Published on in Vol 4, No 4 (2016): Oct-Dec

Feasibility and Effectiveness of Using Wearable Activity Trackers in Youth: A Systematic Review

Feasibility and Effectiveness of Using Wearable Activity Trackers in Youth: A Systematic Review

Feasibility and Effectiveness of Using Wearable Activity Trackers in Youth: A Systematic Review

Journals

  1. Marin T, Kourbelis C, Foote J, Newman P, Brown A, Daniel M, Coffee N, Nicholls S, Ganesan A, Versace V, Beks H, Haedtke C, Clark R. Examining adherence to activity monitoring devices to improve physical activity in adults with cardiovascular disease: A systematic review. European Journal of Preventive Cardiology 2019;26(4):382 View
  2. Lam C, Milne-Ives M, Van Velthoven M, Meinert E. Internet of Things–Enabled Technologies for Weight Management in Children and Adolescents: Protocol for a Systematic Review. JMIR Research Protocols 2020;9(3):e16930 View
  3. Klöpfer-Krämer I, Brand A, Wackerle H, Müßig J, Kröger I, Augat P. Gait analysis – Available platforms for outcome assessment. Injury 2020;51:S90 View
  4. Goodspeed R, Yan X, Hardy J, Vydiswaran V, Berrocal V, Clarke P, Romero D, Gomez-Lopez I, Veinot T. Comparing the Data Quality of Global Positioning System Devices and Mobile Phones for Assessing Relationships Between Place, Mobility, and Health: Field Study. JMIR mHealth and uHealth 2018;6(8):e168 View
  5. Maxwell‐Smith C, Hince D, Cohen P, Bulsara M, Boyle T, Platell C, Tan P, Levitt M, Salama P, Tan J, Salfinger S, Makin G, Mohan G, Jiménez‐Castuera R, Hardcastle S. A randomized controlled trial of WATAAP to promote physical activity in colorectal and endometrial cancer survivors. Psycho-Oncology 2019;28(7):1420 View
  6. Ryan J, Edney S, Maher C. Anxious or empowered? A cross-sectional study exploring how wearable activity trackers make their owners feel. BMC Psychology 2019;7(1) View
  7. Espinoza J, Chen A, Orozco J, Deavenport-Saman A, Yin L. Effect of personal activity trackers on weight loss in families enrolled in a comprehensive behavioral family-lifestyle intervention program in the federally qualified health center setting: A randomized controlled trial. Contemporary Clinical Trials Communications 2017;7:86 View
  8. Ng K, Badura P, Dzielska A, Kokko S, Woods C, Hamrik Z. Test-retest reliability of survey items on ownership and use of physical activity trackers. Acta Gymnica 2019;49(2):67 View
  9. Sharaievska I, Battista R, Zwetsloot J. Use of Physical Activity Monitoring Devices by Families in Rural Communities: Qualitative Approach. JMIR Pediatrics and Parenting 2019;2(1):e10658 View
  10. Caterini J, Campisi E, Cifra B. Physical Activity Promotion in Pediatric Congenital Heart Disease: Are We Running Late?. Canadian Journal of Cardiology 2020;36(9):1406 View
  11. Lee B, Xie J, Ajisafe T, Kim S. How Are Wearable Activity Trackers Adopted in Older Adults? Comparison between Subjective Adoption Attitudes and Physical Activity Performance. International Journal of Environmental Research and Public Health 2020;17(10):3461 View
  12. Valtonen J, Kyhälä A, Slotte S, Reunamo J. Fourth Graders’ Objectively Measured Week Long Physical Activity. The European Journal of Social & Behavioural Sciences 2018;24(1):2891 View
  13. Crossley S, McNarry M, Eslambolchilar P, Knowles Z, Mackintosh K. The Tangibility of Personalized 3D-Printed Feedback May Enhance Youths’ Physical Activity Awareness, Goal Setting, and Motivation: Intervention Study. Journal of Medical Internet Research 2019;21(6):e12067 View
