Published on in Vol 7, No 6 (2019): June

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/12770, first published .
Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study

Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study

Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study

Journals

  1. Kwon S, Hong J, Choi E, Lee B, Baik C, Lee E, Jeong E, Koo B, Oh S, Yi Y. Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study. Journal of Medical Internet Research 2020;22(5):e16443 View
  2. Prasitlumkum N, Cheungpasitporn W, Chokesuwattanaskul A, Thangjui S, Thongprayoon C, Bathini T, Vallabhajosyula S, Kanitsoraphan C, Leesutipornchai T, Chokesuwattanaskul R. Diagnostic accuracy of smart gadgets/wearable devices in detecting atrial fibrillation: A systematic review and meta-analysis. Archives of Cardiovascular Diseases 2021;114(1):4 View
  3. Pereira T, Tran N, Gadhoumi K, Pelter M, Do D, Lee R, Colorado R, Meisel K, Hu X. Photoplethysmography based atrial fibrillation detection: a review. npj Digital Medicine 2020;3(1) View
  4. Dagher L, Shi H, Zhao Y, Marrouche N. Wearables in cardiology: Here to stay. Heart Rhythm 2020;17(5):889 View
  5. Lee Y, Chou W, Chien T, Chou P, Yeh Y, Lee H. An App Developed for Detecting Nurse Burnouts Using the Convolutional Neural Networks in Microsoft Excel: Population-Based Questionnaire Study. JMIR Medical Informatics 2020;8(5):e16528 View
  6. Ma S, Chou W, Chien T, Chow J, Yeh Y, Chou P, Lee H. An App for Detecting Bullying of Nurses Using Convolutional Neural Networks and Web-Based Computerized Adaptive Testing: Development and Usability Study. JMIR mHealth and uHealth 2020;8(5):e16747 View
  7. Mehrang S, Lahdenoja O, Kaisti M, Tadi M, Hurnanen T, Airola A, Knuutila T, Jaakkola J, Jaakkola S, Vasankari T, Kiviniemi T, Airaksinen J, Koivisto T, Pankaala M. Classification of Atrial Fibrillation and Acute Decompensated Heart Failure Using Smartphone Mechanocardiography: A Multilabel Learning Approach. IEEE Sensors Journal 2020;20(14):7957 View
  8. Jeon E, Oh K, Kwon S, Son H, Yun Y, Jung E, Kim M. A Lightweight Deep Learning Model for Fast Electrocardiographic Beats Classification With a Wearable Cardiac Monitor: Development and Validation Study. JMIR Medical Informatics 2020;8(3):e17037 View
  9. Sekelj S, Sandler B, Johnston E, Pollock K, Hill N, Gordon J, Tsang C, Khan S, Ng F, Farooqui U. Detecting undiagnosed atrial fibrillation in UK primary care: Validation of a machine learning prediction algorithm in a retrospective cohort study. European Journal of Preventive Cardiology 2021;28(6):598 View
  10. Cheng P, Chen Z, Li Q, Gong Q, Zhu J, Liang Y. Atrial Fibrillation Identification With PPG Signals Using a Combination of Time-Frequency Analysis and Deep Learning. IEEE Access 2020;8:172692 View
  11. Han D, Bashar S, Mohagheghian F, Ding E, Whitcomb C, McManus D, Chon K. Premature Atrial and Ventricular Contraction Detection Using Photoplethysmographic Data from a Smartwatch. Sensors 2020;20(19):5683 View
  12. Dall’Olio L, Curti N, Remondini D, Safi Harb Y, Asselbergs F, Castellani G, Uh H. Prediction of vascular aging based on smartphone acquired PPG signals. Scientific Reports 2020;10(1) View
  13. Chou P, Chien T, Yang T, Yeh Y, Chou W, Yeh C. Predicting Active NBA Players Most Likely to Be Inducted into the Basketball Hall of Famers Using Artificial Neural Networks in Microsoft Excel: Development and Usability Study. International Journal of Environmental Research and Public Health 2021;18(8):4256 View
  14. Duncker D, Ding W, Etheridge S, Noseworthy P, Veltmann C, Yao X, Bunch T, Gupta D. Smart Wearables for Cardiac Monitoring—Real-World Use beyond Atrial Fibrillation. Sensors 2021;21(7):2539 View
  15. Fradi M, Khriji L, Machhout M, Hossen A. Automatic heart disease class detection using convolutional neural network architecture‐based various optimizers‐networks. IET Smart Cities 2021;3(1):3 View
  16. Väliaho E, Kuoppa P, Lipponen J, Hartikainen J, Jäntti H, Rissanen T, Kolk I, Pohjantähti-Maaroos H, Castrén M, Halonen J, Tarvainen M, Santala O, Martikainen T. Wrist Band Photoplethysmography Autocorrelation Analysis Enables Detection of Atrial Fibrillation Without Pulse Detection. Frontiers in Physiology 2021;12 View
