Published on in Vol 12 (2024)
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/40689, first published
.

Journals
- Karas M, Huang D, Clement Z, Millner A, Kleiman E, Bentley K, Zuromski K, Fortgang R, DeMarco D, Haim A, Donovan A, Buonopane R, Bird S, Smoller J, Nock M, Onnela J. Smartphone Screen Time Characteristics in People With Suicidal Thoughts: Retrospective Observational Data Analysis Study. JMIR mHealth and uHealth 2024;12:e57439 View
- Lim D, Jeong J, Song Y, Cho C, Yeom J, Lee T, Lee J, Lee H, Kim J. Accurately predicting mood episodes in mood disorder patients using wearable sleep and circadian rhythm features. npj Digital Medicine 2024;7(1) View
- Odom J, Lee K, Currie E, Allen-Watts K, Harrell E, Bechthold A, Engler S, Curry K, Kamal A, Ritchie C, Demiris G, Wright A, Bakitas M, Azuero A. Feasibility and Acceptability of Collecting Passive Smartphone Data for Potential Use in Digital Phenotyping Among Family Caregivers and Patients With Advanced Cancer. JCO Clinical Cancer Informatics 2025;(9) View
- Rocchi G, Vocaj E, Moawad S, Antonucci A, Grigioni C, Giuffrida V, Bordini J. Optimizing personalized psychological well-being interventions through digital phenotyping: results from a randomized non-clinical trial. Frontiers in Psychology 2025;15 View
- Bello C, Eisler P, Heidegger T. Perioperative Anxiety: Current Status and Future Perspectives. Journal of Clinical Medicine 2025;14(5):1422 View
- Heckler W, Feijó L, de Carvalho J, Barbosa J. Digital phenotyping for mental health based on data analytics: A systematic literature review. Artificial Intelligence in Medicine 2025;163:103094 View
- Odom J, Lee K, Harrell E, Watts K, Bechthold A, Engler S, Puga F, Bibriescas N, Kamal A, Ritchie C, Demiris G, Wright A, Bakitas M, Azuero A. Associations between smartphone GPS data and changes in psychological health and burden outcomes among family caregivers and patients with advanced cancer: an exploratory longitudinal cohort study. BMC Cancer 2025;25(1) View
- Lialiou P, Maglogiannis I. Students’ Burnout Symptoms Detection Using Smartwatch Wearable Devices: A Systematic Literature Review. AI Sensors 2025;1(1):2 View
- Beltrán J, Jacob Y, Mehta M, Hossain T, Adams A, Fontaine S, Torous J, McDonough C, Johnson M, Delgado A, Murrough J, Morris L. Digital measures of activity and motivation impact depression and anxiety in the real world. npj Digital Medicine 2025;8(1) View
- Torous J, Linardon J, Goldberg S, Sun S, Bell I, Nicholas J, Hassan L, Hua Y, Milton A, Firth J. The evolving field of digital mental health: current evidence and implementation issues for smartphone apps, generative artificial intelligence, and virtual reality. World Psychiatry 2025;24(2):156 View
- Ciharova M, Amarti K, van Breda W, Gevonden M, Ghassemi S, Kleiboer A, Vinkers C, Sep M, Trofimova S, Cooper A, Peng X, Schulte M, Karyotaki E, Cuijpers P, Riper H. Machine-learning detection of stress severity expressed on a continuous scale using acoustic, verbal, visual, and physiological data: lessons learned. Frontiers in Psychiatry 2025;16 View
- Beames J, Dabash O, Spoelma M, Shvetcov A, Zheng W, Slade A, Han J, Hoon L, Kupper J, Parker R, Mitchell B, Martin N, Newby J, Whitton A, Christensen H. Feasibility of Collecting and Linking Digital Phenotyping, Clinical, and Genetics Data for Mental Health Research: Pilot Observational Study. JMIR Formative Research 2025;9:e71377 View
- Ringwald W, King G, Vize C, Wright A. Passive Smartphone Sensors for Detecting Psychopathology. JAMA Network Open 2025;8(7):e2519047 View
- Shen S, Qi W, Zeng J, Li S, Liu X, Zhu X, Dong C, Wang B, Shi Y, Yao J, Wang B, Lou X, Gu S, Li P, Wang J, Jiang G, Cao S. Passive Sensing for Mental Health Monitoring: A Scoping Review of Machine Learning with Wearables and Smartphones (Preprint). Journal of Medical Internet Research 2025 View