  14. Mendoza J, Baker K, Moreno M, Whitlock K, Abbey-Lambertz M, Waite A, Colburn T, Chow E. A Fitbit and Facebook mHealth intervention for promoting physical activity among adolescent and young adult childhood cancer survivors: A pilot study. Pediatric Blood & Cancer 2017;64(12):e26660 View
  15. Gaudet J, Gallant F, Bélanger M. A Bit of Fit: Minimalist Intervention in Adolescents Based on a Physical Activity Tracker. JMIR mHealth and uHealth 2017;5(7):e92 View
  16. Ridgers N, Timperio A, Brown H, Ball K, Macfarlane S, Lai S, Richards K, Ngan W, Salmon J. A cluster-randomised controlled trial to promote physical activity in adolescents: the Raising Awareness of Physical Activity (RAW-PA) Study. BMC Public Health 2017;17(1) View
  17. Heale L, Dover S, Goh Y, Maksymiuk V, Wells G, Feldman B. A wearable activity tracker intervention for promoting physical activity in adolescents with juvenile idiopathic arthritis: a pilot study. Pediatric Rheumatology 2018;16(1) View
  18. Duff O, Walsh D, Malone S, McDermott L, Furlong B, O'Connor N, Moran K, Woods C. MedFit App, a Behavior-Changing, Theoretically Informed Mobile App for Patient Self-Management of Cardiovascular Disease: User-Centered Development. JMIR Formative Research 2018;2(1):e8 View
  19. Lemey S, Agneessens S, Rogier H. Wearable Smart Objects: Microwaves Propelling Smart Textiles: A Review of Holistic Designs for Wireless Textile Nodes. IEEE Microwave Magazine 2018;19(6):83 View
  20. Böhm B, Karwiese S, Böhm H, Oberhoffer R. Effects of Mobile Health Including Wearable Activity Trackers to Increase Physical Activity Outcomes Among Healthy Children and Adolescents: Systematic Review. JMIR mHealth and uHealth 2019;7(4):e8298 View
  21. Rykov Y, Thach T, Dunleavy G, Roberts A, Christopoulos G, Soh C, Car J. Activity Tracker–Based Metrics as Digital Markers of Cardiometabolic Health: Cross-Sectional Study. JMIR mHealth and uHealth 2020;8(1):e16409 View
  22. Evans E, Abrantes A, Chen E, Jelalian E. Using Novel Technology within a School-Based Setting to Increase Physical Activity: A Pilot Study in School-Age Children from a Low-Income, Urban Community. BioMed Research International 2017;2017:1 View
  23. Kourbelis C, Franzon J, Foote J, Brown A, Daniel M, Coffee N, Newman P, Ganesan A, Nicholls S, Clark R. Adherence to activity monitoring devices or smartphone applications for improving physical activity in adults with cardiovascular disease: a systematic review protocol. JBI Database of Systematic Reviews and Implementation Reports 2018;16(8):1634 View
  24. Kinsey A, Whipple M, Reid L, Affuso O. Formative Assessment: Design of a Web-Connected Sedentary Behavior Intervention for Females. JMIR Human Factors 2017;4(4):e28 View
  25. Ng K, Ryba T. The Quantified Athlete: Associations of Wearables for High School Athletes. Advances in Human-Computer Interaction 2018;2018:1 View
  26. Bianchi-Hayes J, Schoenfeld E, Cataldo R, Hou W, Messina C, Pati S. Combining Activity Trackers With Motivational Interviewing and Mutual Support to Increase Physical Activity in Parent-Adolescent Dyads: Longitudinal Observational Feasibility Study. JMIR Pediatrics and Parenting 2018;1(1):e3 View
  27. Huang Q, Cohen D, Komarzynski S, Li X, Innominato P, Lévi F, Finkenstädt B. Hidden Markov models for monitoring circadian rhythmicity in telemetric activity data. Journal of The Royal Society Interface 2018;15(139):20170885 View
