan V, Penninx B, Oetzmann C, Coromina M, Simblett S, Weyer J, Wykes T, Zorbas S, Brasen J, Myin-Germeys I, Conde P, Dobson R, Folarin A, Ranjan Y, Rashid Z, Cummins N, Dineley J, Vairavan S, Hotopf M. Predictors of engagement with remote sensing technologies for symptom measurement in Major Depressive Disorder. Journal of Affective Disorders 2022;310:106 View
  2. Kulkarni P, Kirkham R, McNaney R. Opportunities for Smartphone Sensing in E-Health Research: A Narrative Review. Sensors 2022;22(10):3893 View
  3. Zhang Y, Pratap A, Folarin A, Sun S, Cummins N, Matcham F, Vairavan S, Dineley J, Ranjan Y, Rashid Z, Conde P, Stewart C, White K, Oetzmann C, Ivan A, Lamers F, Siddi S, Rambla C, Simblett S, Nica R, Mohr D, Myin-Germeys I, Wykes T, Haro J, Penninx B, Annas P, Narayan V, Hotopf M, Dobson R. Long-term participant retention and engagement patterns in an app and wearable-based multinational remote digital depression study. npj Digital Medicine 2023;6(1) View
  4. Zhang Y, Folarin A, Sun S, Cummins N, Vairavan S, Bendayan R, Ranjan Y, Rashid Z, Conde P, Stewart C, Laiou P, Sankesara H, Matcham F, White K, Oetzmann C, Ivan A, Lamers F, Siddi S, Vilella E, Simblett S, Rintala A, Bruce S, Mohr D, Myin-Germeys I, Wykes T, Haro J, Penninx B, Narayan V, Annas P, Hotopf M, Dobson R. Longitudinal Relationships Between Depressive Symptom Severity and Phone-Measured Mobility: Dynamic Structural Equation Modeling Study. JMIR Mental Health 2022;9(3):e34898 View
  5. Hassenstein M, Janzen I, Krause G, Harries M, Melhorn V, Kerrinnes T, Kemmling Y, Castell S. Seroepidemiology of Borrelia burgdorferi s.l. among German National Cohort (NAKO) Participants, Hanover. Microorganisms 2022;10(11):2286 View
  6. Lin B, Chang C, Astell-Burt T, Feng X, Gardner J, Andersson E. Nature experience from yards provide an important space for mental health during Covid-19. npj Urban Sustainability 2023;3(1) View
  7. Sun S, Folarin A, Zhang Y, Cummins N, Garcia-Dias R, Stewart C, Ranjan Y, Rashid Z, Conde P, Laiou P, Sankesara H, Matcham F, Leightley D, White K, Oetzmann C, Ivan A, Lamers F, Siddi S, Simblett S, Nica R, Rintala A, Mohr D, Myin-Germeys I, Wykes T, Haro J, Penninx B, Vairavan S, Narayan V, Annas P, Hotopf M, Dobson R. Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis. Journal of Medical Internet Research 2023;25:e45233 View
  8. Bufano P, Laurino M, Said S, Tognetti A, Menicucci D. Digital Phenotyping for Monitoring Mental Disorders: Systematic Review. Journal of Medical Internet Research 2023;25:e46778 View
  9. Shin J, Bae S. A Systematic Review of Location Data for Depression Prediction. International Journal of Environmental Research and Public Health 2023;20(11):5984 View
  10. Harari G, Gosling S. Understanding behaviours in context using mobile sensing. Nature Reviews Psychology 2023;2(12):767 View
  11. Leaning I, Ikani N, Savage H, Leow A, Beckmann C, Ruhé H, Marquand A. From smartphone data to clinically relevant predictions: A systematic review of digital phenotyping methods in depression. Neuroscience & Biobehavioral Reviews 2024;158:105541 View
  12. Bryan A, Heinz M, Salzhauer A, Price G, Tlachac M, Jacobson N. Behind the Screen: A Narrative Review on the Translational Capacity of Passive Sensing for Mental Health Assessment. Biomedical Materials & Devices 2024;2(2):778 View
  13. Flandreau E, Risbrough V. Reframing and refining model system validity for anxiety and depression research: A commentary on Gencturk & Unal (2024). Cognitive, Affective, & Behavioral Neuroscience 2024;24(2):225 View
  14. van Heerden A, Poudyal A, Hagaman A, Maharjan S, Byanjankar P, Bemme D, Thapa A, Kohrt B. Integration of passive sensing technology to enhance delivery of psychological interventions for mothers with depression: the StandStrong study. Scientific Reports 2024;14(1) View
  15. Kas M, Hyman S, Williams L, Hidalgo-Mazzei D, Huys Q, Hotopf M, Cuthbert B, Lewis C, De Picker L, Lalousis P, Etkin A, Modinos G, Marston H. Towards a consensus roadmap for a new diagnostic framework for mental disorders. European Neuropsychopharmacology 2025;90:16 View
  16. Lee T, Chen C, Chen I, Chen H, Liu C, Wu S, Hsiao C, Kuo P. Dynamic Bidirectional Associations Between Global Positioning System Mobility and Ecological Momentary Assessment of Mood Symptoms in Mood Disorders: Prospective Cohort Study. Journal of Medical Internet Research 2024;26:e55635 View
  17. Aledavood T, Luong N, Baryshnikov I, Darst R, Heikkilä R, Holmén J, Ikäheimonen A, Martikkala A, Riihimäki K, Saleva O, Triana A, Isometsä E. Mobile Monitoring of Mood (MoMo-Mood): a Multimodal Digital Phenotyping Study with Major Depressive Patients and Healthy Controls (Preprint). JMIR Mental Health 2024 View