Published on in Vol 10, No 4 (2022): April

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/36762, first published .
SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing

SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing

SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing

Journals

  1. Brand Y, Schwartz D, Gazit E, Buchman A, Gilad-Bachrach R, Hausdorff J. Gait Detection from a Wrist-Worn Sensor Using Machine Learning Methods: A Daily Living Study in Older Adults and People with Parkinson’s Disease. Sensors 2022;22(18):7094 View
  2. Abbasian M, Khatibi E, Azimi I, Rahmani A. PHAS: An End-to-End, Open-Source, and Portable Healthcare Analytics Stack. Procedia Computer Science 2023;220:511 View
  3. Lin W, Karahanoglu F, Psaltos D, Adamowicz L, Santamaria M, Cai X, Demanuele C, Di J. Can Gait Characteristics Be Represented by Physical Activity Measured with Wrist-Worn Accelerometers?. Sensors 2023;23(20):8542 View
  4. Lin W, Karahanoglu F, Demanuele C, Khan S, Cai X, Santamaria M, Di J, Adamowicz L. SciKit digital health package for accelerometry-measured physical activity: comparisons to existing solutions and investigations of age effects in healthy adults. Frontiers in Digital Health 2023;5 View
  5. Beyer K, Weber K, Cornish B, Vert A, Thai V, Godkin F, McIlroy W, Van Ooteghem K. NiMBaLWear analytics pipeline for wearable sensors: a modular, open-source platform for evaluating multiple domains of health and behaviour. BMC Digital Health 2024;2(1) View
  6. Mattila O, Rantanen T, Rantakokko M, Karavirta L, Cronin N, Rantalainen T. Laboratory-assessed gait cycle entropy for classifying walking limitations among community-dwelling older adults. Experimental Gerontology 2024;188:112381 View
  7. Albites-Sanabria J, Palumbo P, Helbostad J, Bandinelli S, Mellone S, Palmerini L, Chiari L. Real-world Balance Assessment while Standing for Fall Prediction in Older Adults. IEEE Transactions on Biomedical Engineering 2023:1 View
  8. Küderle A, Ullrich M, Roth N, Ollenschläger M, Ibrahim A, Moradi H, Richer R, Seifer A, Zürl M, Sîmpetru R, Herzer L, Prossel D, Kluge F, Eskofier B. Gaitmap—An Open Ecosystem for IMU-Based Human Gait Analysis and Algorithm Benchmarking. IEEE Open Journal of Engineering in Medicine and Biology 2024;5:163 View
  9. Camerlingo N, Shaafi Kabiri N, Psaltos D, Kelly M, Wicker M, Messina I, Auerbach S, Zhang H, Messere A, Isik Karahanoglu F, Santamaria M, Demanuele C, Caouette D, Thomas K. Monitoring Gait and Physical Activity of Elderly Frail Individuals in Free-Living Environment: A Feasibility Study. Gerontology 2024;70(4):439 View
  10. Di J, Tuttle P, Adamowicz L, Lin W, Zhang H, Psaltos D, Selig J, Bai J, Karahanoglu F, Sheriff P, Seelam V, Williams B, Ghafoor S, Demanuele C, Santamaria M, Cai X. Monitoring Activity and Gait in Children (MAGIC) using digital health technologies. Pediatric Research 2024;96(3):750 View
  11. Helsel B, Hibbing P, Montgomery R, Vidoni E, Ptomey L, Clutton J, Washburn R. agcounts: An R Package to Calculate ActiGraph Activity Counts From Portable Accelerometers. Journal for the Measurement of Physical Behaviour 2024;7(1) View
  12. Camerlingo N, Cai X, Adamowicz L, Welbourn M, Psaltos D, Zhang H, Messere A, Selig J, Lin W, Sheriff P, Demanuele C, Santamaria M, Karahanoglu F. Measuring gait parameters from a single chest-worn accelerometer in healthy individuals: a validation study. Scientific Reports 2024;14(1) View
  13. Scotland A, Cosne G, Juraver A, Karatsidis A, Penalver-Andres J, Bartholomé E, Kanzler C, Mazzà C, Roggen D, Hinchliffe C, Del Din S, Belachew S. DISPEL: A Python Framework for Developing Measures From Digital Health Technologies. IEEE Open Journal of Engineering in Medicine and Biology 2024;5:494 View
  14. Welbourn M, Sheriff P, Tuttle P, Adamowicz L, Psaltos D, Kelekar A, Selig J, Messere A, Mei W, Caouette D, Ghafoor S, Santamaria M, Zhang H, Demanuele C, Karahanoglu F, Cai X. In-Clinic and Natural Gait Observations master protocol (I-CAN-GO) to validate gait using a lumbar accelerometer. Scientific Reports 2024;14(1) View