  28. Lyles A, Amresh A, Huberty J, Todd M, Lee R. A Mobile, Avatar-Based App for Improving Body Perceptions Among Adolescents: A Pilot Test. JMIR Serious Games 2017;5(1):e4 View
  29. Pittman A. Effect of a School-Based Activity Tracker, Companion Social Website, and Text Messaging Intervention on Exercise, Fitness, and Physical Activity Self-Efficacy of Middle School Students. The Journal of School Nursing 2020;36(2):112 View
  30. Ridgers N, Timperio A, Brown H, Ball K, Macfarlane S, Lai S, Richards K, Mackintosh K, McNarry M, Foster M, Salmon J. Wearable Activity Tracker Use Among Australian Adolescents: Usability and Acceptability Study. JMIR mHealth and uHealth 2018;6(4):e86 View
  31. Nagelhout E, Lensink R, Zhu A, Parsons B, Jensen J, Wu Y. The Feasibility and Acceptability of Using a Wearable UV Radiation Exposure Monitoring Device in Adults and Children: Cross-Sectional Questionnaire Study. JMIR Dermatology 2020;3(1):e15711 View
  32. Ng K, Kokko S, Tammelin T, Kallio J, Belton S, O'Brien W, Murphy M, Powell C, Woods C. Clusters of Adolescent Physical Activity Tracker Patterns and Their Associations With Physical Activity Behaviors in Finland and Ireland: Cross-Sectional Study. Journal of Medical Internet Research 2020;22(9):e18509 View
  33. Tully C, Mackey E, Aronow L, Monaghan M, Henderson C, Cogen F, Wang J, Streisand R. Parenting Intervention to Improve Nutrition and Physical Activity for Preschoolers with Type 1 Diabetes: A Feasibility Study. Journal of Pediatric Health Care 2018;32(6):548 View
  34. Edney S, Bogomolova S, Ryan J, Olds T, Sanders I, Maher C. Creating Engaging Health Promotion Campaigns on Social Media: Observations and Lessons From Fitbit and Garmin. Journal of Medical Internet Research 2018;20(12):e10911 View
  35. Puri A, Kim B, Nguyen O, Stolee P, Tung J, Lee J. User Acceptance of Wrist-Worn Activity Trackers Among Community-Dwelling Older Adults: Mixed Method Study. JMIR mHealth and uHealth 2017;5(11):e173 View
  36. Firth J, Torous J, Carney R, Newby J, Cosco T, Christensen H, Sarris J. Digital Technologies in the Treatment of Anxiety: Recent Innovations and Future Directions. Current Psychiatry Reports 2018;20(6) View
  37. Wiesner M, Zowalla R, Suleder J, Westers M, Pobiruchin M. Technology Adoption, Motivational Aspects, and Privacy Concerns of Wearables in the German Running Community: Field Study. JMIR mHealth and uHealth 2018;6(12):e201 View
  38. Metos J, Gren L, Brusseau T, Moric E, O’Toole K, Mokhtari T, Buys S, Frost C. Adolescent girls’ reactions to nutrition and physical activity assessment tools and insight into lifestyle habits. Health Education Journal 2018;77(1):85 View
  39. Müller A, Wang N, Yao J, Tan C, Low I, Lim N, Tan J, Tan A, Müller-Riemenschneider F. Heart Rate Measures From Wrist-Worn Activity Trackers in a Laboratory and Free-Living Setting: Validation Study. JMIR mHealth and uHealth 2019;7(10):e14120 View
  40. Cajita M, Kline C, Burke L, Bigini E, Imes C. Feasible but Not Yet Efficacious: a Scoping Review of Wearable Activity Monitors in Interventions Targeting Physical Activity, Sedentary Behavior, and Sleep. Current Epidemiology Reports 2020;7(1):25 View
  41. Xie J, Wen D, Liang L, Jia Y, Gao L, Lei J. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. JMIR mHealth and uHealth 2018;6(4):e94 View
  42. Nogic J, Thein P, Cameron J, Mirzaee S, Ihdayhid A, Nasis A. The utility of personal activity trackers (Fitbit Charge 2) on exercise capacity in patients post acute coronary syndrome [UP-STEP ACS Trial]: a randomised controlled trial protocol. BMC Cardiovascular Disorders 2017;17(1) View
