Published on in Vol 6, No 1 (2018): January

Preprints (earlier versions) of this paper are available at, first published .
Smartphone App–Based Assessment of Gait During Normal and Dual-Task Walking: Demonstration of Validity and Reliability

Smartphone App–Based Assessment of Gait During Normal and Dual-Task Walking: Demonstration of Validity and Reliability

Smartphone App–Based Assessment of Gait During Normal and Dual-Task Walking: Demonstration of Validity and Reliability


  1. Zafonte R, Pascual‐Leone A, Baggish A, Weisskopf M, Taylor H, Connor A, Baker J, Cohan S, Valdivia C, Courtney T, Cohen I, Speizer F, Nadler L. The Football Players’ Health Study at Harvard University: Design and objectives. American Journal of Industrial Medicine 2019;62(8):643 View
  2. Kobsar D, Charlton J, Tse C, Esculier J, Graffos A, Krowchuk N, Thatcher D, Hunt M. Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation 2020;17(1) View
  3. Guillén-Rogel P, Franco-Escudero C, Marín P. Test-retest reliability of a smartphone app for measuring core stability for two dynamic exercises. PeerJ 2019;7:e7485 View
  4. Tang Y, Li Z, Tian H, Ding J, Lin B. Detecting Toe-Off Events Utilizing a Vision-Based Method. Entropy 2019;21(4):329 View
  5. Steinert A, Sattler I, Otte K, Röhling H, Mansow-Model S, Müller-Werdan U. Using New Camera-Based Technologies for Gait Analysis in Older Adults in Comparison to the Established GAITRite System. Sensors 2019;20(1):125 View
  6. Martin E, Kim S, Unfried A, Delcambre S, Sanders N, Bischoff B, Saavedra R. 6th vital sign app: Testing validity and reliability for measuring gait speed. Gait & Posture 2019;68:264 View
  7. Zhong R, Rau P. Are cost-effective technologies feasible to measure gait in older adults? A systematic review of evidence-based literature. Archives of Gerontology and Geriatrics 2020;87:103970 View
  8. Fujiwara S, Sato S, Sugawara A, Nishikawa Y, Koji T, Nishimura Y, Ogasawara K. The Coefficient of Variation of Step Time Can Overestimate Gait Abnormality: Test-Retest Reliability of Gait-Related Parameters Obtained with a Tri-Axial Accelerometer in Healthy Subjects. Sensors 2020;20(3):577 View
  9. Manor B, Zhou J, Lo O, Zhu H, Gouskova N, Yu W, Zafonte R, Lipsitz L, Travison T, Pascual‐Leone A. Self‐Reported Head Trauma Predicts Poor Dual Task Gait in Retired National Football League Players. Annals of Neurology 2020;87(1):75 View
  10. Erickson K, Grove G, Burns J, Hillman C, Kramer A, McAuley E, Vidoni E, Becker J, Butters M, Gray K, Huang H, Jakicic J, Kamboh M, Kang C, Klunk W, Lee P, Marsland A, Mettenburg J, Rogers R, Stillman C, Sutton B, Szabo-Reed A, Verstynen T, Watt J, Weinstein A, Wollam M. Investigating Gains in Neurocognition in an Intervention Trial of Exercise (IGNITE): Protocol. Contemporary Clinical Trials 2019;85:105832 View
  11. Zhong R, Rau P. A Mobile Phone–Based Gait Assessment App for the Elderly: Development and Evaluation. JMIR mHealth and uHealth 2020;8(5):e14453 View
  12. Park J, Kim T. Reliability and Validity of a Smartphone-based Assessment of Gait Parameters in Patients with Chronic Stroke. Journal of The Korean Society of Physical Medicine 2018;13(3):19 View
  13. Cattaneo G, Bartrés-Faz D, Morris T, Sánchez J, Macià D, Tarrero C, Tormos J, Pascual-Leone A. The Barcelona Brain Health Initiative: A Cohort Study to Define and Promote Determinants of Brain Health. Frontiers in Aging Neuroscience 2018;10 View
  14. Jim H, Hoogland A, Brownstein N, Barata A, Dicker A, Knoop H, Gonzalez B, Perkins R, Rollison D, Gilbert S, Nanda R, Berglund A, Mitchell R, Johnstone P. Innovations in research and clinical care using patient‐generated health data. CA: A Cancer Journal for Clinicians 2020;70(3):182 View
  15. Takayanagi N, Sudo M, Yamashiro Y, Lee S, Kobayashi Y, Niki Y, Shimada H. Relationship between Daily and In-laboratory Gait Speed among Healthy Community-dwelling Older Adults. Scientific Reports 2019;9(1) View
  16. Chien J, Torres-Russotto D, Wang Z, Gui C, Whitney D, Siu K, Barbieri F. The use of smartphone in measuring stance and gait patterns in patients with orthostatic tremor. PLOS ONE 2019;14(7):e0220012 View

Books/Policy Documents

  1. Kloek C. De dokter en digitalisering. View