Published on in Vol 7 , No 10 (2019) :October
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/14149, first published
.

Journals
- Kim H, Kim S, Kong S, Jeong Y, Kim H, Kim N. Possible Application of Ecological Momentary Assessment to Older Adults’ Daily Depressive Mood: Integrative Literature Review. JMIR Mental Health 2020;7(6):e13247 View
- Lewczuk K, Gorowska M, Li Y, Gola M. Mobile Internet Technologies, Ecological Momentary Assessment, and Intervention—Poison and Remedy for New Online Problematic Behaviors in ICD-11. Frontiers in Psychiatry 2020;11 View
- Niculescu I, Arora T, Iaboni A. Screening for depression in older adults with cognitive impairment in the homecare setting: a systematic review. Aging & Mental Health 2020:1 View
- Grossman J, Frumkin M, Rodebaugh T, Lenze E. mHealth Assessment and Intervention of Depression and Anxiety in Older Adults. Harvard Review of Psychiatry 2020;28(3):203 View
- Bincy K, Logaraj M, Ramraj B. Depression and its associated factors among the older adults in rural, Tamilnadu, India. Clinical Epidemiology and Global Health 2021;10:100677 View
- He-Yueya J, Buck B, Campbell A, Choudhury T, Kane J, Ben-Zeev D, Althoff T. Assessing the relationship between routine and schizophrenia symptoms with passively sensed measures of behavioral stability. npj Schizophrenia 2020;6(1) View
- Minaeva O, Riese H, Lamers F, Antypa N, Wichers M, Booij S. Screening for Depression in Daily Life: Development and External Validation of a Prediction Model Based on Actigraphy and Experience Sampling Method. Journal of Medical Internet Research 2020;22(12):e22634 View
- Koo J, Son N, Yoo K. Relationship between the living-alone period and depressive symptoms among the elderly. Archives of Gerontology and Geriatrics 2021;94:104341 View
- Anýž J, Bakštein E, Dally A, Kolenič M, Hlinka J, Hartmannová T, Urbanová K, Correll C, Novák D, Španiel F. Validity of the Aktibipo Self-rating Questionnaire for the Digital Self-assessment of Mood and Relapse Detection in Patients With Bipolar Disorder: Instrument Validation Study. JMIR Mental Health 2021;8(8):e26348 View
- Opoku Asare K, Terhorst Y, Vega J, Peltonen E, Lagerspetz E, Ferreira D. Predicting Depression From Smartphone Behavioral Markers Using Machine Learning Methods, Hyperparameter Optimization, and Feature Importance Analysis: Exploratory Study. JMIR mHealth and uHealth 2021;9(7):e26540 View
- Massar S, Chua X, Soon C, Ng A, Ong J, Chee N, Lee T, Ghosh A, Chee M. Trait-like nocturnal sleep behavior identified by combining wearable, phone-use, and self-report data. npj Digital Medicine 2021;4(1) View
- Niculescu I, Quirt H, Arora T, Borsook T, Green R, Ford B, Iaboni A. Ecological Momentary Assessment of Depression in People With Advanced Dementia: Longitudinal Pilot Study. JMIR Aging 2021;4(3):e29021 View