  43. Sheldrick M, Maitland C, Mackintosh K, Rosenburg M, Stratton G. Validity and reliability of the HomeSPACE-II instrument to assess the influence of the home physical environment on children’s physical activity and sedentary behaviour. International Journal of Health Promotion and Education 2021;59(2):108 View
  44. Phan T, Barnini N, Xie S, Martinez A, Falini L, Abatemarco A, Waldron M, Benton J, Frankenberry S, Coleman C, Nguyen L, Bo C, Datto G, Werk L. Feasibility of Using a Commercial Fitness Tracker as an Adjunct to Family-Based Weight Management Treatment: Pilot Randomized Trial. JMIR mHealth and uHealth 2018;6(11):e10523 View
  45. Christianson A, Shagena A. Adapting the 2018 Physical Activity Guidelines in pediatric primary care. The Nurse Practitioner 2019;44(7):14 View
  46. Drehlich M, Naraine M, Rowe K, Lai S, Salmon J, Brown H, Koorts H, Macfarlane S, Ridgers N. Using the Technology Acceptance Model to Explore Adolescents’ Perspectives on Combining Technologies for Physical Activity Promotion Within an Intervention: Usability Study. Journal of Medical Internet Research 2020;22(3):e15552 View
  47. Mackintosh K, Chappel S, Salmon J, Timperio A, Ball K, Brown H, Macfarlane S, Ridgers N. Parental Perspectives of a Wearable Activity Tracker for Children Younger Than 13 Years: Acceptability and Usability Study. JMIR mHealth and uHealth 2019;7(11):e13858 View
  48. Blackstone S, Herrmann L. Fitness Wearables and Exercise Dependence in College Women: Considerations for University Health Education Specialists. American Journal of Health Education 2020;51(4):225 View
  49. Koorts H, Salmon J, Timperio A, Ball K, Macfarlane S, Lai S, Brown H, Chappel S, Lewis M, Ridgers N. Translatability of a Wearable Technology Intervention to Increase Adolescent Physical Activity: Mixed Methods Implementation Evaluation. Journal of Medical Internet Research 2020;22(8):e13573 View
  50. Wen D, Zhang X, Liu X, Lei J. Evaluating the Consistency of Current Mainstream Wearable Devices in Health Monitoring: A Comparison Under Free-Living Conditions. Journal of Medical Internet Research 2017;19(3):e68 View
  51. Davergne T, Rakotozafiarison A, Servy H, Gossec L. Wearable Activity Trackers in the Management of Rheumatic Diseases: Where Are We in 2020?. Sensors 2020;20(17):4797 View
  52. Tang M, Moore K, McGavigan A, Clark R, Ganesan A. Effectiveness of Wearable Trackers on Physical Activity in Healthy Adults: Systematic Review and Meta-Analysis of Randomized Controlled Trials. JMIR mHealth and uHealth 2020;8(7):e15576 View
  53. Newberry R, Dean D, Sayyah M, Mittal V. What prevents youth at clinical high risk for psychosis from engaging in physical activity? An examination of the barriers to physical activity. Schizophrenia Research 2018;201:400 View
  54. Wong C, Madanay F, Ozer E, Harris S, Moore M, Master S, Moreno M, Weitzman E. Digital Health Technology to Enhance Adolescent and Young Adult Clinical Preventive Services: Affordances and Challenges. Journal of Adolescent Health 2020;67(2):S24 View
  55. Rönkkö K. An Activity Tracker and Its Accompanying App as a Motivator for Increased Exercise and Better Sleeping Habits for Youths in Need of Social Care: Field Study. JMIR mHealth and uHealth 2018;6(12):e193 View