  17. Sun J, Shen H, Qu Q, Sun W, Kong X. The application of deep learning in electrocardiogram: Where we came from and where we should go?. International Journal of Cardiology 2021;337:71 View
  18. Shin H, Sun S, Lee J, Kim H. Complementary Photoplethysmogram Synthesis From Electrocardiogram Using Generative Adversarial Network. IEEE Access 2021;9:70639 View
  19. Taniguchi H, Takata T, Takechi M, Furukawa A, Iwasawa J, Kawamura A, Taniguchi T, Tamura Y. Explainable Artificial Intelligence Model for Diagnosis of Atrial Fibrillation Using Holter Electrocardiogram Waveforms. International Heart Journal 2021;62(3):534 View
  20. Olier I, Ortega-Martorell S, Pieroni M, Lip G. How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management. Cardiovascular Research 2021;117(7):1700 View
  21. Kareem M, Lei N, Ali A, Ciaccio E, Acharya U, Faust O. A review of patient-led data acquisition for atrial fibrillation detection to prevent stroke. Biomedical Signal Processing and Control 2021;69:102818 View
  22. Chu J, Yang W, Chang Y, Yang F. Visual Reassessment with Flux-Interval Plot Configuration after Automatic Classification for Accurate Atrial Fibrillation Detection by Photoplethysmography. Diagnostics 2022;12(6):1304 View
  23. Kumar D, Puthusserypady S, Dominguez H, Sharma K, Bardram J. An investigation of the contextual distribution of false positives in a deep learning-based atrial fibrillation detection algorithm. Expert Systems with Applications 2023;211:118540 View
  24. Liu Z, Zhou B, Jiang Z, Chen X, Li Y, Tang M, Miao F. Multiclass Arrhythmia Detection and Classification From Photoplethysmography Signals Using a Deep Convolutional Neural Network. Journal of the American Heart Association 2022;11(7) View
  25. Han D, Bashar S, Lázaro J, Mohagheghian F, Peitzsch A, Nishita N, Ding E, Dickson E, DiMezza D, Scott J, Whitcomb C, Fitzgibbons T, McManus D, Chon K. A Real-Time PPG Peak Detection Method for Accurate Determination of Heart Rate during Sinus Rhythm and Cardiac Arrhythmia. Biosensors 2022;12(2):82 View
  26. Naseri Jahfari A, Tax D, Reinders M, van der Bilt I. Machine Learning for Cardiovascular Outcomes From Wearable Data: Systematic Review From a Technology Readiness Level Point of View. JMIR Medical Informatics 2022;10(1):e29434 View
  27. Sun Z, Junttila J, Tulppo M, Seppanen T, Li X. Non-Contact Atrial Fibrillation Detection From Face Videos by Learning Systolic Peaks. IEEE Journal of Biomedical and Health Informatics 2022;26(9):4587 View
  28. Silva C, Morillo C, Leite-Castro C, González-Otero R, Bessani M, González R, Castellanos J, Otero L. Machine learning for atrial fibrillation risk prediction in patients with sleep apnea and coronary artery disease. Frontiers in Cardiovascular Medicine 2022;9 View
  29. Lee S, Chu Y, Ryu J, Park Y, Yang S, Koh S. Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis. Yonsei Medical Journal 2022;63(Suppl):S93 View
  30. Chan N, Orchard J, Agbayani M, Boddington D, Chao T, Johar S, John B, Joung B, Krishinan S, Krittayaphong R, Kurokawa S, Lau C, Lim T, Linh P, Long V, Naik A, Okumura Y, Sasano T, Yan B, Raharjo S, Hanafy D, Yuniadi Y, Nwe N, Awan Z, Huang H, Freedman B. 2021 Asia Pacific Heart Rhythm Society (APHRS) practice guidance on atrial fibrillation screening. Journal of Arrhythmia 2022;38(1):31 View
  31. Guess M, Zavanelli N, Yeo W. Recent Advances in Materials and Flexible Sensors for Arrhythmia Detection. Materials 2022;15(3):724 View
  32. Lee D, Kwon S. Intra Prediction Method for Depth Video Coding by Block Clustering through Deep Learning. Sensors 2022;22(24):9656 View
  33. Ramesh J, Solatidehkordi Z, Aburukba R, Sagahyroon A. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks. Sensors 2021;21(21):7233 View
  34. Sun Y, Yang Y, Wu B, Huang P, Cheng S, Wu B, Chen C. Contactless facial video recording with deep learning models for the detection of atrial fibrillation. Scientific Reports 2022;12(1) View
  35. Guo Y, Lip G. Beyond atrial fibrillation detection: how digital tools impact the care of patients with atrial fibrillation. European Journal of Internal Medicine 2021;93:117 View
  36. Hsu C, Chien T, Yan Y. An application for classifying perceptions on my health bank in Taiwan using convolutional neural networks and web-based computerized adaptive testing. Medicine 2021;100(52):e28457 View
  37. Ding C, Xiao R, Do D, Lee D, Lee R, Kalantarian S, Hu X. Log-Spectral Matching GAN: PPG-Based Atrial Fibrillation Detection can be Enhanced by GAN-Based Data Augmentation With Integration of Spectral Loss. IEEE Journal of Biomedical and Health Informatics 2023;27(3):1331 View
  38. Fradi M, Khriji L, Machhout M. Real-time arrhythmia heart disease detection system using CNN architecture based various optimizers-networks. Multimedia Tools and Applications 2022;81(29):41711 View
  39. Butkuviene M, Petrenas A, Solosenko A, Martin-Yebra A, Marozas V, Sornmo L. Considerations on Performance Evaluation of Atrial Fibrillation Detectors. IEEE Transactions on Biomedical Engineering 2021;68(11):3250 View
  40. Park J, Seok H, Kim S, Shin H. Photoplethysmogram Analysis and Applications: An Integrative Review. Frontiers in Physiology 2022;12 View
  41. Foo D, Fong A, Almahmeed W. Detection of Atrial Fibrillation in Patients Admitted with Ischaemic Stroke: A Non-systematic Review of the Asian Population. Journal of Asian Pacific Society of Cardiology 2023;2 View
  42. El-Sherbini A, Hassan Virk H, Wang Z, Glicksberg B, Krittanawong C. Machine-Learning-Based Prediction Modelling in Primary Care: State-of-the-Art Review. AI 2023;4(2):437 View
  43. Khurshid S, Chang Y, Borowsky L, McManus D, Ashburner J, Atlas S, Ellinor P, Singer D, Lubitz S. Performance of Single-Lead Handheld Electrocardiograms for Atrial Fibrillation Screening in Primary Care. JACC: Advances 2023;2(8):100616 View
  44. Khan S, Lim C, Chaudhry H, Assaf A, Donnelan E, Marrouche N, Kreidieh O. Artificial Intelligence and Machine Learning in Electrophysiology—a Short Review. Current Treatment Options in Cardiovascular Medicine 2023;25(10):443 View
  45. Mohagheghian F, Han D, Ghetia O, Chen D, Peitzsch A, Nishita N, Ding E, Mensah Otabil E, Noorishirazi K, Hamel A, Dickson E, DiMezza D, Tran K, McManus D, Chon K. Atrial fibrillation detection on reconstructed photoplethysmography signals collected from a smartwatch using a denoising autoencoder. Expert Systems with Applications 2024;237:121611 View
  46. Joung J, Jung C, Lee H, Chae M, Kim H, Park J, Shin W, Kim C, Lee M, Choi C. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations. Scientific Reports 2023;13(1) View
  47. Antiperovitch P, Mortara D, Barrios J, Avram R, Yee K, Khaless A, Cristal A, Tison G, Olgin J. Continuous Atrial Fibrillation Monitoring From Photoplethysmography. JACC: Clinical Electrophysiology 2024;10(2):334 View
  48. Pachori D, Tripathy R, Jain T. Detection of Atrial Fibrillation From PPG Sensor Data Using Variational Mode Decomposition. IEEE Sensors Letters 2024;8(3):1 View
  49. Liu Z, Zhu T, Lu L, Zhang Y, Clifton D. Intelligent Electrocardiogram Acquisition Via Ubiquitous Photoplethysmography Monitoring. IEEE Journal of Biomedical and Health Informatics 2024;28(3):1321 View
  50. Ghorbani R, Reinders M, Tax D. Personalized anomaly detection in PPG data using representation learning and biometric identification. Biomedical Signal Processing and Control 2024;94:106216 View
  51. Ding C, Xiao R, Wang W, Holdsworth E, Hu X. Photoplethysmography based atrial fibrillation detection: a continually growing field. Physiological Measurement 2024;45(4):04TR01 View
  52. Ding C, Guo Z, Rudin C, Xiao R, Shah A, Do D, Lee R, Clifford G, Nahab F, Hu X. Learning From Alarms: A Robust Learning Approach for Accurate Photoplethysmography-Based Atrial Fibrillation Detection Using Eight Million Samples Labeled With Imprecise Arrhythmia Alarms. IEEE Journal of Biomedical and Health Informatics 2024;28(5):2650 View
  53. Ding E, Marcus G, McManus D. Emerging Technologies for Identifying Atrial Fibrillation. Circulation Research 2020;127(1):128 View
  54. Sim J, Fong Q, Huang W, Tan C. Machine learning in medicine: what clinicians should know. Singapore Medical Journal 2023;64(2):91 View
  55. Andrei A, Cox J, Shah S, Malaisrie S, Mehta C, Efimov I, Churyla A, Kruse J, McCarthy P. Machine learning-based prediction of new onset of atrial fibrillation after mitral valve surgery. International Journal of Arrhythmia 2024;25(1) View

Books/Policy Documents

  1. Mejía-Mejía E, Allen J, Budidha K, El-Hajj C, Kyriacou P, Charlton P. Photoplethysmography. View
  2. Chouvarda I. Personalized Health Systems for Cardiovascular Disease. View
  3. Chung C, Roy V, Tse G, Liu H. Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing. View