  56. Devine K, Viola A, Levonyan‐Radloff K, Mackowski N, Bozzini B, Chandler A, Xu B, Ohman‐Strickland P, Mayans S, Farrar‐Anton A, Sahler O, Masterson M, Manne S, Arent S. Feasibility of FitSurvivor: A technology‐enhanced group‐based fitness intervention for adolescent and young adult survivors of childhood cancer. Pediatric Blood & Cancer 2020;67(9) View
  57. Zhang Z, Giordani B, Chen W. Fidelity and feasibility of a multicomponent physical activity intervention in a retirement community. Geriatric Nursing 2020;41(4):394 View
  58. Kerner C, Goodyear V. The Motivational Impact of Wearable Healthy Lifestyle Technologies: A Self-determination Perspective on Fitbits With Adolescents. American Journal of Health Education 2017;48(5):287 View
  59. Veerubhotla A, Hong E, Knezevic S, Spungen A, Ding D. Estimation of Physical Activity Intensity in Spinal Cord Injury Using a Wrist-Worn ActiGraph Monitor. Archives of Physical Medicine and Rehabilitation 2020;101(9):1563 View
  60. Grym K, Niela-Vilén H, Ekholm E, Hamari L, Azimi I, Rahmani A, Liljeberg P, Löyttyniemi E, Axelin A. Feasibility of smart wristbands for continuous monitoring during pregnancy and one month after birth. BMC Pregnancy and Childbirth 2019;19(1) View
  61. Pelizzo G, Guddo A, Puglisi A, De Silvestri A, Comparato C, Valenza M, Bordonaro E, Calcaterra V. Accuracy of a Wrist-Worn Heart Rate Sensing Device during Elective Pediatric Surgical Procedures. Children 2018;5(3):38 View
  62. Ng K, Tynjälä J, Kokko S. Ownership and Use of Commercial Physical Activity Trackers Among Finnish Adolescents: Cross-Sectional Study. JMIR mHealth and uHealth 2017;5(5):e61 View
  63. Lunsford-Avery J, Keller C, Kollins S, Krystal A, Jackson L, Engelhard M. Feasibility and Acceptability of Wearable Sleep Electroencephalogram Device Use in Adolescents: Observational Study. JMIR mHealth and uHealth 2020;8(10):e20590 View
  64. Jang M, Ahn S, Lee J, Rhee M, Chae D, Kim J, Shin M. Validity and Reliability of the Newly Developed Surface Electromyography Device for Measuring Muscle Activity during Voluntary Isometric Contraction. Computational and Mathematical Methods in Medicine 2018;2018:1 View
  65. Davergne T, Pallot A, Dechartres A, Fautrel B, Gossec L. Use of Wearable Activity Trackers to Improve Physical Activity Behavior in Patients With Rheumatic and Musculoskeletal Diseases: A Systematic Review and Meta‐Analysis. Arthritis Care & Research 2019;71(6):758 View
  66. Browne S, Kechadi M, O'Donnell S, Dow M, Tully L, Doyle G, O'Malley G. Mobile Health Apps in Pediatric Obesity Treatment: Process Outcomes From a Feasibility Study of a Multicomponent Intervention. JMIR mHealth and uHealth 2020;8(7):e16925 View
  67. Hartman S, Nelson S, Weiner L. Patterns of Fitbit Use and Activity Levels Throughout a Physical Activity Intervention: Exploratory Analysis from a Randomized Controlled Trial. JMIR mHealth and uHealth 2018;6(2):e29 View
  68. Luque V, Feliu A, Escribano J, Ferré N, Flores G, Monné R, Gutiérrez-Marín D, Guillen N, Muñoz-Hernando J, Zaragoza-Jordana M, Gispert-Llauradó M, Rubio-Torrents C, Núñez-Roig M, Alcázar M, Ferré R, Basora J, Hsu P, Alegret-Basora C, Arasa F, Venables M, Singh P, Closa-Monasterolo R. The Obemat2.0 Study: A Clinical Trial of a Motivational Intervention for Childhood Obesity Treatment. Nutrients 2019;11(2):419 View
  69. Mulvaney S, Vaala S, Carroll R, Williams L, Lybarger C, Schmidt D, Dietrich M, Laffel L, Hood K. A mobile app identifies momentary psychosocial and contextual factors related to mealtime self-management in adolescents with type 1 diabetes. Journal of the American Medical Informatics Association 2019;26(12):1627 View
  70. Wang T, Wang M, Yang L, Li Z, Loh X, Chen X. Cyber–Physiochemical Interfaces. Advanced Materials 2020;32(8):1905522 View
  71. Wolverton A. Promoting Exercise and Activity in Children. Journal of Pediatric Surgical Nursing 2018;7(1):4 View
  72. Kim Y, Lochbaum M. Comparison of Polar Active Watch and Waist- and Wrist-Worn ActiGraph Accelerometers for Measuring Children’s Physical Activity Levels during Unstructured Afterschool Programs. International Journal of Environmental Research and Public Health 2018;15(10):2268 View
  73. Faust L, Wang C, Hachen D, Lizardo O, Chawla N. Physical Activity Trend eXtraction: A Framework for Extracting Moderate-Vigorous Physical Activity Trends From Wearable Fitness Tracker Data. JMIR mHealth and uHealth 2019;7(3):e11075 View
  74. Ringeval M, Wagner G, Denford J, Paré G, Kitsiou S. Fitbit-Based Interventions for Healthy Lifestyle Outcomes: Systematic Review and Meta-Analysis. Journal of Medical Internet Research 2020;22(10):e23954 View
  75. Lupton D. Young People’s Use of Digital Health Technologies in the Global North: Narrative Review. Journal of Medical Internet Research 2021;23(1):e18286 View
  76. Jayawardene W, Huber L, McDonnell J, Curran L, Larson S, Dickinson S, Chen X, Pena E, Carson A, Johnston J. ‘Tracking Together’—Simultaneous Use of Human and Dog Activity Trackers: Protocol for a Factorial, Randomized Controlled Pilot Trial. International Journal of Environmental Research and Public Health 2021;18(4):1561 View
  77. Díaz-Quesada G, Puga-González E, Muñoz-Galiano I. Efecto de la utilización de pulseras inteligentes para el incremento de la actividad física en adolescentes de un entorno rural: Estudio Piloto. JUMP 2021;(3):10 View
  78. Mizuno A, Changolkar S, Patel M. Wearable Devices to Monitor and Reduce the Risk of Cardiovascular Disease: Evidence and Opportunities. Annual Review of Medicine 2021;72(1):459 View
  79. Chaabane S, Chaabna K, Doraiswamy S, Mamtani R, Cheema S. Barriers and Facilitators Associated with Physical Activity in the Middle East and North Africa Region: A Systematic Overview. International Journal of Environmental Research and Public Health 2021;18(4):1647 View
  80. Kruizinga M, Heide N, Moll A, Zhuparris A, Yavuz Y, Kam M, Stuurman F, Cohen A, Driessen G, Harezlak J. Towards remote monitoring in pediatric care and clinical trials—Tolerability, repeatability and reference values of candidate digital endpoints derived from physical activity, heart rate and sleep in healthy children. PLOS ONE 2021;16(1):e0244877 View
  81. Bowen-Jallow K, Nunez-Lopez O, Wright A, Fuchs E, Ahn M, Lyons E, Jupiter D, Berry L, Suman O, Radhakrishnan R, Glaser A, Thompson D, Ardern C. Wearable Activity Tracking Device Use in an Adolescent Weight Management Clinic: A Randomized Controlled Pilot Trial. Journal of Obesity 2021;2021:1 View
  82. Katzan I, Schuster A, Kinzy T. Physical Activity Monitoring Using a Fitbit Device in Ischemic Stroke Patients: Prospective Cohort Feasibility Study. JMIR mHealth and uHealth 2021;9(1):e14494 View
  83. Hao Y, Ma X, Zhu Z, Cao Z. Validity of Wrist-Wearable Activity Devices for Estimating Physical Activity in Adolescents: Comparative Study. JMIR mHealth and uHealth 2021;9(1):e18320 View
  84. Chandrasekaran R, Katthula V, Moustakas E. Patterns of Use and Key Predictors for the Use of Wearable Health Care Devices by US Adults: Insights from a National Survey. Journal of Medical Internet Research 2020;22(10):e22443 View
  85. De Boer C, Ghomrawi H, Many B, Bouchard M, Linton S, Figueroa A, Kwon S, Abdullah F. Utility of Wearable Sensors to Assess Postoperative Recovery in Pediatric Patients After Appendectomy. Journal of Surgical Research 2021;263:160 View
  86. Ridgers N, Timperio A, Ball K, Lai S, Brown H, Macfarlane S, Salmon J. Effect of commercial wearables and digital behaviour change resources on the physical activity of adolescents attending schools in socio-economically disadvantaged areas: the RAW-PA cluster-randomised controlled trial. International Journal of Behavioral Nutrition and Physical Activity 2021;18(1) View
  87. Radman I, Sorić M, Mišigoj-Duraković M. Agreement between the SHAPES Questionnaire and a Multiple-Sensor Monitor in Assessing Physical Activity of Adolescents Using Categorial Approach: A Cross-Sectional Study. Sensors 2021;21(6):1986 View
  88. Strudwick G, McLay D, Lo B, Shin H, Currie L, Thomson N, Maillet É, Strong V, Miller A, Shen N, Campbell J. Development of a Resource Guide to Support the Engagement of Mental Health Providers and Patients with Digital Health Tools: A Multi-method Study (Preprint). Journal of Medical Internet Research 2020 View
  89. Smuck M, Odonkor C, Wilt J, Schmidt N, Swiernik M. The emerging clinical role of wearables: factors for successful implementation in healthcare. npj Digital Medicine 2021;4(1) View
  90. Resnick B, Boltz M, Galik E, Fix S, Zhu S. Feasibility, Reliability, and Validity of the MotionWatch 8 to Evaluate Physical Activity Among Older Adults With and Without Cognitive Impairment in Assisted Living Settings. Journal of Aging and Physical Activity 2021;29(3):391 View
  91. Ummels D, Beekman E, Braun S, Beurskens A. Using an Activity Tracker in Healthcare: Experiences of Healthcare Professionals and Patients. International Journal of Environmental Research and Public Health 2021;18(10):5147 View
  92. Mooses K, Taveter K. Agent-Oriented Goal Models in Developing Information Systems Supporting Physical Activity Among Adolescents: Literature Review and Expert Interviews. Journal of Medical Internet Research 2021;23(5):e24810 View
  93. Mauldin K, Gieng J, Saarony D, Hu C. Performing nutrition assessment remotely via telehealth. Nutrition in Clinical Practice 2021;36(4):751 View
  94. Creaser A, Clemes S, Costa S, Hall J, Ridgers N, Barber S, Bingham D. The Acceptability, Feasibility, and Effectiveness of Wearable Activity Trackers for Increasing Physical Activity in Children and Adolescents: A Systematic Review. International Journal of Environmental Research and Public Health 2021;18(12):6211 View
  95. Keadle S, Bustamante E, Buman M. Physical Activity and Public Health: Four Decades of Progress. Kinesiology Review 2021;10(3):319 View
  96. Bardus M, Borgi C, El-Harakeh M, Gherbal T, Kharroubi S, Fares E. Exploring the Use of Mobile and Wearable Technology among University Student Athletes in Lebanon: A Cross-Sectional Study. Sensors 2021;21(13):4472 View
  97. Domin A, Spruijt-Metz D, Theisen D, Ouzzahra Y, Vögele C. Smartphone-Based Interventions for Physical Activity Promotion: Scoping Review of the Evidence Over the Last 10 Years. JMIR mHealth and uHealth 2021;9(7):e24308 View

Books/Policy Documents

  1. Boland M, Alam F, Bronlund J. Trends in Personalized Nutrition. View
  2. Kettunen E, Makkonen M, Kari T, Critchley W. Optimizing Health Monitoring Systems With Wireless Technology. View
  3. Ridgers N, Drehlich M. Digital Health. View